
PATTERNS IN PRIMES AND DYNAMICS ON NILMANIFOLDS

TAMAR ZIEGLER

Goal: Describe intertwining developments in ergodic theory, combinatorics and number theory related to

solving linear equations in subsets of integers.

1. First case: Understanding one equation in three variables

1.1. Number Theory.

Theorem 1 (Vingoradov 1937). Every su�ciently large odd number is the sum of 3 primes.

N = x

1

+ x

2

+ x

3

Theorem 2 (Van der Corput 1939). The primes contain infinitely many 3-term arithmetic progressions.

x

1

+ x

2

= 2x

3

Both results used the circle method for proof. Define the function

f(↵) =

X

pN
p2P

e(p↵) =

X
P(x)e(↵x)

The number of solution to x

1

+ x

2

= 2x

3

with x

1

 N is

Z

↵2T
(f(↵))

2

f(2↵)d↵ =

Z
e(↵(p

1

+ p

2

� 2p

3

))d↵ = 1

if and only if p

1

+ p

2

� 2p

3

= 0. Now, f(0) =

P
pN

P ⇡ N

logN

, so the contribution from an interval of size

1

N

around zero is roughly

✓
N

logN

◆
3

· 1

N

=

N

2

(logN)

3

.

We can get an asymptotic formula using results on primes in arithmetic progressions.

1.2. Combinatorics.

Theorem 3 (Roth 1953). Let E ⇢ [N ] = 1, 2, . . . , N , with |E| = �N for � > 0, then for N large enough, E
contains 3-term arithmetic progressions.

Apply the same idea. Set

f(↵) =

X

xN

E

(x)e(↵x)

Then the number of 3-term arithmetic progression in E is

Z
(f(↵))

2

f(2↵)d↵

Now, f(0) = �N , so if we take a small (

1

N

) interval around 0, then

(�N)

3

N

= �

3

N

2

.

The argument proceeds as follows. Think of E ⇢ P , where P is an arithmetic progression of |P | = N

then: r
either E has lots, >

�

3
N

2

2

, of of 3-term progressions
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r
or there is a nontrivial contribution from ↵ not

1

N

-close to zero. There exists ↵ such that

������

X

xN

(

E

(x)� �) e(↵x)

������
�
�

N

In the second case, we use the equidistribution of {↵x}
xN

to find a sub progression P

0 ⇢ P with |P 0| = N

1/3

such that

|E \ P

0|
|P 0| > � + c(�)

after finitely many steps you end up with either many progressions, or a long progression of size N

↵

.

1.3. Ergodic Theory. An ergodic theoretic approach to Roth’s Theorem, due to Furstenberg.

Observation 1 (Furstenberg Correspondence Principle). Let E ✓ Z of positive upper density, that is

lim

����
E \ [N ]

N

���� = � > 0,

then there exists a measure preserving system (X,B, µ, T ), µ T -invariant, and a set A of positive measure,

such that if

µ

�
A \ T

�n1
A \ · · · \ T

�nk
A

�
> 0 ) E \ E�n1 \ · · · \ E�nk 6= ;

which means there exists an x such that x, x+ n

1

, . . . , x+ n

k

2 E.

For Roth’s Theorem, we need to find n > 0 such that µ

�
A \ T

�n

A \ T

�2n

A

�
> 0. Assume X is ergodic,

then we want to investigate the following average:

1

N

X

nN

µ

�
A \ T

�n

A \ T

�2n

A

�

In this case we have thatr
either

1

N

X

nN

µ

�
A \ T

�n

A \ T

�2n

A

�
����!
n!1

(µ(A))

3

for all sets A with positive measure,r
or, G has a nontrivial eigenfunction.

If  is a nontrivial eigenfunction, T (x) = � (x), and | | is T -invariant. Without loss of generality,  

takes values in S

1

. We then get a morphism from X to a circle rotation system,  : X ! S

2

, x 7!  (x).

X X

S

1

S

1

 

x 7! Tx

T

 (x) 7! � (x)

�

 

You can collect the contribution from all the  

i

, normalized eigenfunctions, which gives a map, ⇧ : X !Q
(S

1

), from X to an abelian rotation system.

X

Q
(S

1

)

X

Q
(S

1

)

T (�1)

This is an example of a Kronecker system, the image, denoted Z(X), is an abelian group and is called the

Kronecker factor of X.
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Theorem 4 (Furstenberg). Let X be an ergodic measure preserving system, and let A ⇢ X be a set of
positive measure. Consider the average

1

N

X

nN

µ

�
A \ T

�n

A \ T

�2n

A

�
=

1

N

X

nN

Z

X

A

(x)

A

(T

n

x)

A

(T

2n

x)

⇠ 1

N

X

nN

Z
⇡⇤ A

(z)⇡⇤ A

(z + n↵)⇡⇤ A

(z + 2n↵)dz (⇤)

For ↵ 2 Z, and where dz is the Haar measure on Z(X).

Since we are in an abelian group,

(⇤) !
Z
⇡⇤ A

(z)⇡⇤ A

(z + �)⇡⇤ A

(z + 2�)dzd� > 0

In particular, if the projection ⇡⇤ A

is not trivial, we have

����
Z

(⇡⇤ A

� µ(A))�(z)

���� > 0

where � is a nontrivial character.

2. Finding k-term arithmetic progressions

2.1. Example. The following system of linear equations corresponds to 4-term arithmetic progressions:

⇢
x

1

+ x

3

= 2x

2

x

2

+ x

4

= 2x

3

This can be generalized to find systems of linear equations corresponding to k-term arithmetic progressions.

2.2. Combinatorics.

Theorem 5 (Szemerédi 1975). Let E ⇢ Z be a set of positive upper density, then E contains k-term
arithmetic progressions for any k.

Proof. Graph theoretic, does not generalize Roth’s argument. ⇤

2.3. Ergodic Theory.

Theorem 6 (Furstenberg 1977). Let (X,B, µ, T ) be a measure preserving system, and A ⇢ X with µ(A) > 0,
then there exists n > 0 such that

µ

⇣
A \ T

�n

A \ · · · \ T

�(k�1)n

A

⌘
> 0

Theorem 6 implies Theorem 5 by the Furstenberg correspondence principle.

For the proof we investigate

1

N

P
nN

µ

�
A \ T

�n

A \ · · · \ T

�(k�1)n

A

�
. Furstenberg constructs a se-

quence of factors

X ! Z

k�1

! Z

k�3

! · · · ! Z

1

! {⇤}
where Z

1

is the Kronecker factor, satisfying the following:r
either ⇡

j

: X ! Z

j

is “relatively weakly mixing”r
or there is a morphism from X to an isometric extension of Z

j

, Z

j

⇥
�

M , where � : Z

j

! Isom(M).

In the second case we see that

1

N

X

nN

µ

⇣
A \ T

�n

A \ · · · \ T

�(k�1)n

A

⌘
⇠ 1

N

Z
⇡⇤k�2 A

(z)⇡⇤k�2 A

(Tz) · · ·⇡⇤k�2 A

(T

(k�1)n

z)d⇡⇤k�2µ

Theorem 7 (Furstenberg). The lim inf of the above average is positive.
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2.4. Generalization of Roth’s argument. (Gowers)

Let A ⇢ [N ] have density �, thenr
either A has lots, >

N

2
�

k

2

, of k-term progressionsr
or there exists a partition of N into progressions P

i

, |P
i

| � N

↵k(�)
, such that

X

i

�����
X

x2Pi

(

A

(x)� �)e(p

i

(x)↵)

����� ��

N

where p

i

(x) are polynomials of degree k � 2.
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