
LECTURE 2. Conjugate matrices

Let A be a hyperbolic matrix in SL(n,Z) with irreducible polynomial f
and hence distinct eigenvalues, K = Q(�), where � is an eigenvalue of
A and O

K

= Z[�].

Definitions
We say that A,B 2 SL(n,Z) are conjugate over Z (denoted A ⇠ B) if 9
C 2 SL(n,Z) s.t. B = C

�1

AC.
Two ideals I and J in O

K

are equivalent if there exists non-zero
↵,� 2 O

K

s.t. ↵I = �J . The set of equivalence classes (ideal classes)
forms a finite group, called the class group of O

K

(or of K). Its order is
called the class number, denoted by h(K).

If A ⇠ B, they have the same characteristic polynomial and the same
eigenvalues. To each matrix A

0 conjugate to A we assign an
eigenvector v = (v

1

, . . . , v

n

) with eigenvalue �: A0
v = �v with all its

entries in O
K

, and to this eigenvector, an ideal in O
K

with the Z-basis
v

1

, . . . , v

n

.
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Conjugate matrices
It follows from an old Theorem of Latimer and MacDuffee [LM], see
also [T] and a more modern account in [W].

Theorem
The described map is a bijection between conjugacy classes of
hyperbolic elements in SL(n,Z) with the same characteristic
polynomial f and ideal classes in the order O

K

= Z[X]/(f(X)).

[LM] C.G. Latimer and C.C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. Math. 74

(1933), 313–316.

[T] O. Taussky, Introduction into connections between algebraic number theory and integral matrices, Appendix to: H. Cohn, A
classical invitation to algebraic numbers and class field, Springer, New–York, 1978.
[W] D.I. Wallace, Conjugacy classes of hyperbolic matrices in SL(n, Z) and ideal classes in an order. Trans. Amer. Math. Soc.
283 (1984), 177–184.
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Case n = 2

Let A 2 SL(2,Z) be hyperbolic. Its characteristic polynomial
x

2 � tr (A)x+ 1. If B 2 SL(2,Z) and B ⇠ A, then tr (B) = tr (A).
In this case K is a totally real quadratic field, and Z(A) has rank one,
i.e. if B 2 SL(2,Z) commutes with A, B = A

k for some integer k.

Some hyperbolic geometry
The group PSL(2,R) = SL(2,R)/{±1

2

} acts on the upper half-plane
H = {z 2 C | Im z > 0} by fractional-linear (Möbius) transformations

z 7! �(z) =

az + b

cz + d

,

✓
a b

c d

◆
2 SL(2,R).

They are isometries of H with hyperbolic metric ds =

p
dx

2
+dy

2

y

.
Möbius transformations are classified by the number of fixed points in
H: z =

az+b

cz+d

, i.e., cz

2

+ (d� a)z � b = 0, which depends on the
value of the |tr (A)| = |a+ d|.
M = PSL(2,Z)\H –modular surface (finite hyp. volume, non-comp.)
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Closed geodesics on the modular surface
The bijection between conjugacy classes of hyperbolic elements and
ideal classes in the corresponding real quadratic field extends further:

If A ⇠ B, tr (A) = tr (B) = t. The axes of Möbius transformations
corresponding to A and B become the same closed geodesic on
M of length 2 log

t+

p
t

2�4

2

.
Conjugacy classes of hyperbolic elements in PSL(2,Z) of a given
trace () ideal classes in O

K

() closed geodesics on M of the
same length () congruence classes of primitive integral
indefinite quadratic forms of the corresponding discriminant.

Questions:
(1) How many geodesics of a given length are on the modular surface?
= How many non-conjugate over Z matrices with the same trace are in
SL(2,Z)?
(2) How to find out if two matrices with the same trace are conjugate
over Z?

Svetlana Katok (Penn State) MSRI, Jan. 29-30, 2015 31 / 42



The answers can be found in [K] and [KU]:
Relation to quadratic forms and quadratic fields

A =

✓
a b

c d

◆
=) Q

A

(x, y) = cx

2

+ (d� a)xy � by

2

SL(2,Z) acts on quadratic forms by substitutions: for

C =

✓
↵ �

� �

◆
2 SL(2,Z), let x = ↵x

0
+ �y

0
, y = �x

0
+ �y

0 and

define Q

0
= C ·Q by Q

0
(x, y) = Q(x

0
, y

0
).

We say Q

0 ⇠ Q if Q0
= C ·Q for some C 2 SL(2,Z).

|trA| > 2 =) D = (a+ d)

2 � 4 > 0 (it is easy to see that D is not
a perfect square), so Q

A

is an integral indefinite quadratic form.
A ⇠ B () Q

A

⇠ Q

B

(in narrow sense, i.e. via a matrix from
SL(2,Z)).
Class number h(D) (in narrow sense): number of non-equivalent
quadratic forms with given discriminant.

