Some number-theoretic tools used in homogenous dynamics

Svetlana Katok

Department of Mathematics The Pennsylvania State University

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 1 / 42

- E

SQ (~

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LECTURE 1. Primer on number fields

Definition

 $\alpha \in \mathbb{C}$ is an algebraic number if there is $f \in \mathbb{Z}[X]$ not identically 0 s.t. $f(\alpha) = 0$. α is an algebraic integer if f can be chosen to be monic.

Definition

A number field K is a finite extension of \mathbb{Q} : $[K : \mathbb{Q}] = n \ge 2$; n is the degree of K.

Theorem

Let K be a number field of degree n, then

- $\exists \ \theta \in K$ such that $K = \mathbb{Q}(\theta)$ (primitive element). Its minimal polynomial $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree n.
- \exists exactly *n* field embeddings $\varphi_i : K \to \mathbb{C}, \theta \mapsto \theta_i$, (θ_i are roots of *f* in \mathbb{C}). φ_i are \mathbb{Q} -linear, $K_i = \varphi_i(K)$ are isomorphic to *K*.
- Elements of K_i are algebraic numbers: $1, a, \ldots, a^{n-1}$ are lin. dep.

$$K = \mathbb{Q}[X]/(f(X))$$

Examples: (1) $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. (2) $\mathbb{Q}[X]/(X^3 - 2) = \mathbb{Q}(\theta)$ has one real and two complex conjugate embeddings: $\theta_1 \mapsto \sqrt[3]{2}, \theta_2 = \sqrt[3]{2}\omega, \theta_3 = -\sqrt[3]{2}\omega$, where $\omega^3 = 1$.

Definitions

(1) The set of algebraic integers in *K* form a ring \mathcal{O}_K called the ring of integers in *K*, it is a maximal order (a subring of *K* which as \mathbb{Z} -module is finitely generated) of rank n. $\mathbb{Z}[\theta] \subset \mathcal{O}_K$ of finite index. (2) A \mathbb{Z} -basis of \mathcal{O}_K is called an integral basis of *K*. (3) $\operatorname{Tr}(\alpha) = \sum_{i=1}^n \varphi_i(\alpha)$ - trace, $N(\alpha) = \prod_{i=1}^n \varphi_i(\alpha)$ - norm. (4) $\alpha \in \mathcal{O}_K$ is called a unit if $1/\alpha \in \mathcal{O}_K$, equivalently, if $N(\alpha) = \pm 1$. (5) Let $\alpha_1, \ldots, \alpha_n$ be an integral basis of *K*. Then $\det(\operatorname{Tr}(\alpha_i\alpha_j)) := d(K)$, the discriminant of *K*. It does not depend on the choice of an integral basis in *K*.

Geometric representation of algebraic numbers

Definition

The signature of a number field K is (r_1, r_2) where r_1 is the number of real and r_2 is the number of pairs of non-real complex embeddings.

Rather than combining all these embeddings into a single embedding of K into $\mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ (which is non-canonically \mathbb{R}^n , even if K is totally real, since it depends on the choice of the ordering of your embeddings), work instead with $K_{\mathbb{R}} = K \otimes_{\mathbb{Q}} \mathbb{R}$ that has a natural \mathbb{R} -algebra structure. The field isomorphism $K \to \mathbb{Q}[X]/(f(X))$ extends naturally to an algebra isomorphism $K_{\mathbb{R}} \to \mathbb{R}[X]/(f(X))$ and since $f = \prod_{i=1}^{r_1} (X - x_i) \times \prod_{j=1}^{r_2} (X^2 - t_j X + n_j)$ we obtain an isomorphism of \mathbb{R} -algebras:

$$K_{\mathbb{R}} \cong \mathbb{R}[X]/(f(X)) \cong \prod_{i=1}^{r_1} \mathbb{R}[X]/((X-x_i)) \times \prod_{j=1}^{r_2} \mathbb{R}[X]/((X^2-t_jX+n_j))$$
$$\cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \cong \mathbb{R}^n.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lattices and algebraic integers

Let $\{\alpha_1, \ldots, \alpha_n\}$ be a \mathbb{Z} -basis of \mathcal{O}_K . The image of \mathcal{O}_K is a lattice Λ in \mathbb{R}^n with \mathbb{Z} -basis $\{\varphi_1(\alpha_j), \ldots, \varphi_n(\alpha_j)\}$, i.e. a discrete additive subgroup of \mathbb{R}^n , or, equivalently, a finitely generated free \mathbb{Z} -module with positive definite symmetric bilinear form $(\alpha_i, \alpha_j) = \operatorname{Tr} (\alpha_i \alpha_j)$, called the trace product (pairing). Let $G = \operatorname{Tr} (\alpha_i \alpha_j)$. Let $G = AA^T$, where $A = (\varphi_i(\alpha_j))$. Since $vol(\mathbb{R}^n/\Lambda) = |\det(A)|$, and discriminant of Λ , $d(\Lambda) = \det(G)$, we have $d(K) = d(\Lambda) = vol(\mathbb{R}^n/\Lambda)^2$.

Since $vol(\mathbb{R}^n/\Lambda)$ were defined using complex embeddings of α_i : $(\sigma_1(\alpha_i), \ldots, \sigma_{r_1}(\alpha_i), \tau_1(\alpha_i), \overline{\tau}_1(\alpha_i), \ldots)$ (matrix A) while $vol(K_{\mathbb{R}}/\Lambda)$ is computed using $(\sigma_1(\alpha_i), \ldots, \sigma_{r_1}(\alpha_i), \operatorname{Re} \tau_1(\alpha_i), \operatorname{Im} \tau_1(\alpha_i), \ldots)$ (matrix B). Since $det(A) = (-2i)^{r_2} det(B)$, we have

Theorem

Under the geometric representation of algebraic numbers of the field K by the points of \mathbb{R}^n , all points representing the ring of integers \mathcal{O}_K of discriminant d(K) form a full lattice s.t. $d(K) = (-4^{r_2})vol(K_{\mathbb{R}}/\Lambda)^2$.

