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1. More details on the proof of last theorem

Theorem 1. Let � < G be a cocompact lattice, G a semi simple Lie group of rank 1, G 6= SO(2n, 1), then
� contains a surface subgroup.

1.1. Ergodic framework. Let M = �\G/K.

Definition 1. We say an action of a Lie group L on a Riemannan manifold M is Anosov if the following
properties hold:r The orbits of the action foliate Mr There exists a 2 L and an a-invariant splitting of the tangent bundle

TM = E

0 � E

+ � E

�

such that for all v 2 E

± we have

||da⌥(x)|| < e

�||x||r The growth of vectors in E

0 is subexponential

If L = R we get an Anosov flow.

Example 1. Consider the action of SL(2,R) on itself. X =

✓
t

�t

◆
, then E

0 = Span{X}, E

� =

Span

⇢✓
0 1
0 0

◆�
and E

+ = Span

⇢✓
0
1 0

◆�

Definition 2. A sequence of orbit segments of length � R with jumps of size at most ✏ is called an (R, ✏)-
pseudo-orbit. If the Huasdor↵ distance between an orbit and the sequence is less than � we call it �-close to
the orbit.
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Figure 1. A sequence, a
1

, a

2

, a

3

, of orbit segments which form a (R, ✏)-pseudo-orbit that
is �-close to the orbit �

Lemma 1 (Shadowing Lemma). Consider an Anosov flow on a compact manifold M . Then for all � > 0
there exists an R > 0 and ✏ > 0 such that any (R, ✏)-pseudo-orbit is �-close to an orbit.

Lemma 2 (Closing Lemma). Let M be a closed manifold with negative sectional curvature and M̃ its
universal cover. Then every approximately-closed pseudo-orbit is close to a periodic geodesic.
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Proof. If " is less than the injectivity radius we can lift each orbit segment to a geodesic segment in M̃ .
Look at the orbit of the starting point x, since the deck transformation group is cocompact, there will be
an image point 'x in a uniformly bounded neighborhood of the ending point. The unique geodesic that
connects x and 'x projects to a closed object with a corner in the projection manifold. If you have some
geometric control over the angles in the universal cover, it is possible to compare the outgoing vector to the
starting vector, and if these are close, then you will be near a periodic geodesic, and you can find one in the
quotient manifold.

x

'x

Figure 2. The projection of the geodesic connecting x and 'x

⇤

Recall that a tripod is a triple of points (v
1

, v

2

, v

3

) at pairwise angle 2⇡
3

in the tangent plane of a totally
geodesic hyperbolic plane in M .

Definition 3. Let S be a hyperbolic surface. Then for � 2 (0, 1/4), and R > 100 a pants decomposition of
S is called (R, �)-tight if the following properties hold:r the lengths of the pants curves is in [R� �, R+ �]r seams are aligned with shear in [1� �, 1 + �]

Recall the construction from before where we glued two truncated hyperbolic triangles to form a pair
of pants. If we can align the pairs of pants and glue them to form a (R, �)-tight pants decomposition of
the surface, for some R � 100 and � ⌧ 0, then the fundamental group of the surface will inject into the
fundamental group of the manifold and required.

1.2. Mixing condition. To satisfy the above geometric property, we have to adjust the gluing such that
the foot-points and directions of the seams on the same geodesic satisfy the following properies:r The distance between two foot-points should be roughly oner Let v and w be the directions of two seams on the same geodesic, then moving v by parallel transport

to the foot-point of w and reversing its direction should be approximately w with error ⇠ 1

R2

v

w

⇠ 1

Figure 3. The condition on the directions of the seams
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The error of 1

R2 corresponds to polynomial mixing of rate 2. To ensure that we can do this, we project
the measure on tripods to the boundary geodesics which gives a measure on the bundle of unit vectors
over a periodic geodesic �, each fiber consists of the unit vector and the vector tangent to � which span
a totally real frame. Normalize to get a measure fµ where µ is standard Lebesgue measure and f has
values in

⇥
1� c

R2 , 1 +
c
R2

⇤
. This allows us to find a di↵eomorphism ' of the bundle, where '

⇤(fµ) = µ and

d(x,�(x)) < c0

R2 .

2. Higher rank

Let G = SL(3,R) a semisimple Lie group of rank = 2, � < G torsion free and cocompact, and K = SO(3).
Let k be the Lie algebra of K, g the Lie algebra of G, then we have the standard decomposition g = k � p,
where p is the orthogonal complement of k with respect to the killing form. Take a ⇢ p to be a maximal
abelian subalgebra.

2.1. Root decomposition. We have a root system ⇤ ⇢ Hom(a,R) such that

g = a�
X

�2⇤

g�

Definition 4. Walls in a are hyperplanes annihilated by some � 2 ⇤, the components of the complement
are the Weyl chambers.

wall
Weyl chamber

Figure 4. Walls and Weyl chambers
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an abelian subgroup of SL(3,R).

Theorem 2 (Im Hof ’85). The action of the Lie subgroup, exp a = A, by right translation defines an Anosov
action on �\SL(3,R).

Proof. Let ⇤+ = {�(log a) > 0} and ⇤� = {�(log a) < 0}, where a is chosen to be
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for example. We define µ

+ =
P

�2⇤

+ g�, µ

� =
P

�2⇤

� g�, ⇠ =
P

�2⇤

+ ⇠�, then we get the following

decomposition da(⇠) =
P

�2⇤

+ e

��(log a)
⇠� + µ

+. ⇤

2.2. Generalizing. Replace geodesic flow by the action of the element in the center of the Weyl chamber.
Replace the totally real frames by frames defined by vectors in the sum of these to root spaces. Exponential
mixing is not needed, we can use symmetries, but we do need a definite rate of mixing, at least polynomial.
We may be able to generalize to SL(n,R), but there seems to be obstacles in trying to generalize to irreducible
lattices in semisimple groups which are not simple.
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