LECTURE 2. Conjugate matrices

Let *A* be a hyperbolic matrix in $SL(n, \mathbb{Z})$ with irreducible polynomial *f* and hence distinct eigenvalues, $K = \mathbb{Q}(\lambda)$, where λ is an eigenvalue of *A* and $\mathcal{O}_K = \mathbb{Z}[\lambda]$.

Definitions

We say that $A, B \in SL(n, \mathbb{Z})$ are conjugate over \mathbb{Z} (denoted $A \sim B$) if $\exists C \in SL(n, \mathbb{Z})$ s.t. $B = C^{-1}AC$.

Two ideals I and J in \mathcal{O}_K are equivalent if there exists non-zero $\alpha, \beta \in \mathcal{O}_K$ s.t. $\alpha I = \beta J$. The set of equivalence classes (ideal classes) forms a finite group, called the class group of \mathcal{O}_K (or of K). Its order is called the class number, denoted by h(K).

If $A \sim B$, they have the same characteristic polynomial and the same eigenvalues. To each matrix A' conjugate to A we assign an eigenvector $v = (v_1, \ldots, v_n)$ with eigenvalue λ : $A'v = \lambda v$ with all its entries in \mathcal{O}_K , and to this eigenvector, an ideal in \mathcal{O}_K with the \mathbb{Z} -basis v_1, \ldots, v_n .

Conjugate matrices

It follows from an old Theorem of Latimer and MacDuffee [LM], see also [T] and a more modern account in [W].

Theorem

The described map is a bijection between conjugacy classes of hyperbolic elements in $SL(n, \mathbb{Z})$ with the same characteristic polynomial f and ideal classes in the order $\mathcal{O}_K = \mathbb{Z}[X]/(f(X))$.

[T] O. Taussky, *Introduction into connections between algebraic number theory and integral matrices*, Appendix to: H. Cohn, A classical invitation to algebraic numbers and class field, Springer, New–York, 1978.

[W] D.I. Wallace, Conjugacy classes of hyperbolic matrices in $SL(n, \mathbb{Z})$ and ideal classes in an order. Trans. Amer. Math. Soc. **283** (1984), 177–184.

[[]LM] C.G. Latimer and C.C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. Math. 74 (1933), 313–316.

Case n = 2

Let $A \in SL(2,\mathbb{Z})$ be hyperbolic. Its characteristic polynomial $x^2 - \operatorname{tr}(A)x + 1$. If $B \in SL(2,\mathbb{Z})$ and $B \sim A$, then $\operatorname{tr}(B) = \operatorname{tr}(A)$. In this case K is a totally real quadratic field, and Z(A) has rank one, i.e. if $B \in SL(2,\mathbb{Z})$ commutes with $A, B = A^k$ for some integer k.

Some hyperbolic geometry

The group $PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm 1_2\}$ acts on the upper half-plane $\mathcal{H} = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$ by fractional-linear (Möbius) transformations

$$z \mapsto \gamma(z) = \frac{az+b}{cz+d}, \ \begin{pmatrix} a & b\\ c & d \end{pmatrix} \in SL(2,\mathbb{R}).$$

They are isometries of \mathcal{H} with hyperbolic metric $ds = \frac{\sqrt{dx^2 + dy^2}}{y}$. Möbius transformations are classified by the number of fixed points in \mathcal{H} : $z = \frac{az+b}{cz+d}$, i.e., $cz^2 + (d-a)z - b = 0$, which depends on the value of the $|\operatorname{tr}(A)| = |a + d|$. $M = PSL(2, \mathbb{Z}) \setminus \mathcal{H}$ -modular surface (finite hyp. volume, non-comp.)

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 30 / 42

Closed geodesics on the modular surface

The bijection between conjugacy classes of hyperbolic elements and ideal classes in the corresponding real quadratic field extends further:

- If $A \sim B$, tr (A) = tr (B) = t. The axes of Möbius transformations corresponding to A and B become the same closed geodesic on M of length $2 \log \frac{t + \sqrt{t^2 4}}{2}$.
- Conjugacy classes of hyperbolic elements in $PSL(2,\mathbb{Z})$ of a given trace \iff ideal classes in $\mathcal{O}_K \iff$ closed geodesics on M of the same length \iff congruence classes of primitive integral indefinite quadratic forms of the corresponding discriminant.