Geometric representation of algebraic numbers

Examples:

•
$$K = \mathbb{Q}(\sqrt{-1}). \ \mathcal{O}_K = \mathbb{Z}[i], \ d(K) = \det(A)^2 = \det\left(\frac{1}{1-i}\right)^2 = -4, \ K_{\mathbb{R}} \cong \mathbb{C} \text{ by } a + b\sqrt{-1} \mapsto (a, bi) \in \mathbb{C}, \ vol(\mathbb{C}/\mathcal{O}_K) = \det(B) = \det\left(\frac{1}{0} \frac{0}{1}\right) = 1.$$

• $F = \mathbb{Q}(\sqrt{-3}). \ \mathcal{O}_F = \mathbb{Z}[\omega], \text{ where } \omega = e^{2\pi i/3}. \ d(K) = \det(A)^2 = \det\left(\frac{1}{1}\frac{\omega}{\omega}\right)^2 = -3, \ F_{\mathbb{R}} \cong \mathbb{C} \text{ by } a + b\sqrt{-3} \mapsto (a, \sqrt{3}bi) \in \mathbb{C}, \ vol(\mathbb{C}/\mathcal{O}_F) = \det(B) = \det\left(\frac{1}{-\frac{1}{2}}\frac{\sqrt{3}}{\sqrt{2}}\right) = \frac{\sqrt{3}}{2}.$

• $E = \mathbb{Q}(\sqrt{5}). \ \mathcal{O}_E = \mathbb{Z}[\gamma], \text{ where } \gamma = \frac{1+\sqrt{5}}{2}. \ d(E) = \det(A)^2 = \det\left(\frac{1}{1}\frac{\gamma}{\gamma'}\right)^2 = 5, \ E_{\mathbb{R}} \cong \mathbb{R}^2 \text{ by } a + b\sqrt{5} = (a + \sqrt{5}b, a - \sqrt{5}b) \in \mathbb{R}^2, \ vol(\mathbb{R}^2/\mathcal{O}_E) = |\det(B)| = \left|\det\left(\frac{1}{-\frac{1+\sqrt{5}}{2}}\frac{1+\sqrt{5}}{2}\right)\right| = \sqrt{5}.$

MSRI, Jan. 29-30, 2015 6 / 42

-2

*) Y (?

< □ > < □ > < □ > < Ξ > < Ξ >

The Dirichlet Unit Theorem

The set of units in K form a multiplicative group denoted by U_K .

Theorem (Dirichlet)

Let (r_1, r_2) be the signature of K. Then U_K is a finitely generated group of rank $r_1 + r_2 - 1$, i.e. $U_K \approx F \times \mathbb{Z}^{r_1 + r_2 - 1}$, where F is a finite cyclic group - the group of roots of unity in U_K .

The main tool in the proof is the logarithmic embedding $L: K^* \to \mathbb{R}^{r_1+r_2}$ given by $x \mapsto (L_1(x), \dots, L_{r_1+r_2}(x))$, where $L_i(x) = \log |\varphi_i(x)|$ for $1 \le i \le r_1$, and $L_i(x) = \log |\varphi_i(x)|^2$ for $r_1 + 1 \le i \le r_2$.

- $L(U_K)$ is a lattice of rank $r = r_1 + r_2 1$ in the hyperplane $\sum_{i=1}^{r_1+r_2} x_i = 0$ of $\mathbb{R}^{r_1+r_2}$.
- The kernel of L is the group of roots of unity F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Regulator

The units $\varepsilon_1, \ldots, \varepsilon_r$ whose existence was established by Dirichlet Theorem are called the fundamental units in K. A system of units $\varepsilon_1, \ldots, \varepsilon_r$ is fundamental iff $L(\varepsilon_1), \ldots, L(\varepsilon_r)$ form a basis in the lattice $L(U_K)$. The volume of the lattice $L(U_K)$ can be computed by adding to this system a vector $(\frac{1}{\sqrt{r+1}}, \ldots, \frac{1}{\sqrt{r+1}})$ perpendicular to the hyperplane of length 1, and computing the the r + 1-dimensional volume V. It is equal to the absolute value of the determinant of the matrix

$$\begin{pmatrix} L_1(\varepsilon_1) & L_2(\varepsilon_1) & \cdots & L_{r+1}(\varepsilon_1) \\ \cdots & \cdots & \cdots \\ L_1(\varepsilon_r) & L_2(\varepsilon_r) & \cdots & L_{r+1}(\varepsilon_r) \\ \frac{1}{\sqrt{r+1}} & \frac{1}{\sqrt{r+1}} & \cdots & \frac{1}{\sqrt{r+1}} \end{pmatrix},$$

and we have $V = \sqrt{r+1}R_K$, where R_K is the absolute value of one of the minors of order r of the above matrix (sum of each row = 0) R_K is called the regulator of K.

Svetlana Katok (Penn State)

▲□▶▲□▶▲□▶▲□▶ ■ ののの

Actions by commuting total automorphisms

Let $A \in SL(n, \mathbb{Z})$ with an irreducible characteristic polynomial f and hence distinct eigenvalues. Consider the action α on \mathbb{T}^n by matrices commuting with A.

