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1 Definitions and examples

Definition 1.1 (Fuchs 1880, Poincar

´

e 1882).

1. A discrete subgroup � ⇢ PSL2R is called Fuchsian.

2. When � ⇠= ⇡1(⌃), we define the Fuchsian space

F (⌃) = {⇢ : ⇡1(⌃)! PSL2R|discrete and faithful}/PSL2R.

Remark.

1. � Fuchsian () � y H2 properly discontinuously.

2. F (⌃) coincides with Teichmüller space ⌧(⌃) of the surface, which is the space
of marked complex structures on the surface ⌃, or, equivalently, the space of
marked hyperbolic structures on the surface ⌃.

Classification of elements of PSL2R.

We may classify the elements A 2 PSL2R into 3 types:

• elliptic () there is one fixed point in H2 () 0  tr2(A) < 4.

• parabolic () there is one fixed point in @H2 = R̂ () tr2(A) = 4.

• hyperbolic () there are 2 fixed points in @H2 = R̂ () tr2(A) > 4.
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Figure 1: On the left, 3 copies of the fundamental domain for � = PSL2Z. On the
right, H2/�.

Examples.

1. � = PSL2Z =<

 
1 1
0 1

!
,

 
0 �1
1 0

!
>. Then H2/� is an orbifold homeomor-

phic to ⌃0,3, where we have a puncture (or cusp of order 1) and two cusp
points of order 2 and 3, as shown in Figure 1.

2. � =<

 
1 1
0 1

!
,

 
1 0
1 1

!
>⇠= F2. Then H2/� ⇠= ⌃0,3. One generator acts as

shown by the red arrow in Figure 2, while the second generator acts as shown
by the blue arrow in Figure 2.

Figure 2: On the left, fundamental domain for � ⇠= F2, as described in the Example
2 above. On the right, H2/�.

Definition 1.2 (Quasiconformal).

A maps f : D ! D0 between domains in C is quasiconformal if it sends small circles
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into small ellipses with bounded ratio of axes. More precisely, it is a di↵eomorphism
f : D ! D0 between domains in C with bounded dilatation K

f

, where

• f
z

= 1
2(fx

� if
y

);

• f
z̄

= 1
2(fx

+ if
y

);

• D
f

:= |fz |+|fz̄ |
|fz |�|fz̄ | ;

• K
f

= min
z2D

D
f

(z).

So f is quasiconformal if |K
f

| <1 (and f conformal if K
f

= 1).

Definition 1.2 (Klein 1863, Poincar

´

e 1883)

A discrete subgroup � ⇢ PSL2C is called Kleinian.

Remark.

Kleinian group � will act properly discontinuously on H3. On the other hand,
� y Ĉ = @H3, but it will not act properly discontinuously on the whole Ĉ. So we
have the following decomposition of Ĉ.

Definition 1.3 (Domain of discontinuity, limit set).

• The limit set is ⇤(�) = {accumulation points of �-action}.

• The domain of discontinuity is ⌦(�) = {x 2 Ĉ|�-action is properly discontinuous}

Classification of elements of PSL2C.

We may classify the elements A 2 PSL2C into 3 types:

• elliptic () there is one geodesic � in H3 fixed pointwise and A rotates other
points around � () 0  tr2(A) 2 [0, 4).

• parabolic () there is one fixed point in @H3 = Ĉ () tr2(A) = 4.

• hyperbolic () there is one fixed geodesic � in H3 and A translates and
rotates points around � () tr2(A) /2 [0, 4].

Examples.

1. Schottky group: We can choose g � 2 pairs or mutually disjoint circles with mu-
tually disjoint interiors {C1, C

0
1, ..., Cn

, C 0
n

} in C. Now, for each i, we consider
element A

i

2 PSL2C such that
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• A
i

(C
i

) = C 0
i

;

• A
i

(Int(C
i

)) = Ext(C 0
i

),

that is we find elements in PSL2C which maps circles to circles and the exte-
riors of circles into the interiors of other circles. Then the free group � =<
A1, . . . , Ag

> is Kleinian.