[K] S. Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata, 63 (1996), 123–145.
[KU] S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. of the Amer. Math. Soc., 44, no. 1
(2007), 87-132.
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Relation to quadratic forms and quadratic fields
Does the relation go the other way?

Let Q(x, y) = Pz

2

+Qz +R be an integral quadratic form with
D = Q

2 � 4PR > 0 not a perfect square. Consider a geodesic �

connecting the real roots of the quadratic equation Q(z, 1) = 0.
The set of all rational matrices having � as their axis is a real
quadratic field K = Q(

p
D) = {�↵+ µ, � 2 Q⇤

, µ 2 Q}, where
↵ 2 M(2,Z) is some matrix with the axis �, e.g. ↵ =

⇣
0 �R

P Q

⌘

(hence the discriminant of the characteristic equation for ↵ is
equal to D).
Determinant matrices are equals to the norms of corresponding
elements in K.
Matrices in K that belong to M(2,Z) correspond to the ring of
integers in K.
Is there a matrix in K that belongs to SL(2,Z)?
Yes, it corresponds to a non-trivial unit in K of norm 1.
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Gauss reduction theory in matrix language

Definition
A hyperbolic matrix A 2 SL(2,Z) is caled reduced if its attracting and
repelling fixed points w and u satisfy w > 1, 0 < u < 1.

Theorem (Reduction Algorithm)
There is a finite number of reduced matrices in SL(2,Z) with given
trace t, |t| > 2. Any hyperbolic matrix in SL(2,Z) with trace t can be
reduced by a finite number of standard conjugations. Applied to a
reduced matrix, it gives another reduced matrix. Any reduced matrix
conjugate to A is obtained from A by a finite number of standard
conjugations. Thereby the set of reduced matrices is decomposed into
disjoint cycles of conjugate matrices.

The notion of reduced and standard conjugations are related to a
particular theory of continued fractions: minus continued fractions.

Svetlana Katok (Penn State) MSRI, Jan. 29-30, 2015 34 / 42



Minus continued fractions

Any real number x can be written uniquely in the form of a
minus continued fraction:

x = n

0

�
1

n

1

�
1

n

2

�
1

. . .

= dn
0

, n

1

, · · · , e

where n

0

= dxe = bxc+1, x
1

= � 1

x�n0
; n

i+1

= dx
i+1

e, x
i+1

= � 1

xi�ni
,

i.e. the sequence r

k

= dn
0

, n

1

, . . . , n

k

e converges to x.
Conversely, any sequence of integers n

0

, n

1

, . . . , where n

i

2 Z and
n

i

� 2 for i � 1 defines a minus continued fraction as above.

The theory is similar to that of ordinary continued fractions which has
+’s instead of �’s and b·c instead of d·e, but is more convenient for our
purposes.
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Properties of minus continued fractions

are very similar to these of ordinary continued fractions:

(1) For the ordinary continued fractions, rational numbers have finite
expansions. For minus continued fractions expansions are always
infinite: for rational numbers they have tails of 2’s.

(2) A number is a quadratic irrationality iff its expansion is eventually
periodic. This also holds for ordinary continued fractions.

(3) ↵ has a purely periodic minus continued fraction expansion iff ↵ is
a quadratic irrationality, ↵ > 1 and 0 < ↵

0
< 1, where ↵

0 is number
conjugate to ↵. These are inequalities that appeared in the
definition of reduced matrix. For ordinary continued fractions a
definition of reduced (in wide sense) is used.

(4) ↵ = C� (connected by a Möbius transformation in C 2 SL(2,Z))
iff the periods of expansions of ↵ and � differ by a cyclic
permutation. For ordinary continued fractions this holds with
GL(2,Z) in place of SL(2,Z).
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Solution to the conjugacy problem

Theorem [K]
Two hyperbolic matrices A and B in SL(2,Z) with the same trace are
conjugate over Z iff the periods in the minus continued fraction
expansions of their attracting fixed points w

A

and w

B

are cyclic
permutations of one another.

Proof: (a) If A and B 2 SL(2,Z) have a common fixed point, then their
second fixed points also coincide. This follows from discreteness of the
group PSL(2,Z) in PSL(2,R).
(b) If periods of w

A

and w

B

differ by a cyclic permutation, there exists a
C 2 SL(2,Z) such that w

A

= Cw

B

by (4). Then the matrices CBC

�1

and A have the same fixed point w
A

, and by (a), since they have the
same trace, either CBC

�1

= A or CBC

�1

= A

�1. Since both w

A

and
w

B

are attracting, w
A

is attracting for A and CBC

�1, hence
CBC

�1

= A. (c) If A ⇠ B, CBC

�1

= A ) w

A

= Cw

B

, and by (4)
periods of w

A

and w

B

differ by a cyclic permutations.
[K] S. Katok, Coding of closed geodesics after Gauss and Morse, Geom. Dedicata, 63 (1996), 123–145.
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Examples

Since h(5) = 1, all matrices in SL(2,Z) with trace 3 are conjugate
over Z.