The centralizer of A in $M(n, \mathbb{Q}) \approx \mathbb{Q}[X]/(f(X)) = K = \mathbb{Q}(\lambda)$, where λ is an eigenvalue of A, by the map $\gamma : p(A) \mapsto p(\lambda)$ with $p \in \mathbb{Q}[X]$.

Let $v = (v_1, \ldots, v_n)$ be an eigenvector of A with eigenvalue λ , its coordinates belong to K. If B = p(A) then $Bv = p(\lambda)v = \mu v$, i.e. $\gamma(B) = \mu$. By taking different embeddings of this relation we obtain $B\varphi_j(v) = \varphi_j(\mu)\varphi_j(v)$, i.e. B is diagonalizable over \mathbb{R} simultaneously with A.

If $B \in M(n, \mathbb{Z})$, its minimal polynomial is monic with integer coefficients, hence $\gamma(B) = \mu$ is an algebraic integer. if $B \in GL(n, \mathbb{Z})$ then $N(\gamma(B)) = \pm 1$, i.e. $\gamma(B) = \mu$ is an algebraic unit.

Centralizers and algebraic number fields

Therefore,

- $C(A) = \text{centralizer of } A \text{ in } M(n, \mathbb{Z}) \approx \text{an order } \gamma(C(A)) \subset \mathcal{O}_K$,
- $Z(A) = \text{centralizer of } A \text{ in } GL(n, \mathbb{Z}) \approx \text{the group of units in}$ $\gamma(C(A)) \Rightarrow$, by the Dirichlet Unit Theorem, to $\mathbb{Z}^{r_1+r_2-1} \times F$.
- The action we are interested in is $\alpha \approx Z(A)$.
- If rank of $Z(A) = r_1 + r_2 1 = n 1$, i.e. the action is Cartan \Rightarrow $r_2 = 0$, i.e. *K* is a totally real number field, and $F = \{\pm 1\}$.

Let $A_1 = A, A_2, \ldots, A_{n-1} \in Z(A) \Leftrightarrow \varepsilon_1, \ldots, \varepsilon_{n-1} \in U_K$, multiplicatively independent units in K, and we have

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Centralizers and algebraic number fields

Therefore,

- $C(A) = \text{centralizer of } A \text{ in } M(n, \mathbb{Z}) \approx \text{ an order } \gamma(C(A)) \subset \mathcal{O}_K$,
- $Z(A) = \text{centralizer of } A \text{ in } GL(n, \mathbb{Z}) \approx \text{the group of units in}$ $\gamma(C(A)) \Rightarrow$, by the Dirichlet Unit Theorem, to $\mathbb{Z}^{r_1+r_2-1} \times F$.
- The action we are interested in is $\alpha \approx Z(A)$.
- If rank of $Z(A) = r_1 + r_2 1 = n 1$, i.e. the action is Cartan \Rightarrow $r_2 = 0$, i.e. *K* is a totally real number field, and $F = \{\pm 1\}$.
- Let $A_1 = A, A_2, \ldots, A_{n-1} \in Z(A) \Leftrightarrow \varepsilon_1, \ldots, \varepsilon_{n-1} \in U_K$, multiplicatively independent units in K, and we have

Proposition

 A_i are simultaneously diagonalizable over $\mathbb R$ and conjugate to

$$\begin{pmatrix} \varepsilon_i & 0 & \cdots & 0 \\ 0 & \varphi_2(\varepsilon_i) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \varphi_n(\varepsilon_i) \end{pmatrix}$$

MSRI, Jan. 29-30, 2015 10 / 42

▲□▶▲□▶▲≡▶▲≡▶ ≡ の�?

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 11 / 42

In many cases the entropy can be computed explicitly. For example, let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be an *n*-dimensional torus, and $T : \mathbb{T}^n \to \mathbb{T}^n$ a toral automorphism given by a matrix $A_T \in GL(n, \mathbb{Z})$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, that preserves the Lebesgue measure μ on \mathbb{T}^n . Then $h_{\mu}(T) = \sum_{|\lambda_i|>1} \log |\lambda_i|$.

▲□▶▲□▶▲≣▶▲≣▶ = のへで

In many cases the entropy can be computed explicitly. For example, let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be an *n*-dimensional torus, and $T : \mathbb{T}^n \to \mathbb{T}^n$ a toral automorphism given by a matrix $A_T \in GL(n, \mathbb{Z})$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, that preserves the Lebesgue measure μ on \mathbb{T}^n . Then $h_{\mu}(T) = \sum_{|\lambda_i|>1} \log |\lambda_i|$.

This notion is clearly related with the notion of Mahler measure.

MSRI, Jan. 29-30, 2015 11 / 42

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ◇ ○ ○

In many cases the entropy can be computed explicitly. For example, let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be an *n*-dimensional torus, and $T : \mathbb{T}^n \to \mathbb{T}^n$ a toral automorphism given by a matrix $A_T \in GL(n, \mathbb{Z})$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, that preserves the Lebesgue measure μ on \mathbb{T}^n . Then $h_{\mu}(T) = \sum_{|\lambda_i|>1} \log |\lambda_i|$.

This notion is clearly related with the notion of Mahler measure.

Definition

Let
$$P = a_0 z^n + a_1 z^{n-1} + \cdots + a_n = a_0 \prod_{i=1}^n (z - \alpha_i)$$
.
The Mahler measure of P is defined to be $M(P) = |a_0| \prod_{|\alpha_i| \ge 1} |\alpha_i|$.

For the characteristic polynomial P of A_T , $a_0 = \pm 1$, and $\alpha_i = \lambda_i$. Hence $M(P) = \prod_{|\lambda_i|>1} |\lambda_i|$, and thus $h_{\mu}(T) = \log M(P)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ の Q @

▲□▶▲□▶▲≡▶▲≡▶ ≡ の�?