2. Quasi-Fuchsian group: It is a Kleinian group � ⇢ PSL2C such that limit set
⇤(�) is a quasi-circle. They are obtained as quasiconformal deformation of a
Fuchsian groups. For a surface ⌃, we can then define the quasi-Fuchsian space

QF(⌃) = {⇢ : ⇡1(⌃)! PSL2C|⇢(⇡1⌃) is quasi-Fuchsian}/PSL2(C).

2 Quasi-Fuchsian Groups

Given ⇢ 2 QF(⌃), let �
⇢

= ⇢(⇡1⌃) and

M
⇢

= H3/�
⇢

⇠= ⌃⇥ R,

the associate 3–manifold, and

M
⇢

= (H3 t ⌦(�
⇢

))/�
⇢

⇠= ⌃⇥ [0, 1],

its compactification.

Figure 3: On the left, the limit set of a quasi-Fuchsian group. On the right the compact
manifold M

⇢

.
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Definition 2.1. (Convex core) Given ⇢ 2 QF(⌃), the convex core C
⇢

of the hyperbolic 3–manifold M
⇢

is the smallest non-empty convex subset of the
3–manifold M

⇢

such that the inclusion is a homotopy equivalence. Hence it is the
smallest convex subset which carries all the fundamental groups. Another definition
is C

⇢

= CH(⇤
⇢

)/�
⇢

, where CH(⇤
⇢

) is the convex hull of ⇤
⇢

.

Theorem 2.2 (Thurston).

Given ⇢ 2 QF(⌃), the boundary @C
⇢

of the convex core of M
⇢

is a pleated
surface.

Definition 2.3 (Laminations)

• A geodesic lamination � is a closed set of pairwise disjoint complete simple
geodesics on S.

• A transverse measure on � is a measure on the arcs transverse to the leaves of
� invariant under pushforward maps.

• The space of measured laminations ML(⌃) on ⌃ is the set of pairs (�, µ), where
� is a geodesic lamination and µ is a transverse measure on �.

Definition 2.3

Figure 4: A quasi-Fuchsian manifold with the associated convex core.

Definition 2.4 (Pleated surface) A pleated surface in a hyperbolic 3-
manifold is a surface which is totally geodesic almost everywhere and such that
the locus of points where it fails to be totally geodesic is a geodesic lamination.
They are almost polyhedral surfaces.
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Remarks.

• We can define complex Fenchel-Nielson coordinates on quasi-Fuchsian space
QF(⌃)

FNC : QF(⌃)! (C+ ⇥ C)3g�3.

This maps is not surjective.

• We can define Dehn-Thurston coordinates on the measured lamination space
ML(⌃) DT : ML(⌃)! (R+ ⇥ R)3g�3.

Theorem 2.6 (Bers’ Simultaneous Uniformization Theorem).

Any quasi-Fuchsian group ⇢ 2 QF(⌃) is uniquely determined by the 2 Riemann
surfaces ⌦+

⇢

/�
⇢

and ⌦�
⇢

/�
⇢

. So quasi-Fuchsian space QF(⌃) can be parameterized
by the product of 2 copies of Teichmüller space:

QF(⌃) ⇠= ⌧(⌃)⇥ ⌧(⌃)
⇢ 7! (⌦+

⇢

/�
⇢

, ⌦�
⇢

/�
⇢

).
The theorem is saying that it is possible to simultaneously uniformize any 2 dif-

ferent Riemann surfaces of the same genus using a quasi-Fuchsian group.

Bending Conjecture.

