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I. Harmonic Maps to Smooth Manifolds

1. Basics

Let u : (X, g)→ (Y, h) be a C∞ map between Riemannian manifolds. We define
the energy of the map u by energy function

E(u) =
∫
X
|du|2dvol

for du ∈ Γ(T ∗X
⊗

f ∗T ∗Y ). We have that the energy is conformally invariant.

Definition 1.1. A map u is said to be harmonic if it minimizes the energy
E(u) among C ′(X, Y ).

Definition 1.2. The Euler-Lagrange equation is 4uk + gijΓkiju
iuj = 0 where

gijΓkij is the derivate of h.
Example.
Consider u : R2 → R with the usual metric. Then the Euler-Lagrange equation

reduces to 4u = 0(4 = δ2/δx2 + δ2/δy2).
In particular, take the example that is given by u(x, y) = y;u : (x, y) 7→ y. In

this example, u contracts all leaves {x = constant}.

Figure 1: u : (x, y) 7→ y

Theorem 1.1. (Eells-Sampson, Hartman)
Let M,N be compact, Riemannian manifolds and KN ≤ 0 with a given continu-

ous map f : M → N . Then there exists a harmonic map M → N that is homotopic
to f . Moreover, provided f does not map onto a geodesic, then this harmonic map
is unique.
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In the setting, we have id : (S, σ) → (S, ρ) for compact surfaces of genus g ≥ 2
with hyperbolic metrics.

Theorem 1.2.
There exists a unique harmonic map: (S, σ) → (S, ρ) that is homotopic to the

identity.

2. Harmonic Map Description of Teichmüller Theory

We identify (S, σ) = Σ as a Riemann Surface. A quadratic differential is a section
of T ∗Σ1,0

⊗
T ∗Σ0,1φdz2. We will denote the set of all holomorphic quadratic differ-

entials by QD(σ).

Definition 1.3. Given u : (S, σ) → (S, ρ), we may associate a quadratic
differential, called the Hopf differential,

φu(ρ) = (u∗ρ)2,0 = (ρ( δu
δz
, δu
δz

)dz2)
(the dz

⊗
dz part)

Remark.
φu is holomorphic ⇐⇒ u is harmonic.

Definition 1.4.
We give the following associations,

M−1(S) = {all hyperbolic metrics on S }
Diffeo(S) := { diffeomorphisms isotopic to the identity }

with Diffeo(S) ↪→M−1(S) by pullbacks.
Teichmüller space τ(S) := M−1(S)/Diffeo(S)

Theorem 1.5 (Teichmüller’s Theorem).

τ(S) ∼= R6g−6

Proof. We use harmonic map theory to give a proof of the theorem.
For each σ ∈ τ(S), we have the map

Hσ : τ(S)→ QD(σ)
ρ 7→ φU(ρ)

(Hopf differential φu(ρ) of the unique harmonic map (S, σ)→ (S, ρ) ∼ id, homo-
topic to the identity.)

We can define Hopf(u) = (u∗ρ)2,0 ∈ T ∗X1,0
⊗

T ∗X1,0 where u harmonic implies
that Hopf(u) is holomorphic. So we have a map Hσ : τ(S)→ QD(ρ), ρ 7→ Hopf(Uρ).

Theorem 1.6 (Wolf).
Hρ is a diffeomorphism.
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3. Relation to Representations

Considering the Riemannian universal cover of (S, ρ), we have that

τ(S) ⊂ χ(π, PSL(2,R)) = Hom(π1(S), PSL(2,R))/PSL(2,R).

We may conclude that

∀ρ ∈ χ(π, PSL(2,R)) we can give (S, σ) = Σ.

Then there exists a unique ρ-equivalent harmonic map, Σ̃ → H2 where Σ̃ is a holo-
morphic quadratic differential on Σ.

Remarkably, Hitchin, Simpson, Donaldson, and Corlette found that this is the
base case of a profound correspondence, ρ ∈ χ(π1, G) where G is a semi-simple Lie
group and ρ has Zariski dense image.

Given Σ and G/K symmetric space for G, there exists a unique ρ-equivalent

harmonic map: Σ̃ → G/K which give the holomorphic objects over Σ called the
Higgs bundle.

Examples.
For G = PSL(n,C), PSL(n,R) we have (q2, q3, ..., qn) and for G = Sp(2n,R) we

have (q2, q4, ..., q2n).

II. Harmonic Maps to Singular Spaces

1. Basics

Definition 2.1 Singular spaces do not refer to smooth manifolds but to metric
spaces.

Examples.

• For example, a tripod.

• a tree

• R-tree (may be locally infinite). An example is (R2, d(p, q) = |p|+ |q|).

• R-buildings. They are generalizations of R-trees where we can replace geodesics
R by (Rn, usual metric).
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We examine the question of how to give a definition of harmonic maps into
singular spaces. We have u : X → Y = Mm → Y .

Recall if Y is smooth then E(u) =
∫
M
|du|2dvol|M . Replace |du|2 by an ε-

approximation. eε(x) =
∫
δBε(x)

d2(u(x),u(y))
ε2

dσ(y)
εm−1 where ε2 is the square ratio between

distances in M and Y , the stretch.
So the energy E(u) = lim supε→0

∫
M
eε(x)dx

If u is smooth, then limε→0eε(x) = |du|2. In other words, harmonic maps are the
ones that minimize energy.
Remark.

Harmonic maps are also locally harmonic.

