PATTERNS IN PRIMES AND DYNAMICS ON NILMANIFOLDS

TAMAR ZIEGLER

Goal: Describe intertwining developments in ergodic theory, combinatorics and number theory related to
solving linear equations in subsets of integers.

1. FIRST CASE: UNDERSTANDING ONE EQUATION IN THREE VARIABLES

1.1. Number Theory.

Theorem 1 (Vingoradov 1937). Every sufficiently large odd number is the sum of 3 primes.
N=2x1+x2+ 23

Theorem 2 (Van der Corput 1939). The primes contain infinitely many 3-term arithmetic progressions.

x1 + ro = 223

Both results used the circle method for proof. Define the function

fla)=") e(pa) = 1Lp(z)e(ax)
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The number of solution to z; + zo = 223 with 1 < N is

/ (f(0))*F@a)da = / e(alpy +ps — 2pa))da = 1
a€eT

if and only if p1 +p2 — 2p3 = 0. Now, f(0) =3y 1p~ %, so the contribution from an interval of size
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+ around zero is roughly
We can get an asymptotic formula using results on primes in arithmetic progressions.

1.2. Combinatorics.

Theorem 3 (Roth 1953). Let E C [N]=1,2,..., N, with |E| = N for § > 0, then for N large enough, E
contains 3-term arithmetic progressions.

Apply the same idea. Set

fl@) =Y lgp(z)e(az)

<N
Then the number of 3-term arithmetic progression in E is

/ (f(e))? F2a)da

Now, f(0) = 6N, so if we take a small (+) interval around 0, then % = §3N2

The argument proceeds as follows. Think of E C P, where P is an arithmetic progression of |P| = N
then:

e ecither F has lots, > @, of of 3-term progressions
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e or there is a nontrivial contribution from « not %—close to zero. There exists « such that

> (1p(z) —6) e(ax)| >5 N

<N

In the second case, we use the equidistribution of {az},<y to find a sub progression P’ C P with |P/| = N'/3

such that EnP
N
— > 1)
P >0+ ¢(0)

after finitely many steps you end up with either many progressions, or a long progression of size N¢.

1.3. Ergodic Theory. An ergodic theoretic approach to Roth’s Theorem, due to Furstenberg.

Observation 1 (Furstenberg Correspondence Principle). Let E C Z of positive upper density, that is

ENIN]

lim‘ _5>0,

then there exists a measure preserving system (X, B, u,T), p T-invariant, and a set A of positive measure,
such that if
p(ANT™AN---NT ™A)>0=ENE_,,N---NE_, #0

which means there exists an x such that x,z +n1,..., 2+ nx € E.

For Roth’s Theorem, we need to find n > 0 such that p (A NT~"AN T‘Q"A) > 0. Assume X is ergodic,
then we want to investigate the following average:

1
N Y u(ANT"ANT " A)
n<N
In this case we have that

e either )
—n —2n 3
~ > u(AnT " ANT " A) —— (u(4))
n<N
for all sets A with positive measure,
¢ or, G has a nontrivial eigenfunction.

If ¢ is a nontrivial eigenfunction, T (z) = Mp(x), and || is T-invariant. Without loss of generality, 1
takes values in S'. We then get a morphism from X to a circle rotation system, ¢ : X — 5%, z + 9(z).

X

T
X
z+— Tx
% Jw
A
1 1
S Y(z) — Aw(w)s

You can collect the contribution from all the v;, normalized eigenfunctions, which gives a map, IT: X —
[1(SY), from X to an abelian rotation system.

X [1(s")

l [

X [1(s")

This is an example of a Kronecker system, the image, denoted Z(X), is an abelian group and is called the
Kronecker factor of X.



Theorem 4 (Furstenberg). Let X be an ergodic measure preserving system, and let A C X be a set of
positive measure. Consider the average

1 1
~ S u(AnT"ANTA) = ~ > / 1a(2) 1A (T )L A (T? )
n<N n<N X

1
~ N Z/w*]lA(z)W*]lA(z+na)7r*]lA(z+2na)dz (%)
n<N

For o € Z, and where dz is the Haar measure on Z(X).
Since we are in an abelian group,
() = /ﬂ'*]lA(z)ﬂ'*]lA(Z + B)mla(z +28)dzds >0

In particular, if the projection 7,1 4 is not trivial, we have

/ (maLa — pu(A)) x(2)| > 0

where x is a nontrivial character.

2. FINDING k-TERM ARITHMETIC PROGRESSIONS

2.1. Example. The following system of linear equations corresponds to 4-term arithmetic progressions:

T+ T3 = 229
To + T4 = 21’3

This can be generalized to find systems of linear equations corresponding to k-term arithmetic progressions.

2.2. Combinatorics.

Theorem 5 (Szemerédi 1975). Let E C Z be a set of positive upper density, then E contains k-term
arithmetic progressions for any k.

Proof. Graph theoretic, does not generalize Roth’s argument. O

2.3. Ergodic Theory.

Theorem 6 (Furstenberg 1977). Let (X, B, u, T) be a measure preserving system, and A C X with pu(A) > 0,
then there exists n > 0 such that

L (A NT"AN---N T‘““‘”"A) >0

Theorem 6 implies Theorem 5 by the Furstenberg correspondence principle.
For the proof we investigate + > _yp(ANT"AN---NT~*=Y"4). Furstenberg constructs a se-
quence of factors
X—>Zy 1 =2 3—-— 71 —>{*}
where Z; is the Kronecker factor, satisfying the following:
e either m; : X — Z; is “relatively weakly mixing”
o or there is a morphism from X to an isometric extension of Z;, Z; X, M, where o : Z; — Isom(M).

In the second case we see that

1 1 c—1)n
N Z M (A NT "AN---N T_(k_l)nA) ~ N /W*kfz ]lA(Z)ﬂ-*kfz HA(TZ) T g ]lA(T(k 2 Z)dTr*k—Zl’L

n<N

Theorem 7 (Furstenberg). The liminf of the above average is positive.
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2.4. Generalization of Roth’s argument. (Gowers)
Let A C [N] have density d, then
o either A has lots, > ¥ 225k, of k-term progressions
e or there exists a partition of N into progressions P;, |P;| > N2 such that

DD (Ma(z) = d)e(pi(x)a)| >5 N

i |lxeP;

where p;(x) are polynomials of degree k — 2.