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 12 / 42

If matrix A_T is irreducible over \mathbb{Q} and all of its eigenvalues are real, then it is hyperbolic (no eigenvalues of absolute value 1) and T is Anosov. Using the following number theoretic result:

MSRI, Jan. 29-30, 2015 12 / 42

▲□▶▲□▶▲≣▶▲≣▶ = のへで

If matrix A_T is irreducible over \mathbb{Q} and all of its eigenvalues are real, then it is hyperbolic (no eigenvalues of absolute value 1) and T is Anosov. Using the following number theoretic result:

Theorem (Schintzel)

If P is a totally real polynomial of degree n, then $M(P) \ge \left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n}{2}}$.

 $\nabla Q \cap$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ □ ■

If matrix A_T is irreducible over \mathbb{Q} and all of its eigenvalues are real, then it is hyperbolic (no eigenvalues of absolute value 1) and T is Anosov. Using the following number theoretic result:

Theorem (Schintzel)

If P is a totally real polynomial of degree n, then $M(P) \ge \left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n}{2}}$.

we obtain the following result:

▲□▶▲□▶▲≣▶▲≣▶ = のへで

If matrix A_T is irreducible over \mathbb{Q} and all of its eigenvalues are real, then it is hyperbolic (no eigenvalues of absolute value 1) and T is Anosov. Using the following number theoretic result:

Theorem (Schintzel)

If P is a totally real polynomial of degree n, then $M(P) \ge \left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n}{2}}$.

we obtain the following result:

Lower bound for the entropy

Let $T : \mathbb{T}^n \to \mathbb{T}^n$ be an Anosov automorphism with real eigenvalues. Then $h_{\mu}(T) \ge nc$, where $c = \frac{1}{2} \log \left(\frac{1+\sqrt{5}}{2} \right)$. The absolute minimum $\log \frac{1+\sqrt{5}}{2}$ is achieved for n = 2 and the matrix $A_T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ with characteristic polynomial $x^2 - x - 1$ of discriminant 5.

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Svetlana Katok (Penn State)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● の Q ()

MSRI, Jan. 29-30, 2015 13 / 42

G - topological group, M - compact smooth manifold with Borel probability measure μ , $\alpha : G \times M \to M$ - an ergodic action by smooth μ -preserving transformations.

▲□▶▲□▶▲≣▶▲≣▶ = のへで

G - topological group, M - compact smooth manifold with Borel probability measure μ , $\alpha : G \times M \to M$ - an ergodic action by smooth μ -preserving transformations.

It is well-known that the standard notion of the entropy

assigns value zero to the entropy of any such α unless the group G is virtually cyclic, i.e. a finite extension of \mathbb{Z} or \mathbb{R} .

MSRI, Jan. 29-30, 2015 13 / 42

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

G - topological group, M - compact smooth manifold with Borel probability measure μ , $\alpha : G \times M \to M$ - an ergodic action by smooth μ -preserving transformations.

It is well-known that the standard notion of the entropy

assigns value zero to the entropy of any such α unless the group G is virtually cyclic, i.e. a finite extension of \mathbb{Z} or \mathbb{R} .

The reason is very simple: entropy of a group action measures the exponential growth of the number of distinguishable orbit segments against the volume of a ball in the word-lengh metric or (some left-invariant metric in the acting group) while for the smooth (or Lipschitz) actions this number growth no faster than exponentially against the radius of that ball. Thus for rank k > 1 the entropy is $\lim_{r \to \infty} \frac{\log(c^r)}{r^k} = \lim_{r \to \infty} \frac{\log c}{r^{k-1}} = 0.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 14 / 42

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● の Q ()

One would like to have a notion of entropy for \mathbb{Z}^k -actions ($k \ge 2$) that

< ロ > < 回 > < 国 > < 国 > < 国 > < 国 > の< (?)

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 14 / 42

One would like to have a notion of entropy for \mathbb{Z}^k -actions ($k \ge 2$) that

- coincides with the usual notion for k = 1,
- takes non-zero values if entropy of all elements (of the suspension) of the action is positive, and
- is finite for smooth actions on compact manifolds with respect to any Borel probability invariant measure.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

One would like to have a notion of entropy for \mathbb{Z}^k -actions ($k \ge 2$) that

- coincides with the usual notion for k = 1,
- takes non-zero values if entropy of all elements (of the suspension) of the action is positive, and
- is finite for smooth actions on compact manifolds with respect to any Borel probability invariant measure.

D. Fried [DF] suggested a notion of entropy for smooth actions of higher rank abelian groups based on averaging approach that satisfies these properties - we call it the Fried average entropy in a joint paper with A. Katok and F. Rodriguez Hertz [KKRH]. It is defined via the entropy function.

MSRI, Jan. 29-30, 2015 14 / 42

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

[[]DF] D. Fried, *Entropy for smooth abelian actions*, Proc. of the Amer. Math. Society, **87** (1983), no. 1, 111–116. [KKRH] A. Katok, S. Katok, F. Rodriguez Hertz, *The Fried average entropy and slow entropy for actions of higher rank abelian groups*, Geometric and Functional Analysis, **24** (2014), 1204 – 1228.

The entropy function

Let $G = \mathbb{Z}^a \times \mathbb{R}^b$, a + b = k, i.e. an abelian group of rank k.

Definition

The entropy function for α , denoted by h^{α}_{μ} , associates to $\mathbf{t} = (t_1, \ldots, t_k) \in \mathbb{R}^k$ the value of measure-theoretic entropy of $\alpha(\mathbf{t})$, i.e. $h^{\alpha}_{\mu}(\mathbf{t}) = h_{\mu}(\alpha(\mathbf{t}))$.

< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > < 回 < つ < ()

The entropy function

Let $G = \mathbb{Z}^a \times \mathbb{R}^b$, a + b = k, i.e. an abelian group of rank k.

Definition

The entropy function for α , denoted by h^{α}_{μ} , associates to $\mathbf{t} = (t_1, \dots, t_k) \in \mathbb{R}^k$ the value of measure-theoretic entropy of $\alpha(\mathbf{t})$, i.e. $h^{\alpha}_{\mu}(\mathbf{t}) = h_{\mu}(\alpha(\mathbf{t}))$.

Generally, this function is not known to possess any nice properties other than the obvious positive homogeneity of degree one and central symmetry.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○ ○

The entropy function

Let $G = \mathbb{Z}^a \times \mathbb{R}^b$, a + b = k, i.e. an abelian group of rank k.

Definition

The entropy function for α , denoted by h^{α}_{μ} , associates to $\mathbf{t} = (t_1, \ldots, t_k) \in \mathbb{R}^k$ the value of measure-theoretic entropy of $\alpha(\mathbf{t})$, i.e. $h^{\alpha}_{\mu}(\mathbf{t}) = h_{\mu}(\alpha(\mathbf{t}))$.

Generally, this function is not known to possess any nice properties other than the obvious positive homogeneity of degree one and central symmetry. However, due to Huyi Hu [H], for smooth actions it is

- convex;
- 2 it (or its natural extension to \mathbb{R}^k) is piece-wise linear:
- (3) if $h^{\alpha}_{\mu}(\mathbf{t}) > 0$ for all $\mathbf{t} \neq 0$, it defines a norm in \mathbb{R}^k ;

④ if for some $\mathbf{t} \neq 0$ $h^{\alpha}_{\mu}(\mathbf{t}) = 0$, it defines a semi-norm in \mathbb{R}^k .

[[]H] H. Hu, Some ergodic properties of commuting diffeomorphisms, Erg. Th. and Dynam. Syst. **13** (1993), 73–100

Definition of the Fried average entropy

Fix a volume element in \mathbb{R}^k ; in the case of the suspension of a \mathbb{Z}^k action, this volume element naturally comes from \mathbb{Z}^k .

MSRI, Jan. 29-30, 2015 16 / 42

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition of the Fried average entropy

Fix a volume element in \mathbb{R}^k ; in the case of the suspension of a \mathbb{Z}^k action, this volume element naturally comes from \mathbb{Z}^k .

Definition

The Fried average entropy h_{α}^* of an \mathbb{R}^k action α is the inverse of the volume of the unit ball in the entropy function norm/semi-norm $B(h_{\mu}^{\alpha}))$ multiplied by the volume of the generalized octahedron, $\mathcal{O} = \{(x_i) \in \mathbb{R}^k | \sum_{i=1}^k |x_i| \leq 1\}$, equal to $\frac{2^k}{k!}$, i.e. $h_{\alpha}^* = \frac{2^k}{k! vol(B(h_{\mu}^{\alpha}))}$.

SQ Q

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ □ ■ □

Definition of the Fried average entropy

Fix a volume element in \mathbb{R}^k ; in the case of the suspension of a \mathbb{Z}^k action, this volume element naturally comes from \mathbb{Z}^k .

Definition

The Fried average entropy h_{α}^* of an \mathbb{R}^k action α is the inverse of the volume of the unit ball in the entropy function norm/semi-norm $B(h_{\mu}^{\alpha}))$ multiplied by the volume of the generalized octahedron, $\mathcal{O} = \{(x_i) \in \mathbb{R}^k | \sum_{i=1}^k |x_i| \le 1\}$, equal to $\frac{2^k}{k!}$, i.e. $h_{\alpha}^* = \frac{2^k}{k! vol(B(h_{\mu}^{\alpha}))}$.

- The Fried entropy h_{α}^* of a \mathbb{Z}^k action α is defined as the Fried entropy of its suspension.
- For a mixed group Z^a × ℝ^b with a a + b = k one takes suspensions for the discrete generators.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 17 / 42

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● の Q ()

Let α be a smooth action of \mathbb{R}^k on an *n*-dimensional manifold that preserves an ergodic measure μ .

MSRI, Jan. 29-30, 2015 17 / 42

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let α be a smooth action of \mathbb{R}^k on an *n*-dimensional manifold that preserves an ergodic measure μ .

Definition

Lyapunov exponents of α for the invariant measure μ are linear functionals on \mathbb{R}^k , χ_j , $1 \le j \le n$, and their kernels are called the Lyapunov hyperplanes. Connected components of the complement to the union of the Lyapunov hyperplanes are called Weyl chambers.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ◇ ○ ○

Let α be a smooth action of \mathbb{R}^k on an *n*-dimensional manifold that preserves an ergodic measure μ .

Definition

Lyapunov exponents of α for the invariant measure μ are linear functionals on \mathbb{R}^k , χ_j , $1 \le j \le n$, and their kernels are called the Lyapunov hyperplanes. Connected components of the complement to the union of the Lyapunov hyperplanes are called Weyl chambers.

If μ is absolutely continuous, the entropy function is given by the Pesin entropy formula $h^{\alpha}_{\mu}(\mathbf{t}) = \sum_{j:\chi_j>0} \chi_j(\mathbf{t})$, for $\mathbf{t} = (t_1, \ldots, t_k) \in \mathbb{R}^k$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □ ● の Q @

Let α be a smooth action of \mathbb{R}^k on an *n*-dimensional manifold that preserves an ergodic measure μ .

Definition

Lyapunov exponents of α for the invariant measure μ are linear functionals on \mathbb{R}^k , χ_j , $1 \le j \le n$, and their kernels are called the Lyapunov hyperplanes. Connected components of the complement to the union of the Lyapunov hyperplanes are called Weyl chambers.

If μ is absolutely continuous, the entropy function is given by the Pesin entropy formula $h^{\alpha}_{\mu}(\mathbf{t}) = \sum_{j:\chi_j>0} \chi_j(\mathbf{t})$, for $\mathbf{t} = (t_1, \ldots, t_k) \in \mathbb{R}^k$. In this case $\sum_{j=1}^n \chi_j = 0$, hence

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ⊙

Let α be a smooth action of \mathbb{R}^k on an *n*-dimensional manifold that preserves an ergodic measure μ .

Definition

Lyapunov exponents of α for the invariant measure μ are linear functionals on \mathbb{R}^k , χ_j , $1 \le j \le n$, and their kernels are called the Lyapunov hyperplanes. Connected components of the complement to the union of the Lyapunov hyperplanes are called Weyl chambers.

If μ is absolutely continuous, the entropy function is given by the Pesin entropy formula $h^{\alpha}_{\mu}(\mathbf{t}) = \sum_{j:\chi_j>0} \chi_j(\mathbf{t})$, for $\mathbf{t} = (t_1, \ldots, t_k) \in \mathbb{R}^k$. In this case $\sum_{j=1}^n \chi_j = 0$, hence

•
$$h^{\alpha}_{\mu}(\mathbf{t}) = \frac{1}{2} \sum_{j=1}^{n} |\chi_j(\mathbf{t})|.$$

• $h^{\alpha}_{\mu}(\mathbf{t})$ is linear inside each Weyl chamber.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Lyapunov exponents for the Cartan action

・・

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 18 / 42

Lyapunov exponents for the Cartan action

For $n \ge 3$, let α be a Cartan action given by commuting matrices A_i , $1 \le i \le n-1$, with real eigenvalues $\lambda_j(A_i), 1 \le j \le n$. We define *n* Lyapunov hyperplanes on \mathbb{R}^{n-1} by

$$\chi_j(\mathbf{t}) = \chi_j(t_1, \dots t_{n-1}) = \sum_{i=1}^{n-1} t_i \log |\lambda_j(A_i)| = 0$$
 (1)

for $1 \le j \le n$. In this case all hyperplanes are distinct. Since

$$\sum_{j=1}^{n} \log |\lambda_j(A_i)| = 0, \qquad (2)$$

we have

$$\chi_1 + \chi_2 + \cdots + \chi_n = 0,$$

hence inside each of $2^n - 2$ Weyl chamber the signs of χ_j 's cannot be all the same.

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 18 / 42

▲□▶▲□▶▲≧▶▲≧▶ ≧ の�?

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 19 / 42

In each Weyl chamber the entropy function $h^{\alpha}_{\mu}(t)$ is convex and piece-wise linear and hence defines the entropy function norm.

In each Weyl chamber the entropy function $h^{\alpha}_{\mu}(\mathbf{t})$ is convex and piece-wise linear and hence defines the entropy function norm. The unit ball of this norm is a polyhedron comprised of $2^n - 2$ pyramids.

In each Weyl chamber the entropy function $h^{\alpha}_{\mu}(\mathbf{t})$ is convex and piece-wise linear and hence defines the entropy function norm. The unit ball of this norm is a polyhedron comprised of $2^n - 2$ pyramids. For n = 3 we have:

▲ロ▶▲□▶▲≡▶▲≡▶ = のへで

In each Weyl chamber the entropy function $h^{\alpha}_{\mu}(\mathbf{t})$ is convex and piece-wise linear and hence defines the entropy function norm. The unit ball of this norm is a polyhedron comprised of $2^n - 2$ pyramids. For n = 3 we have:

 $\mathcal{A} \mathcal{A} \mathcal{A}$

MSRI, Jan. 29-30, 2015 20 / 42

Main Theorem [KKRH]

The Fried entropy of a maximal rank ergodic action by automorphisms of \mathbb{T}^n of a given rank n-1 is greater than 0.089; furthermore the lower bound grows with n exponentially.

MSRI, Jan. 29-30, 2015 20 / 42

SQ (V

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■

Main Theorem [KKRH]

The Fried entropy of a maximal rank ergodic action by automorphisms of \mathbb{T}^n of a given rank n-1 is greater than 0.089; furthermore the lower bound grows with n exponentially.

By the Arithmeticity theorem [K-RH], the same is true for all weakly mixing maximal rank actions on a smooth manifold of dimension n ≥ 3; it is sufficient to prove the estimate for the algebraic model.

MSRI, Jan. 29-30, 2015 20 / 42

・ロト ・ 四 ト ・ 国 ト ・ 国 ト

Main Theorem [KKRH]

The Fried entropy of a maximal rank ergodic action by automorphisms of \mathbb{T}^n of a given rank n-1 is greater than 0.089; furthermore the lower bound grows with n exponentially.

- By the Arithmeticity theorem [K-RH], the same is true for all weakly mixing maximal rank actions on a smooth manifold of dimension n ≥ 3; it is sufficient to prove the estimate for the algebraic model.
- The formula for the Fried entropy for algebraic actions involved the regulator: $h_{\alpha}^* = \frac{kR_K2^{n-1}}{\binom{2n-2}{n-1}}$, where R_K is the regulator of the field K and $k = [U_K : \gamma(Z(A))]$ is the index of $\gamma(Z(A))$ in the group of units U_K of the field K.

Main Theorem [KKRH]

The Fried entropy of a maximal rank ergodic action by automorphisms of \mathbb{T}^n of a given rank n-1 is greater than 0.089; furthermore the lower bound grows with n exponentially.