2. How Harmonic Maps Relate to Representations

We now examine how harmonic maps to a singular space help us to understand
representations. We are able to use that harmonic maps to singular spaces can
appear as limits of harmonic maps to smooth manifolds. The answer to this question
is compactification. In the PSL(2,R) case:

τ(S)
Hσ= QD(σ).

Define a norm on QD(σ) by ||φ|| =
∫
S
|φ(z)|dvolS

Let BQD(σ) = {φ ∈ QD(σ) : ||φ|| < 1}
SQD(σ) = {φ ∈ QD(σ) : ||φ|| = 1}
BQD(σ) = BQD(σ) ∪ SQD(σ).

Then consider a map Ĥ : τ(S)→ BQD(σ) mapping ρ 7→ 4Hρ(ρ)
1+4||Hσ(ρ)||

Since Ĥ is a homeomorphism onto, we identify τ(S) with BQD(ρ) and defnine a
compactification τ(S) = τ(S) ∪ SQDσ = BQDσ.

Definition 2.1. A measured foliation (F, µ) on a Riemann Surface is a singular
foliation F with a transverse measure µ.

Example.
A quadratic differential φ defines a measured foliation. Away from zeros, φ =

dξ2, ξ = X + iY .
Then the leaves are equal to {x = constant}, with measure |dx|. We then “patch

together” the leaves to give a vertical measured foliation, Fu(φ).
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Figure 2: measured foliations

Figure 3: vertical measured foliation

Definition 2.2 (Wolf’s Compactification). Wolf’s compactification is

given by T (S)
W

ρ = τ(S) ∪ SQD(ρ) = BQD(ρ) ⊂ QD(ρ).
Definition 2.3 (Thurston’s Compactification).

τ(S)
Th

= τ(S) ∪ PMF ⊂ projective length spectrum, where PMF denotes the
projectivized measured foliation.

Theorem 2.4 (Wolf).

τ(S)
W ∼= τ(S)

Th
(homeomorphism). In particular, φ ∈ SQDσ 7→ FU(φ).

Proof.
Given a family of hyperbolic metrics ρt → +∞ and a Riemann Surface Σ, a

family of harmonic maps u : (S, σ) → (S, ρt) ∼ id. such that φ(ρt) = tφ fixed. By
analyzing the elliptic equation relation ρt and φ(ρt), it turns out as t → +∞, ρt is
approximated by the transverse measure µ in the vertical measured foliation Fu(tφ).

3. Harmonic Maps to R-trees

Consider leaves contracting on a surface. So we have
Definition 3.1.

(S̃, ρ̃t)
t→+∞−→ leaf space of vertical measured foliations for tφ
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Figure 4: contracting leaves example

with metric d = ρ∗(t
1
2µ). Renormalizing it gives us

(S̃,
1

t
ρ̃t)

t→+∞−→ leaf space of vertical measured foliations for Fu(φ)

with metric d = ρ∗(µ).
We say that the leaf space is a R-tree and denote it by Tφ.

So the limit of the harmonic maps id ∼ u : (S, σ) → (S, 1

t
1
2
ρt) is ρ : (S̃, σ) →

(Tφ, d) where d = π∗(µ) by projection to the leaf space. Away from zeros we note
that ρ is locally harmonic. ρ is harmonic in general.

Conclusion: In SL(2,R) case, the holomorphic quadratic differential q2 can:

• guide the limit behavior of representations to +∞ and harmonic maps

• gives a limit object R-tree Tq2 serves as target of limit harmonic maps (The
limit harmonic map ρ : Σ→ Tq2 by projecttion is for free. )

We may also generalize this case and ask about the SL(n,C), SL(n,R) cases. In
fact, both these cases are conjectured in [KNPS].

For SL(n,C) case, we ask if the holomorphic differentials (q2, ..., qn) can
1. Predict limit behavior of certain families of representations → +∞? Are they

enough?
2. Be associated to a limit object (building) that we construct which admits limit

representation actions?
Results.

If we examine the above question 1, [Loftin, DW] give partial results for SL(3,R),
[C-L] gives even partial results for SL(n,R), and [KNPS] give results for SL(n,C)
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for some families that are not in our setting.
If we examine the above question 2 for SL(2,R), SL(2,C), the object that we

construct [Farb-Wolf-DDW] are Harmonic splittings. Here, the leaf space Tφ has a

“universal” property. That is, for any harmonic map u : Σ̃→ (T, d),

Hopf(u) = φ on Σ.

Then there exists an equivariant tree-morphism: (T, φ)→ (T, d) such that
Σ̃→ Tφ

y
↘ ↓
(T, d)

preserving uniqueness.
In the SL(n,C) case, we may consider a family of representations, ρt → +∞.

This then gives a family of ρt-equivalent harmonic maps,

ut : Σ̃→ SL(n,C)/SU(n).

Also, as t→∞,

u∞ : Σ̃→ ”Building-like” object
(Anne Parreau uses an asymptotic cone as a ”building-like” object for

compactification).

Finally, we have a conjecture summarizing the results that relate to question 2.
Conjecture (KNPS).

For any φ = (q2, ..., qn), we can associate a universal φ-building Bφ such that if
u is harmonic map u : Σ̃ → Building B associated to φ = (q2, ..., qn) holomorphic
differentials, then there exists an equivalent building morphism:Bφ → B such that

Σ̃→ Bφ

↘ ↓
B

preserving uniqueness.
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