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HYPERBOLIC SURFACES
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1. Horocyclic flow

1.1. Geometric view. In the disc model, D, of hyperbolic space, geodesics are circular arcs which meet
the boundary at right angles. The geodesic flow, gt, translates a vector v along the geodesic. Horocycles are
circles in the interior of the disc that are tangent to the boundary. The horocyclic flow, hs, moves the vector
v along the horocycle, as shown in Fig. 1.
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Figure 1. Geometric picture of the geodesic and the horocyclic flows

1.2. Group view. Let G = PSL(2,R) ' T

1D. Then
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We have the fundamental relation g

t
h

x = h

set
g

t, and the following description of the unstable foliation:
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In this way we see that the ergodic behavior of (hs
v) is related to the asymptotic behavior of (g�t

v) as
t ! 1.

Let � < G be a discrete group, set S = �\H then T

1

S = �\G and have right actions of (gt) and (hs) on
this space.
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1.3. Goal. Study the ergodic properties of (hs) when vol(S) = +1, and � is non-elementary (i.e. S is not
the hyperbolic plane).

Suppose �\G has finite volume, then we have the following results

• (Hedlund) All (hs) orbits are either periodic or dense.
• (Furstenburg, Dani) Except for periodic measures, the Liouville measure, L is the unique (hs)-

invariant ergodic measure.

2. Basic ergodic theory results

2.1. µ(X) < 1.

Theorem 1 (Birkho↵ ergodic theorem). Consider the space (X, g

t
, µ) where µ is an invariant ergodic

probability measure. Then for any � 2 L

1(µ),

1
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Z T
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�(gtx)dt ! 1

µ(X)

Z

�dµ

This theorem does not say anything specific for a given x 2 X.

If µ is unique and X compact, then convergence holds for all x.

Theorem 2 (Dani-Smillie). For all v non-periodic and all � 2 Cc(T
1

S),

1

T

Z T

0

�(hs
v)ds !

Z

�dL

2.2. Infinite ergodic theory.

Definition 1. Let µ be an invariant ergodic measure for gt, and µ(X) = 1, then we call µ conservative if
for all A with µ(A) > 0, µ-a.e x 2 A satisfies

Z 1

0

A(g
t
x)dt = +1

Remark 1. The Birkho↵ ergodic theorem is true in the infinite case and we have

1

T

Z T

0

�(gtx)dt ! 0

Theorem 3 (Hopf ergodic theorem). Let µ be an ergodic and conservative measure and �, 2 L

1(µ), then
for µ-almost every x 2 X,

R t

0

�(gtx)dt
R T

0

 (gtx)dt
!

R

X
�dµ

R

X
 dµ

As in the case with the Birkho↵ ergodic theorem, given a specific x 2 X we do not understand what
happens with these ratios.

In the finite measure case we have
Z T

0

�(gtx)dt ⇠ T

µ(X)

Z

�dµ,

we would like to find a similar equivalence for the infinite case, unfortunately one does not exist.

Theorem 4 (Aaronson). Suppose a(T ) ! 1, then µ-almost surely either lim sup 1

a(T )

R T

0

�(gtx)dt = +1
or lim inf 1

a(T )

R T

0

�(gtx)dt = 0.
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3. Results in the infinite volume case

Remark 2. Ergodic measures for (hs
v) give a “way” for (g�t) to go to infinity

Theorem 5 (Roblin). If (gt) admits a finite measure of maximum entropy then there is a unique (hs)-
invariant ergodic measure supported on the set

�

v 2 T

1

S | (g�t
v)t�0

returns infinitely often to a compact set

 

A surface S is geometrically finite if it has finitely many cusps and finitely many funnels. In dimension
2, this condition is equivalent to � being finitely generated. In this case, if a vector v enters the funnel, it
will never come back and its horocyclic orbit will be closed and non-periodic. If a vector w negatively points
into the cusp, then it’s horocyclic orbit will be periodic. All other horocyclic orbits are dense.
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Figure 2. Examples of types of horocyclic orbits on a geometrically finite surface.

Corollary 1 (Burger/Roblin). When S is geometrically finite there exists a unique invariant ergodic (hs)
measure mBR whose support is exactly the set {v | (gtv) does not go into the funnel}.

Theorem 6 (Maucourant - Schapira). Let S be geometrically finite with critical exponent 0 < � < 1. Then

for all v, non (hs)-periodic, such that (gtv) does not go into the funnel and for all � 2 Cc(T
1

S) we have

Z t

t

�(hs
v)ds ⇠ t

�
⌧(v, t)

Z

�dmBR

where ⌧(v, t) is a continuous, well understood, bounded function.

Example 1. Let � / �
0

where �
0

is a cocompact lattice and �
0

/� ' Zd. Let S = �\H be a surface with no
cusps and S

0

= �
0

\H. Consider the vector v and look at it’s negative orbit. At time t it is somewhere in
Zd, see Fig. 3.
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v

Figure 3. The vector v in S and its negative orbit
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If ⇣ is a coordinate in Zd then almost surely,

1

t

⇠(g�t
v) ���!

t!1
⇣1(v)

and we call ⇠1(z) the asymptotic cocycle, which gives us an asymptotic speed in Zd. Note that if m is
ergodic, this function is constant almost surely, and we can call this value ⇠1(m).

C = {⇠1(v)} is a compact, convex set and the interior, C̊, is di↵eomorphic to the unit ball of Rd for a
certain “good” norm.

Theorem 7 (Babillot - Ledrappier, Sarig). The function m 7! ⇠1(m) is a bijection between the set of

(hs)-invariant ergodic measures and the set C̊.

There is an associated equidistribution result:

Theorem 8 (Sarig - Schapira). For all v, ⇠1(v) = ⇠1(m) if and only if (hs
v) is equidistributed with respect

to m.

4. Tools

Assume � < PSL(2,R) be finitely generated and discrete. Let ⇤
�

= �
0

\ �
0

⇢ S

1 be its limit set If
vol(S) < 1, then ⇤

�

= S

1 and if vol(S) = 1 then ⇤
�

can be a Cantor set.

We can give coordinates to a geodesic v 2 D by its endpoints so that T 1D ' S

1 ⇥ S

1 \ diag⇥R where we
write (v�, v+, s) for the point corresponding to v 2 T

1D. Then in these coordinates, the geodesic flow acts
by translation, (gtv) = (v�, v+, s+ t), and the horocyclic flow fixes the first and last coordinate but moves
the positive endpoint, (hs

v) = (v�, w+

, s).

T

1

S = �\(S1 ⇥ S

1 ⇥ R). The non-wandering set of the geodesic flow is the set vectors whose endpoints
are in the limit set, ⌦ = �\(⇤

�

⇥ ⇤
�

⇥ R). This set is not invariant under the horocyclic flow. We definite
the non-wandering set of (hs) to be

E =
[

s2R
h

s⌦ = �\(⇤
�

⇥ S

1 ⇥ R)

We define the constant �
�

= lim supR!1
1

R log#{� 2 �, d(0, �)  R}. In the finite dimensional case,
�

�

= dimH ⇤
�

= h

top

(gt), the Hausdor↵ dimension of the limit set and the topological entropy of the geodesic
flow.
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