- By the Arithmeticity theorem [K-RH], the same is true for all weakly mixing maximal rank actions on a smooth manifold of dimension n ≥ 3; it is sufficient to prove the estimate for the algebraic model.
- The formula for the Fried entropy for algebraic actions involved the regulator: $h_{\alpha}^* = \frac{kR_K2^{n-1}}{\binom{2n-2}{n-1}}$, where R_K is the regulator of the field K and $k = [U_K : \gamma(Z(A))]$ is the index of $\gamma(Z(A))$ in the group of units U_K of the field K.

[KKRH] A. Katok, S. Katok, F. Rodriguez Hertz, *The Fried average entropy and slow entropy for actions of higher rank abelian groups*, Geometric and Functional Analysis, **24** (2014), 1204 – 1228. [K-RH] A. Katok and F. Rodriguez Hertz, *Arithmeticity and topology of smooth actions of higher rank abelian groups*, preprint.

Lower bounds for the Fried entropy

The lower bounds for the regulators will be found when $\gamma(Z(A)) = U_K$. There are some lower bounds obtained by geometric methods using geometry of numbers.

We use Zimmert's analytic lower bound for regulators [Z]: for a totally real number field $[K : \mathbb{Q}] = n$, and any s > 0

$$R_K \ge a(s) \exp(b(s)n),\tag{3}$$

where

$$a(s) = (1+s)(1+2s)\exp\left(\frac{2}{s} + \frac{1}{1+s}\right)$$

and

$$b(s) = \log\left(\frac{\Gamma(1+s)}{2}\right) - (1+s)\frac{\Gamma'}{\Gamma}\left(\frac{1+s}{2}\right).$$

We need $b(s) > \log 2$, and for s = 0.35 we obtain

$$R_K > 0.000376 \exp(0.9371n).$$

(4)

[[]Z] R. Zimmert, Ideale kleiner Norm in Idealklassen and eine Regulatorabschätzung, Invent, Math. 62 (1981), 367–380. 📄 🖉 🔿 🔬 🖓

A lower bound for the Fried entropy

Using the estimate for the middle binomial coefficient

$$\frac{4^{n-1}}{n} \le \binom{2n-2}{n-1} \le 4^{n-1}$$
(5)

we obtain

$$\frac{1}{2^{n-1}} \le \frac{2^{n-1}}{\binom{2n-2}{n-1}} \le \frac{n}{2^{n-1}}.$$

Using the bound (4), we obtain

$$h_{\alpha}^{*} = \frac{R_{K}2^{n-1}}{\binom{2n-2}{n-1}} > \frac{0.000376\exp(0.9371n)}{2^{n-1}} > 0.000752\exp(0.244n), \quad (6)$$

and the claim follows since minimum of the lower bound (achieved for n = 3) is equal to 0.001565..., and this lower bound goes to infinity exponentially as $n \to \infty$. This lower bound can be improved to 0.089.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

< ロト < 団 ト < 臣 ト < 臣 > 臣 の < (や)

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 23 / 42

Inspection of the number fields data at http://www.lmfdb.org/ identifies the quartic totally real number field of discriminant 725 as the field that minimizes h_{α}^* . For it $h_{\alpha}^* = 0.330027... = h_{min}$.

MSRI, Jan. 29-30, 2015 23 / 42

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○ ○ ○ ○

Inspection of the number fields data at http://www.Imfdb.org/ identifies the quartic totally real number field of discriminant 725 as the field that minimizes h_{α}^* . For it $h_{\alpha}^* = 0.330027... = h_{min}$.

Artin Representations

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 23 / 42

< ロト < 団 ト < 臣 ト < 臣 > 臣 の < (や)

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 24 / 42

Conjecture

The Cartan action α corresponding to the quartic totally real number field of discriminant 725 and the defining polynomial $x^4 - x^3 - 3x^2 + x + 1$ minimizes the Fried average entropy $h^*(\alpha)$ among all Cartan actions α . For this action $h^*(\alpha) = 0.330027... = h_{min}$, and it is given by

$$\begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 0 & -1 \\ -2 & -1 & -1 & -1 \\ -1 & 1 & -1 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 0 & 0 & 0 \\ -2 & 2 & -3 & 3 \\ 1 & -1 & 1 & -2 \end{pmatrix}.$$

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 24 / 42

▲□▶▲□▶▲≣▶▲≣▶ = のへで

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 25 / 42

Suppose *K* is a totally real number field of degree *n* for which $h_{\alpha}^* < h_{min}$. Then $\frac{0.000376 \exp(0.9371n)2^{n-1}}{\binom{2n-2}{n-1}} < 0.33002 \Rightarrow n \leq 16$.

Lemma

The Fried average entropy h_{α}^* of a Cartan action of rank n-1 for $3 \le n \le 7$ satisfies $h^*(\alpha) \ge h_{min} = 0.330027...$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose *K* is a totally real number field of degree *n* for which $h_{\alpha}^* < h_{min}$. Then $\frac{0.000376 \exp(0.9371n)2^{n-1}}{\binom{2n-2}{n-1}} < 0.33002 \Rightarrow n \leq 16$.

Lemma

The Fried average entropy h_{α}^* of a Cartan action of rank n-1 for $3 \le n \le 7$ satisfies $h^*(\alpha) \ge h_{min} = 0.330027....$

We use Friedman's lower bound for the regulator of a totally real number field $[K : \mathbb{Q}] = n$ [F], $R_K > 2g(1/D_K)$, where $g(x) := \frac{1}{2^n 4\pi i} \int_{2-i\infty}^{2+i\infty} (\pi^n x)^{-s/2} (2s-1) \Gamma(\frac{s}{2})^n ds.$

▲□▶▲□▶▲□▶▲□▶▲□ ● ● ●

Suppose *K* is a totally real number field of degree *n* for which $h_{\alpha}^* < h_{min}$. Then $\frac{0.000376 \exp(0.9371n)2^{n-1}}{\binom{2n-2}{n-1}} < 0.33002 \Rightarrow n \leq 16$.

