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1. Characteristic factors

Recall the setting from the first lecture of examining one equation in 3-variables. The test case we used
was 3-term arithmetic progressions (APs) and we did this in primes and sets of positive density using the
circle method and ergodic theoretic arguments.

The combinatorial argument stated that a lack of many 3-term APs, i.e <
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The ergodic theoretic argument gave that either
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for some eigenfunction  . We can calculate the asymptotics,
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where ⇡ : X ! Z is a projection of the function to the group rotation factor Z. In Furstenburg’s proof of
Szemeredi’s theorem, he found the asymptotics for the average of finding (k+1)-term arithmetic progressions:
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with ⇡ : X ! Y a projection to a tower of isometric extensions Y = ⇤⇥Z1⇥�1 M1⇥�2 M2⇥ · · ·⇥
�k�2 Mk�1.
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j

= Z

j�1 ⇥�j Mj

, �
j

: Z
j�1 ! Isom(M

j

). Furstenburg also showed that you can replace
the characteristic function

A

with any k-tuple of functions.

Definition 1. If ⇡ : X ! Y and (1) is satisfied, then we call Y a characteristic factor for (k + 1)-term
progressions.

We’d like to find a good characteristic factor. For example if k = 1, the ergodic theorem gives
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and Y = {⇤} is a characteristic factor. For k = 2, Furstenburg’s argument gives that the Kronecker factor
is characteristic.
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Example 1 (Why abelian factors are not characteristic for 4-term progressions). Let X = T2, and look
at the map (x, y) 7! (x + ↵, y + x). Consider the function '(x, y) = e(y), a 2-step eigenfunction. This
construction allows us to find a counterexample. Take f0 = ', f1 = '̄

3, f2 = '

3, f4 = '
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but this is a contradiction since h', i = 0 for any eignefunciton  so the projection of ' on the Kronecker
factor is 0 and we are unable to use Furstenberg’s argument to find the asymptotics.

Definition 2. A factor Y of X is universal for k-term progressions if for any W , k-characteristic, the factor
map X ! Y factors through W .

Definition 3. Let N be a 2-step nilpotent Lie group and � a lattice. Fix a 2 N , then (N/�,B,Haar, a) is
a 2-step nilsystem.

Definition 4. A pro-nilsystem is the inverse limit lim
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Theorem 1 (Furstenberg-Weiss, Conze-Lesigne). The universal characteristic factor for 4-term arithmetic
progressions is a 2-step pro-nilsystem.

Theorem 2 (Host-Kra 2005, Ziegler 2007). The universal characteristic factor for k-APs is a (k � 2)-step
pro-nilsystem

Corollary 1. We get the following asymptotic:
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where ⌫ is Haar measure on a nice subnilmanifold of (N/�)k+1.

2. Gower’s argument: generalizing Roth’s proof

Observation 1. Averages for arithmetic progressions are “controlled” by more symmetric forms
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We have control over the size of these averages:
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Question: What can you say about functions f : Z/NZ ! D for which kfk
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Theorem 3 (Gowers). If f : Z/NZ ! D with kfk
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We can use this argument to find a long AP of size � N

↵̃(�,k) on which E has increased density.

3. The Inverse Theorem for Gowers Norms

It turns out that the obstructions to Gowers uniformity norms come from nilmanifolds:
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We call F (ax�) a (k � 1)-step nilsequence.

Remark 1. This works for any system of a�ne linear forms L1(~n), . . . , Lk
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3.1. The Möbius function. Let n = p1 · · · pk where p

i

are distinct primes, then
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�1 for k even
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Theorem 5 (Green-Tao). Let g(n) be a nilsequence of bounded complexity and
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Remark 2. This result can be pushed to calculate P.
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