Let A =

✓
1 2

1 3

◆
, B =

✓
2 1

3 2

◆
and D =

✓
0 �1

1 4

◆
.

Which are conjugate over Z?
w

A

= d1, 4, 4, . . . e, period (4); w
B

= d1, 3, 2, 3, 2 . . . e, period (3, 2);
w

D

= d0, 4, 4, . . . e, period (4). Thus A 6⇠ B,A ⇠ D,B 6⇠ D.
Incidentally, h(12) = 2.

If A,B 2 SL(2,Z) have the same characteristic polynomial, hence the
same eigenvalues, they are conjugate over Q. If they are
non-conjugate over Z: A 6⇠ B, the automorphisms of T2, T

A

and T

B

are not algebraically isomorphic , but their entropies are equal:
h

µ

(T

A

) = h

µ

(T

B

) = log |�|, where � is the eigenvalue with |�| > 1),
and, being Bernoulli, these automorphisms are measurably conjugate
with respect to the Lebesgue measure µ.
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Higher rank n > 2: measure rigidity implications

The situation for n > 2 is dramatically different due to a so-called
measure rigidity. The counterparts of hyperbolic automorphism of T2

and all its integral powers (Z-action) are Cartan actions of Zn�1 on Tn.
They are generated by maximal rank abelian semisimple subgroups of
SL(n,Z). Measure rigidity for Cartan actions implies, in particular, that
such actions are measurably conjugate only if they are algebraically
conjugate over Z.
The following theorem generalizes Latimer-McDuffee theorem to
centralizers.
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Higher rank n > 2: matrices with non-conjugate
centralizers

Theorem [KKS]
Let A 2 SL(n,Z) be a hyperbolic matrix with irreducible characteristic
polynomial f and distinct real eigenvalues, K = Q(�) where � is an
eigenvalue of A, and O

K

= Z[�]. Suppose the number of eigenvalues
among �

1

, . . . ,�

n

that belong to K is equal to r. If the class number
h(K) > r, then there exists a matrix A

0 2 SL(n,Z) having the same
eigenvalues as A whose centralizer Z(A

0
) is not conjugate in GL(n,Z)

to Z(A). Furthermore, the number of matrices in SL(n,Z) having the
same eigenvalues as A with pairwise nonconjugate (in GL(n,Z))
centralizers is at least [h(K)

r

] + 1, where [x] is the largest integer < x.

Matrices with non-conjugate centralizers produce actions that are not
algebraically isomorphic even up to a time change, and hence are not
measurably isomorphic.
[KKS] A. Katok, S. Katok and K. Schmidt, Rigidity of measurable structure for Zd

actions by automorphisms of a torus, Comment.
Math. Helv., 77, no. 4 (2002), 718–745
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Example of non-isomorphic Cartan actions

Let K be a totally real cubic field with class number 3, the Galois group
S

3

and discriminant 2597. It can be represented as K = Q(�) where �

is a unit in K with minimal polynomial f(x) = x

3 � 2x

2 � 8x+ 1. In this
field the ring of integers O

K

= Z[�], and the fundamental units are
�

1

= � and �

2

= �+ 2.
Multiplications by �

1

and �

2

generate actions on three different lattices,
O

K

with the basis {1,�,�2}, representing the principal ideal class, L
with the basis {2, 1 + �, 1 + �

2} representing the second ideal class,
and L2 with the basis {4, 3 + �, 3 + �

2} representing the third ideal
class:

⇣
0 1 0

0 0 1

�1 8 2

⌘
,

⇣
2 1 0

0 2 1

�1 8 4

⌘
;
⇣�1 2 0

�1 1 1

�6 9 2

⌘
,

⇣
1 2 0

�1 3 1

�6 9 4

⌘
;

⇣ �3 4 0

�3 3 1

�10 11 2

⌘
,

⇣ �1 4 0

�3 5 1

�10 11 4

⌘
.

They are not algebraically isomorphic even up to a time change, and
therefore not measurably isomorphic.
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Discussion of further questions for higher rank n > 2

Let A be a hyperbolic matrix in SL(n,Z) with irreducible polynomial f
and hence distinct eigenvalues, K = Q(�), where � is an eigenvalue of
A and O

K

= Z[�]. Then the axes of Z(A) = Zn�1 in the factor
SL(n,Z)\SL(n,R) define a torus (or a “flat”). The number of different
flats corresponding to matrices conjugate to A over Z is equal to the
class number h(K). The volume of each flat equal to kR

K

, where
k = [U

K

: �(Z(A)].

Main question:
How to find out if two matrices in SL(n,Z) with the same characteristic
polynomial are conjugate over Z? The answer should lead to a theory
of multidimensional continued fractionsand the related reduction
theory.
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