Given a quasi-Fuchsian group ⇢ 2 QF(⌃), let (X, Y ) 2 ⌧(⌃)⇥⌧(⌃) be the confor-
mal structures on ⌦

⇢

/�
⇢

, let (X 0, Y 0) 2 ⌧(⌃)⇥ ⌧(⌃) be the conformal structures on
@C

⇢

, and let (�, µ) 2ML(⌃)⇥ML(⌃) be the pair of admissible measure laminations
on the pleated surface C

⇢

. See Figure 5. The conjecture says that QF(⌃) can be
parametrized by the pairs (X 0, Y 0), or by (�, µ):

QF(⌃) ⇠= ML(⌃)⇥ML(⌃)
⇢ 7! (�, µ).

QF(⌃) ⇠= ⌧(⌃)⇥ ⌧(⌃)
⇢ 7! (X 0, Y 0).

Bonahon showed, using the bending and shearing cocycles, that these two defini-
tions are equivalent.

If we are bending along simple closed curves, and the laminations are rational,
this conjecture is true (use Hodson and Kerckho↵’s rigidity of cone manifolds). The
conjecture is also know for the case of the once punctured torus T1,1.

3 Slices of AH(⌃)

Let AH(⌃) = {⇢ : ⇡1⌃! PSL2C|discrete and faithful}/PSL2C.
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We study this space since its interior is the quasi-Fuchsian space, that is

Int(AH(⌃)) = QF(⌃).

Bers’ Double Uniformization Theorem tells us that QF(⌃) is homeomorphic to a
ball.

Some examples of linear slices include:

• Bers slice: Using Bers’ double uniformization theorem, we can consider the
quasi-Fuchsian manifolds where we fix the top (or bottom) conformal structure
of the boundary. These groups form a slice in quasi-Fuchsian space, homeo-
morphic to the Teichmüller space ⌧(⌃), which is the Bers embedding of the
Teichmüller space into quasi-Fuchsian space.

• Maskit Slice: It is similar to a Bers slice, but, instead of fixing a point in
Teichmüller space, one fixes a measured lamination. It is a slice in the boundary
@AH(⌃), so these groups are no longer quasi-Fuchsian.

4 Topology of AH(⌃)

Figure 5: self-bumping

• Self-bumping (McMullen): A point ⇢ is a self-bumping point if there is a neigh-
borhood N of ⇢ such that, for every sub-neighborhood N 0, the intersection
N 0 \ AH(⌃) is disconnected.

• Non-local connectivity (Bromberg, Magid): AH(⌃) is not locally connected.

• Local connectivity at generic points (Broch-Bromberg-Canary-Minsky): At con-
formally rigid points, AH(⌃) is locally connected.
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5 Three Big Conjectures

5.1 Density

Theorem 3.1.

AH(⌃) = QF(⌃).

This theorem tells us that every finitely generated Kleinian group is a limit of a
geometrically finite Kleinian group.

Brock (2009) proved the conjecture made by Bers on simply degenerate groups
in the boundary of the Bers’ slice. Then, Brock and Bromberg (2004) proved the
conjecture for freely indecomposable groups without parabolic elements. Finally,
Namazi-Souto (2010), and Oshika (2011), independently, proved the conjecture.

5.2 Tameness

Definition 3.2

• A manifold is topologically tame if it is homeomorphic to the interior of a
compact 3–manifold.

• A manifold is geometrically tame if each end is either geometrically finite or
simply degenerate.

Theorem 3.2.

Every complete hyperbolic 3–manifold with finitely generated fundamental group is
topologically tame.

It was conjectured by Marden (1974), and proved by Agol (2004) and Calegari–
Gabai (2004), independently.

Marden proved it for geometrically finite groups.
Bonahon proved it for manifolds with freely indecomposable fundamental group,

that is, manifolds with incompressible boundary. He proved this by introducing the
notion of geometrically tame.

Canary proved that being geometrically tame is equivalent to being topologically
tame.

It implies Ahlfors’ measured conjecture.
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5.3 Ending Lamination Theorem

Theorem 3.4 (ELT) Every hyperbolic 3–manifold with finitely generated fun-
damental group is determined, up to isometry, by its end invariants.

Broch-Canary-Minsky proved this theorem for a surface group, and one can use
the Tameness theorem to conclude.
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