Questions:

(1) How many geodesics of a given length are on the modular surface? = How many non-conjugate over \mathbb{Z} matrices with the same trace are in $SL(2,\mathbb{Z})$?

(2) How to find out if two matrices with the same trace are conjugate over \mathbb{Z} ?

The answers can be found in [K] and [KU]: Relation to quadratic forms and quadratic fields

•
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Longrightarrow Q_A(x, y) = cx^2 + (d - a)xy - by^2$$

- $SL(2,\mathbb{Z})$ acts on quadratic forms by substitutions: for $C = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2,\mathbb{Z})$, let $x = \alpha x' + \beta y'$, $y = \gamma x' + \delta y'$ and define $Q' = C \cdot Q$ by Q'(x, y) = Q(x', y').
- We say $Q' \sim Q$ if $Q' = C \cdot Q$ for some $C \in SL(2, \mathbb{Z})$.
- $|\operatorname{tr} A| > 2 \Longrightarrow D = (a + d)^2 4 > 0$ (it is easy to see that D is not a perfect square), so Q_A is an integral indefinite quadratic form.
- $A \sim B \iff Q_A \sim Q_B$ (in narrow sense, i.e. via a matrix from $SL(2,\mathbb{Z})$).
- Class number h(D) (in narrow sense): number of non-equivalent quadratic forms with given discriminant.

[[]K] S. Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata, 63 (1996), 123–145.
[KU] S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. of the Amer. Math. Soc., 44, no. 1 (2007), 87-132.

Relation to quadratic forms and quadratic fields

Does the relation go the other way?

- Let $Q(x, y) = Pz^2 + Qz + R$ be an integral quadratic form with $D = Q^2 4PR > 0$ not a perfect square. Consider a geodesic γ connecting the real roots of the quadratic equation Q(z, 1) = 0.
- The set of all rational matrices having γ as their axis is a real quadratic field $K = \mathbb{Q}(\sqrt{D}) = \{\lambda \alpha + \mu, \lambda \in \mathbb{Q}^*, \mu \in \mathbb{Q}\}$, where $\alpha \in M(2,\mathbb{Z})$ is some matrix with the axis γ , e.g. $\alpha = \begin{pmatrix} 0 & -R \\ P & Q \end{pmatrix}$ (hence the discriminant of the characteristic equation for α is equal to D).
- Determinant matrices are equals to the norms of corresponding elements in *K*.
- Matrices in K that belong to $M(2,\mathbb{Z})$ correspond to the ring of integers in K.
- Is there a matrix in K that belongs to SL(2, ℤ)?
 Yes, it corresponds to a non-trivial unit in K of norm 1.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Gauss reduction theory in matrix language

Definition

A hyperbolic matrix $A \in SL(2, \mathbb{Z})$ is called reduced if its attracting and repelling fixed points w and u satisfy w > 1, 0 < u < 1.

Theorem (Reduction Algorithm)

There is a finite number of reduced matrices in $SL(2,\mathbb{Z})$ with given trace t, |t| > 2. Any hyperbolic matrix in $SL(2,\mathbb{Z})$ with trace t can be reduced by a finite number of standard conjugations. Applied to a reduced matrix, it gives another reduced matrix. Any reduced matrix conjugate to A is obtained from A by a finite number of standard conjugations. Thereby the set of reduced matrices is decomposed into disjoint cycles of conjugate matrices.

The notion of reduced and standard conjugations are related to a particular theory of continued fractions: minus continued fractions.

SQ (V

Minus continued fractions

Any real number x can be written uniquely in the form of a minus continued fraction:

$$x = n_0 - \frac{1}{n_1 - \frac{1}{n_2 - \frac{1}{\ddots}}} = \lceil n_0, n_1, \cdots, \rceil$$

where $n_0 = \lceil x \rceil = \lfloor x \rfloor + 1$, $x_1 = -\frac{1}{x-n_0}$; $n_{i+1} = \lceil x_{i+1} \rceil$, $x_{i+1} = -\frac{1}{x_i-n_i}$, i.e. the sequence $r_k = \lceil n_0, n_1, \dots, n_k \rceil$ converges to x. Conversely, any sequence of integers n_0, n_1, \dots , where $n_i \in \mathbb{Z}$ and $n_i \ge 2$ for $i \ge 1$ defines a minus continued fraction as above.