Lemma

The Fried average entropy h_{α}^* of a Cartan action of rank n-1 for $3 \le n \le 7$ satisfies $h^*(\alpha) \ge h_{min} = 0.330027....$

We use Friedman's lower bound for the regulator of a totally real number field $[K : \mathbb{Q}] = n$ [F], $R_K > 2g(1/D_K)$, where $g(x) := \frac{1}{2^n 4\pi i} \int_{2-i\infty}^{2+i\infty} (\pi^n x)^{-s/2} (2s-1) \Gamma(\frac{s}{2})^n ds$. $R_K < \frac{0.33002\binom{2n-2}{n-1}}{2^{n-1}}$ implies that $\exists c_1(n) < c_2(n)$ (computable numerically) s.t. $D_K < c_1(n)$ or $D_K > c_2(n)$. In order to use the upper bound $c_1(n)$ we need absolute upper bounds for D_K obtained by geometry of numbers [PZ] that are $< c_2(n)$.

Suppose *K* is a totally real number field of degree *n* for which $h_{\alpha}^* < h_{min}$. Then $\frac{0.000376 \exp(0.9371n)2^{n-1}}{\binom{2n-2}{n-1}} < 0.33002 \Rightarrow n \leq 16$.

Lemma

The Fried average entropy h_{α}^* of a Cartan action of rank n-1 for $3 \le n \le 7$ satisfies $h^*(\alpha) \ge h_{min} = 0.330027....$

We use Friedman's lower bound for the regulator of a totally real number field $[K : \mathbb{Q}] = n$ [F], $R_K > 2g(1/D_K)$, where $g(x) := \frac{1}{2^n 4\pi i} \int_{2-i\infty}^{2+i\infty} (\pi^n x)^{-s/2} (2s-1) \Gamma(\frac{s}{2})^n ds$. $R_K < \frac{0.33002\binom{2n-2}{n-1}}{2^{n-1}}$ implies that $\exists c_1(n) < c_2(n)$ (computable numericaly) s.t. $D_K < c_1(n)$ or $D_K > c_2(n)$. In order to use the upper bound $c_1(n)$ we need absolute upper bounds for D_K obtained by geometry of numbers [PZ] that are $< c_2(n)$.

Svetlana Katok (Penn State)

For $n \leq 7$ such bounds are known, and the proof is completed by a finite check as follows. For n = 7 the Friedman's upper bound for D_K is smaller than the minimal discriminants of the totally real fields of this degree [V] - so there are no totally real fields in degree 7. For degrees 3, 4, 5, 6 the Friedman's upper bounds for D_K are 115, 2250, 40400, and 710000, respectively. The corresponding 19 totally real number fields are found in http://www.lmfdb.org/ (2 of degree 3, 7 of degree 4, 4 of degree 5 and 6 of degree 6).

For $n \leq 7$ such bounds are known, and the proof is completed by a finite check as follows. For n = 7 the Friedman's upper bound for D_K is smaller than the minimal discriminants of the totally real fields of this degree [V] - so there are no totally real fields in degree 7. For degrees 3, 4, 5, 6 the Friedman's upper bounds for D_K are 115, 2250, 40400, and 710000, respectively. The corresponding 19 totally real number fields are found in http://www.lmfdb.org/ (2 of degree 3, 7 of degree 4, 4 of degree 5 and 6 of degree 6).

This data shows that the minimum of the Fried average entropy is achieved on the quartic field $K = \mathbb{Q}(\varepsilon)$ with discriminant 725 and the defining polynomial $x^4 - x^3 - 3x^2 + x + 1$, where ε is a fundamental unit.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

For $n \leq 7$ such bounds are known, and the proof is completed by a finite check as follows. For n = 7 the Friedman's upper bound for D_K is smaller than the minimal discriminants of the totally real fields of this degree [V] - so there are no totally real fields in degree 7. For degrees 3, 4, 5, 6 the Friedman's upper bounds for D_K are 115, 2250, 40400, and 710000, respectively. The corresponding 19 totally real number fields are found in http://www.lmfdb.org/ (2 of degree 3, 7 of degree 4, 4 of degree 5 and 6 of degree 6).

This data shows that the minimum of the Fried average entropy is achieved on the quartic field $K = \mathbb{Q}(\varepsilon)$ with discriminant 725 and the defining polynomial $x^4 - x^3 - 3x^2 + x + 1$, where ε is a fundamental unit. Using Pari-GP we find that for this field the index $[\mathcal{O}_K : \mathbb{Z}[\varepsilon]] = 1$, and we conclude that $\gamma(C(A)) = \mathcal{O}_K$, hence $\gamma(Z(A)) = \mathcal{U}_K$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[[]V] J. Voight, *Enumeration of totally real number fields of bounded root discriminant.* Algorithmic number theory, 268–281, Lecture Notes in Comput. Sci., 5011, Springer, Berlin, 2008.

Improvement of the lower bound for Fried average entropy

< ロ ト < 団 ト < 臣 ト < 臣 ト 三 の < (?)</p>

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 27 / 42

Improvement of the lower bound for Fried average entropy

• a better bound than $n \le 16$ cannot be obtained from Zimmert's analytic formula;

•
$$h_{\alpha}^* \ge 0.089 = \min_n(\max_s Z(n,s)).$$

Svetlana Katok (Penn State)

SAR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <