ERGODIC PROPERTIES OF HOROCYCLIC FLOWS ON INFINITE VOLUME HYPERBOLIC SURFACES

BARBARA SCHAPIRA

1. Horocyclic flow

1.1. Geometric view. In the disc model, \mathbb{D} , of hyperbolic space, geodesics are circular arcs which meet the boundary at right angles. The *geodesic flow*, g^t , translates a vector v along the geodesic. Horocycles are circles in the interior of the disc that are tangent to the boundary. The *horocyclic flow*, h^s , moves the vector v along the horocycle, as shown in Fig. 1.

FIGURE 1. Geometric picture of the geodesic and the horocyclic flows

1.2. Group view. Let $G = PSL(2, \mathbb{R}) \simeq T^1 \mathbb{D}$. Then

- The geodesic flow acts by multiplication on the right by the matrix $\begin{pmatrix} e^{t/2} & \\ & e^{-t/2} \end{pmatrix}$
- The *horocyclic flow* acts by multiplication on the right by the matrix $\begin{pmatrix} 1 \\ s \end{pmatrix}$

We have the fundamental relation $g^t h^x = h^{se^t} g^t$, and the following description of the unstable foliation:

$$(h^{s}v)_{s\in\mathbb{R}} = W_{g^{t}}^{su}(v) = \left\{ w, d(g^{-t}w, g^{-t}v) \xrightarrow[t\to\infty]{} 0 \right\}$$

In this way we see that the ergodic behavior of $(h^s v)$ is related to the asymptotic behavior of $(g^{-t}v)$ as $t \to \infty$.

Let $\Gamma < G$ be a discrete group, set $S = \Gamma \setminus \mathbb{H}$ then $T^1S = \Gamma \setminus G$ and have right actions of (g^t) and (h^s) on this space.

Date: January 29, 2015.

1.3. Goal. Study the ergodic properties of (h^s) when $vol(S) = +\infty$, and Γ is non-elementary (i.e. S is not the hyperbolic plane).

Suppose $\Gamma \setminus G$ has finite volume, then we have the following results

- (Hedlund) All (h^s) orbits are either periodic or dense.
- (Furstenburg, Dani) Except for periodic measures, the Liouville measure, \mathcal{L} is the unique (h^s) invariant ergodic measure.

2. Basic ergodic theory results

2.1. $\mu(X) < \infty$.

Theorem 1 (Birkhoff ergodic theorem). Consider the space (X, g^t, μ) where μ is an invariant ergodic probability measure. Then for any $\phi \in L^1(\mu)$,

$$\frac{1}{T}\int_0^T \phi(g^t x) dt \to \frac{1}{\mu(X)}\int \phi d\mu$$

This theorem does not say anything specific for a given $x \in X$.

If μ is unique and X compact, then convergence holds for all x.

Theorem 2 (Dani-Smillie). For all v non-periodic and all $\phi \in C_c(T^1S)$,

$$\frac{1}{T} \int_0^T \phi(h^s v) ds \to \int \phi d\mathcal{L}$$

2.2. Infinite ergodic theory.

Definition 1. Let μ be an invariant ergodic measure for g^t , and $\mu(X) = \infty$, then we call μ conservative if for all A with $\mu(A) > 0$, μ -a.e $x \in A$ satisfies

$$\int_0^\infty \mathbb{1}_A(g^t x) \mathrm{d}t = +\infty$$

Remark 1. The Birkhoff ergodic theorem is true in the infinite case and we have

$$\frac{1}{T}\int_0^T \phi(g^t x) \mathrm{d}t \to 0$$

Theorem 3 (Hopf ergodic theorem). Let μ be an ergodic and conservative measure and $\phi, \psi \in L^1(\mu)$, then for μ -almost every $x \in X$,

$$\frac{\int_0^t \phi(g^t x) dt}{\int_0^T \psi(g^t x) dt} \to \frac{\int_X \phi d\mu}{\int_X \psi d\mu}$$

As in the case with the Birkhoff ergodic theorem, given a specific $x \in X$ we do not understand what happens with these ratios.

In the finite measure case we have

$$\int_0^T \phi(g^t x) \mathrm{d}t \sim \frac{T}{\mu(X)} \int \phi \mathrm{d}\mu,$$

we would like to find a similar equivalence for the infinite case, unfortunately one does not exist.

Theorem 4 (Aaronson). Suppose $a(T) \to \infty$, then μ -almost surely either $\limsup \frac{1}{a(T)} \int_0^T \phi(g^t x) dt = +\infty$ or $\liminf \frac{1}{a(T)} \int_0^T \phi(g^t x) dt = 0$.

3. Results in the infinite volume case

Remark 2. Ergodic measures for $(h^s v)$ give a "way" for (g^{-t}) to go to infinity

Theorem 5 (Roblin). If (g^t) admits a finite measure of maximum entropy then there is a unique (h^s) -invariant ergodic measure supported on the set

 $\{v \in T^1S \mid (g^{-t}v)_{t \ge 0} \text{ returns infinitely often to a compact set}\}$

A surface S is geometrically finite if it has finitely many cusps and finitely many funnels. In dimension 2, this condition is equivalent to Γ being finitely generated. In this case, if a vector v enters the funnel, it will never come back and its horocyclic orbit will be closed and non-periodic. If a vector w negatively points into the cusp, then it's horocyclic orbit will be periodic. All other horocyclic orbits are dense.

FIGURE 2. Examples of types of horocyclic orbits on a geometrically finite surface.

Corollary 1 (Burger/Roblin). When S is geometrically finite there exists a unique invariant ergodic (h^s) measure m_{BR} whose support is exactly the set $\{v \mid (g^t v) \text{ does not go into the funnel}\}$.

Theorem 6 (Maucourant - Schapira). Let S be geometrically finite with critical exponent $0 < \delta < 1$. Then for all v, non (h^s) -periodic, such that $(g^t v)$ does not go into the funnel and for all $\phi \in C_c(T^1S)$ we have

$$\int_t^t \phi(h^s v) ds \sim t^\delta \tau(v, t) \int \phi dm_{BF}$$

where $\tau(v, t)$ is a continuous, well understood, bounded function.

Example 1. Let $\Gamma \triangleleft \Gamma_0$ where Γ_0 is a cocompact lattice and $\Gamma_0/\Gamma \simeq \mathbb{Z}^d$. Let $S = \Gamma \backslash \mathbb{H}$ be a surface with no cusps and $S_0 = \Gamma_0 \backslash \mathbb{H}$. Consider the vector v and look at it's negative orbit. At time t it is somewhere in \mathbb{Z}^d , see Fig. 3.

FIGURE 3. The vector \mathbf{v} in S and its negative orbit

If ζ is a coordinate in \mathbb{Z}^d then almost surely,

$$\frac{1}{t}\xi(g^{-t}v) \xrightarrow[t \to \infty]{} \zeta_{\infty}(v)$$

and we call $\xi_{\infty}(z)$ the *asymptotic cocycle*, which gives us an asymptotic speed in \mathbb{Z}^d . Note that if m is ergodic, this function is constant almost surely, and we can call this value $\xi_{\infty}(m)$.

 $C = \{\xi_{\infty}(v)\}\$ is a compact, convex set and the interior, \check{C} , is diffeomorphic to the unit ball of \mathbb{R}^d for a certain "good" norm.

Theorem 7 (Babillot - Ledrappier, Sarig). The function $m \mapsto \xi_{\infty}(m)$ is a bijection between the set of (h^s) -invariant ergodic measures and the set \mathring{C} .

There is an associated equidistribution result:

Theorem 8 (Sarig - Schapira). For all v, $\xi_{\infty}(v) = \xi_{\infty}(m)$ if and only if $(h^s v)$ is equidistributed with respect to m.

4. Tools

Assume $\Gamma < PSL(2, \mathbb{R})$ be finitely generated and discrete. Let $\Lambda_{\Gamma} = \overline{\Gamma_0} \setminus \Gamma_0 \subset S^1$ be its *limit set* If $vol(S) < \infty$, then $\Lambda_{\Gamma} = S^1$ and if $vol(S) = \infty$ then Λ_{Γ} can be a Cantor set.

We can give coordinates to a geodesic $v \in \mathbb{D}$ by its endpoints so that $T^1\mathbb{D} \simeq S^1 \times S^1 \setminus \text{diag} \times \mathbb{R}$ where we write (v^-, v^+, s) for the point corresponding to $v \in T^1\mathbb{D}$. Then in these coordinates, the geodesic flow acts by translation, $(g^t v) = (v^-, v^+, s + t)$, and the horocyclic flow fixes the first and last coordinate but moves the positive endpoint, $(h^s v) = (v^-, w^+, s)$.

 $T^1S = \Gamma \setminus (S^1 \times S^1 \times \mathbb{R})$. The non-wandering set of the geodesic flow is the set vectors whose endpoints are in the limit set, $\Omega = \Gamma \setminus (\Lambda_{\Gamma} \times \Lambda_{\Gamma} \times \mathbb{R})$. This set is not invariant under the horocyclic flow. We definite the non-wandering set of (h^s) to be

$$\mathcal{E} = \bigcup_{s \in \mathbb{R}} h^s \Omega = \Gamma \backslash (\Lambda_{\Gamma} \times S^1 \times \mathbb{R})$$

We define the constant $\delta_{\Gamma} = \limsup_{R \to \infty} \frac{1}{R} \log \# \{ \gamma \in \Gamma, d(0, \gamma) \leq R \}$. In the finite dimensional case, $\delta_{\Gamma} = \dim_H \Lambda_{\Gamma} = h_{top}(g^t)$, the Hausdorff dimension of the limit set and the topological entropy of the geodesic flow.