The theory is similar to that of ordinary continued fractions which has +'s instead of -'s and $\lfloor \cdot \rfloor$ instead of $\lceil \cdot \rceil$, but is more convenient for our purposes.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

Properties of minus continued fractions

are very similar to these of ordinary continued fractions:

- (1) For the ordinary continued fractions, rational numbers have finite expansions. For minus continued fractions expansions are always infinite: for rational numbers they have tails of 2's.
- (2) A number is a quadratic irrationality iff its expansion is eventually periodic. This also holds for ordinary continued fractions.
- (3) α has a purely periodic minus continued fraction expansion iff α is a quadratic irrationality, $\alpha > 1$ and $0 < \alpha' < 1$, where α' is number conjugate to α . These are inequalities that appeared in the definition of reduced matrix. For ordinary continued fractions a definition of reduced (in wide sense) is used.
- (4) $\alpha = C\beta$ (connected by a Möbius transformation in $C \in SL(2,\mathbb{Z})$) iff the periods of expansions of α and β differ by a cyclic permutation. For ordinary continued fractions this holds with $GL(2,\mathbb{Z})$ in place of $SL(2,\mathbb{Z})$.

SQ Q

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ □ ■

Theorem [K]

Two hyperbolic matrices A and B in $SL(2,\mathbb{Z})$ with the same trace are conjugate over \mathbb{Z} iff the periods in the minus continued fraction expansions of their attracting fixed points w_A and w_B are cyclic permutations of one another.

Proof: (a) If A and $B \in SL(2,\mathbb{Z})$ have a common fixed point, then their second fixed points also coincide. This follows from discreteness of the group $PSL(2,\mathbb{Z})$ in $PSL(2,\mathbb{R})$.

(b) If periods of w_A and w_B differ by a cyclic permutation, there exists a $C \in SL(2,\mathbb{Z})$ such that $w_A = Cw_B$ by (4). Then the matrices CBC^{-1} and A have the same fixed point w_A , and by (a), since they have the same trace, either $CBC^{-1} = A$ or $CBC^{-1} = A^{-1}$. Since both w_A and w_B are attracting, w_A is attracting for A and CBC^{-1} , hence $CBC^{-1} = A$. (c) If $A \sim B$, $CBC^{-1} = A \Rightarrow w_A = Cw_B$, and by (4) periods of w_A and w_B differ by a cyclic permutations.

[K] S. Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata, 63 (1996), 123+145. = V (= V ()

Examples

Since h(5) = 1, all matrices in SL(2, ℤ) with trace 3 are conjugate over ℤ.

• Let
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ and $D = \begin{pmatrix} 0 & -1 \\ 1 & 4 \end{pmatrix}$.
Which are conjugate over \mathbb{Z} ?
 $w_A = \lceil 1, 4, 4, \ldots \rceil$, period (4); $w_B = \lceil 1, 3, 2, 3, 2 \ldots \rceil$, period (3, 2);
 $w_D = \lceil 0, 4, 4, \ldots \rceil$, period (4). Thus $A \not\sim B, A \sim D, B \not\sim D$.
Incidentally, $h(12) = 2$.

If $A, B \in SL(2, \mathbb{Z})$ have the same characteristic polynomial, hence the same eigenvalues, they are conjugate over \mathbb{Q} . If they are non-conjugate over \mathbb{Z} : $A \not\sim B$, the automorphisms of \mathbb{T}^2 , T_A and T_B are not algebraically isomorphic, but their entropies are equal: $h_{\mu}(T_A) = h_{\mu}(T_B) = \log |\lambda|$, where λ is the eigenvalue with $|\lambda| > 1$), and, being Bernoulli, these automorphisms are measurably conjugate with respect to the Lebesgue measure μ .

Higher rank n > 2: measure rigidity implications

・・

Svetlana Katok (Penn State)

MSRI, Jan. 29-30, 2015 39 / 42

The situation for n > 2 is dramatically different due to a so-called measure rigidity. The counterparts of hyperbolic automorphism of \mathbb{T}^2 and all its integral powers (\mathbb{Z} -action) are Cartan actions of \mathbb{Z}^{n-1} on \mathbb{T}^n . They are generated by maximal rank abelian semisimple subgroups of $SL(n,\mathbb{Z})$. Measure rigidity for Cartan actions implies, in particular, that such actions are measurably conjugate only if they are algebraically conjugate over \mathbb{Z} .

The following theorem generalizes Latimer-McDuffee theorem to centralizers.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Higher rank n > 2: matrices with non-conjugate centralizers

Theorem [KKS]

Let $A \in SL(n, \mathbb{Z})$ be a hyperbolic matrix with irreducible characteristic polynomial f and distinct real eigenvalues, $K = \mathbb{Q}(\lambda)$ where λ is an eigenvalue of A, and $\mathcal{O}_K = \mathbb{Z}[\lambda]$. Suppose the number of eigenvalues among $\lambda_1, \ldots, \lambda_n$ that belong to K is equal to r. If the class number h(K) > r, then there exists a matrix $A' \in SL(n, \mathbb{Z})$ having the same eigenvalues as A whose centralizer Z(A') is not conjugate in $GL(n, \mathbb{Z})$ to Z(A). Furthermore, the number of matrices in $SL(n, \mathbb{Z})$ having the same eigenvalues as A with pairwise nonconjugate (in $GL(n, \mathbb{Z})$) centralizers is at least $[\frac{h(K)}{r}] + 1$, where [x] is the largest integer < x.

Matrices with non-conjugate centralizers produce actions that are not algebraically isomorphic even up to a time change, and hence are not measurably isomorphic.

[KKS] A. Katok, S. Katok and K. Schmidt, *Rigidity of measurable structure for* \mathbb{Z}^d *actions by automorphisms of a torus*, Comment. Math. Helv., **77**, no. 4 (2002), 718–745

Example of non-isomorphic Cartan actions

Let K be a totally real cubic field with class number 3, the Galois group S_3 and discriminant 2597. It can be represented as $K = \mathbb{Q}(\lambda)$ where λ is a unit in K with minimal polynomial $f(x) = x^3 - 2x^2 - 8x + 1$. In this field the ring of integers $\mathcal{O}_K = \mathbb{Z}[\lambda]$, and the fundamental units are $\lambda_1 = \lambda$ and $\lambda_2 = \lambda + 2$. Multiplications by λ_1 and λ_2 generate actions on three different lattices, \mathcal{O}_K with the basis $\{1, \lambda, \lambda^2\}$, representing the principal ideal class, \mathcal{L} with the basis $\{2, 1 + \lambda, 1 + \lambda^2\}$ representing the second ideal class, and \mathcal{L}^2 with the basis $\{4, 3 + \lambda, 3 + \lambda^2\}$ representing the third ideal class: $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 8 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ -1 & 8 & 4 \end{pmatrix}$; $\begin{pmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ -6 & 9 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \\ -6 & 9 & 4 \end{pmatrix}$; $\begin{pmatrix} -3 & 4 & 0 \\ -3 & 3 & 1 \\ -10 & 11 & 2 \end{pmatrix}$, $\begin{pmatrix} -1 & 4 & 0 \\ -3 & 5 & 1 \\ -10 & 11 & 4 \end{pmatrix}$.

They are not algebraically isomorphic even up to a time change, and therefore not measurably isomorphic.

Discussion of further questions for higher rank n > 2

Let *A* be a hyperbolic matrix in $SL(n, \mathbb{Z})$ with irreducible polynomial fand hence distinct eigenvalues, $K = \mathbb{Q}(\lambda)$, where λ is an eigenvalue of *A* and $\mathcal{O}_K = \mathbb{Z}[\lambda]$. Then the axes of $Z(A) = \mathbb{Z}^{n-1}$ in the factor $SL(n, \mathbb{Z}) \setminus SL(n, \mathbb{R})$ define a torus (or a "flat"). The number of different flats corresponding to matrices conjugate to *A* over \mathbb{Z} is equal to the class number h(K). The volume of each flat equal to kR_K , where $k = [U_K : \gamma(Z(A)].$

Main question:

How to find out if two matrices in $SL(n, \mathbb{Z})$ with the same characteristic polynomial are conjugate over \mathbb{Z} ? The answer should lead to a theory of multidimensional continued fractions and the related reduction theory.

MSRI, Jan. 29-30, 2015 42 / 42

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @