PATTERNS IN PRIMES AND DYNAMICS ON NILMANIFOLDS

TAMAR ZIEGLER

Goal: Describe intertwining developments in ergodic theory, combinatorics and number theory related to solving linear equations in subsets of integers.

1. First case: Understanding one equation in three variables

1.1. Number Theory.

Theorem 1 (Vingoradov 1937). *Every suciently large odd number is the sum of* 3 *primes.*

$$
N = x_1 + x_2 + x_3
$$

Theorem 2 (Van der Corput 1939). *The primes contain infinitely many* 3*-term arithmetic progressions.*

$$
x_1 + x_2 = 2x_3
$$

Both results used the circle method for proof. Define the function

$$
f(\alpha) = \sum_{\substack{p \le N \\ p \in \mathbb{P}}} e(p\alpha) = \sum \mathbb{1}_{\mathbb{P}}(x)e(\alpha x)
$$

The number of solution to $x_1 + x_2 = 2x_3$ with $x_1 \leq N$ is

$$
\int_{\alpha \in \mathbb{T}} (f(\alpha))^2 \overline{f(2\alpha)} d\alpha = \int e(\alpha(p_1 + p_2 - 2p_3)) d\alpha = 1
$$

if and only if $p_1 + p_2 - 2p_3 = 0$. Now, $f(0) = \sum_{p \le N} 1 \mathbb{I}_p \approx \frac{N}{\log N}$, so the contribution from an interval of size $\frac{1}{N}$ around zero is roughly

$$
\left(\frac{N}{\log N}\right)^3 \cdot \frac{1}{N} = \frac{N^2}{(\log N)^3}.
$$

We can get an asymptotic formula using results on primes in arithmetic progressions.

1.2. Combinatorics.

Theorem 3 (Roth 1953). Let $E \subset [N] = 1, 2, ..., N$, with $|E| = \delta N$ for $\delta > 0$, then for N large enough, E *contains 3-term arithmetic progressions.*

Apply the same idea. Set

$$
f(\alpha) = \sum_{x \le N} \mathbb{1}_E(x)e(\alpha x)
$$

Then the number of 3-term arithmetic progression in *E* is

$$
\int (f(\alpha))^2 \, \overline{f(2\alpha)} \mathrm{d}\alpha
$$

Now, $f(0) = \delta N$, so if we take a small $(\frac{1}{N})$ interval around 0, then $\frac{(\delta N)^3}{N} = \delta^3 N^2$.

The argument proceeds as follows. Think of $E \subset P$, where P is an arithmetic progression of $|P| = N$ then:

either *E* has lots, $> \frac{\delta^3 N^2}{2}$, of of 3-term progressions

Date: January 29, 2015.

or there is a nontrivial contribution from α not $\frac{1}{N}$ -close to zero. There exists α such that

$$
\left| \sum_{x \le N} \left(\mathbb{1}_E(x) - \delta \right) e(\alpha x) \right| \gg_{\delta} N
$$

In the second case, we use the equidistribution of $\{\alpha x\}_{x\leq N}$ to find a sub progression $P' \subset P$ with $|P'| = N^{1/3}$ such that

$$
\frac{|E \cap P'|}{|P'|} > \delta + c(\delta)
$$

after finitely many steps you end up with either many progressions, or a long progression of size N^{α} .

1.3. Ergodic Theory. An ergodic theoretic approach to Roth's Theorem, due to Furstenberg.

Observation 1 (Furstenberg Correspondence Principle). Let $E \subseteq \mathbb{Z}$ of positive upper density, that is

$$
\overline{\lim}\left|\frac{E\cap[N]}{N}\right|=\delta>0,
$$

then there exists a measure preserving system (X, \mathcal{B}, μ, T) , μ T-invariant, and a set *A* of positive measure, such that if

$$
\mu\left(A\cap T^{-n_1}A\cap\cdots\cap T^{-n_k}A\right)>0\Rightarrow E\cap E_{-n_1}\cap\cdots\cap E_{-n_k}\neq\emptyset
$$

which means there exists an *x* such that $x, x + n_1, \ldots, x + n_k \in E$.

For Roth's Theorem, we need to find $n > 0$ such that $\mu\left(A \cap T^{-n}A \cap T^{-2n}A\right) > 0$. Assume *X* is ergodic, then we want to investigate the following average:

$$
\frac{1}{N} \sum_{n \le N} \mu \left(A \cap T^{-n} A \cap T^{-2n} A \right)
$$

In this case we have that

• either

$$
\frac{1}{N} \sum_{n \leq N} \mu \left(A \cap T^{-n} A \cap T^{-2n} A \right) \xrightarrow[n \to \infty]{} (\mu(A))^3
$$

for all sets *A* with positive measure,

 \bullet or, *G* has a nontrivial eigenfunction.

If ψ is a nontrivial eigenfunction, $T\psi(x) = \lambda \psi(x)$, and $|\psi|$ is *T*-invariant. Without loss of generality, ψ takes values in S^1 . We then get a morphism from *X* to a circle rotation system, $\psi : X \to S^2$, $x \mapsto \psi(x)$.

$$
X \xrightarrow{x} X
$$

\n
$$
\psi \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

\n
$$
S^{1} \xrightarrow{\lambda} S^{1} \xrightarrow{\lambda} \chi(x) S^{1}
$$

You can collect the contribution from all the ψ_i , normalized eigenfunctions, which gives a map, $\Pi : X \to$ $\prod(S^1)$, from *X* to an abelian rotation system.

This is an example of a *Kronecker system*, the image, denoted *Z*(*X*), is an abelian group and is called the *Kronecker factor* of *X*.

Theorem 4 (Furstenberg). Let X be an ergodic measure preserving system, and let $A \subset X$ be a set of *positive measure. Consider the average*

$$
\frac{1}{N} \sum_{n \le N} \mu (A \cap T^{-n} A \cap T^{-2n} A) = \frac{1}{N} \sum_{n \le N} \int_X \mathbb{1}_A(x) \mathbb{1}_A(T^n x) \mathbb{1}_A(T^{2n} x)
$$

$$
\sim \frac{1}{N} \sum_{n \le N} \int \pi_* \mathbb{1}_A(z) \pi_* \mathbb{1}_A(z + n\alpha) \pi_* \mathbb{1}_A(z + 2n\alpha) dz \quad (*)
$$

For $\alpha \in Z$ *, and where dz is the Haar measure on* $Z(X)$ *.*

Since we are in an abelian group,

$$
(*) \rightarrow \int \pi_* 1\!\!1_A(z)\pi_* 1\!\!1_A(z+\beta)\pi_* 1\!\!1_A(z+2\beta)dzd\beta > 0
$$

In particular, if the projection $\pi_* 1\!\!1_A$ is not trivial, we have

$$
\left| \int \left(\pi_* \mathbb{1}_A - \mu(A) \right) \chi(z) \right| > 0
$$

where χ is a nontrivial character.

2. Finding *k*-term arithmetic progressions

2.1. Example. The following system of linear equations corresponds to 4-term arithmetic progressions:

$$
\begin{cases}\nx_1 + x_3 = 2x_2 \\
x_2 + x_4 = 2x_3\n\end{cases}
$$

This can be generalized to find systems of linear equations corresponding to *k*-term arithmetic progressions.

2.2. Combinatorics.

Theorem 5 (Szemerédi 1975). Let $E \subset \mathbb{Z}$ be a set of positive upper density, then E contains k-term *arithmetic progressions for any k.*

Proof. Graph theoretic, does not generalize Roth's argument. \Box

2.3. Ergodic Theory.

Theorem 6 (Furstenberg 1977). Let (X, \mathcal{B}, μ, T) be a measure preserving system, and $A \subset X$ with $\mu(A) > 0$, *then there exists n >* 0 *such that*

$$
\mu\left(A\cap T^{-n}A\cap\cdots\cap T^{-(k-1)n}A\right)>0
$$

Theorem 6 implies Theorem 5 by the Furstenberg correspondence principle.

For the proof we investigate $\frac{1}{N} \sum_{n \leq N} \mu(A \cap T^{-n}A \cap \cdots \cap T^{-(k-1)n}A)$. Furstenberg constructs a sequence of factors

$$
X \to Z_{k-1} \to Z_{k-3} \to \cdots \to Z_1 \to \{*\}
$$

where Z_1 is the Kronecker factor, satisfying the following:

-
- either $\pi_j : X \to Z_j$ is "relatively weakly mixing"
• or there is a morphism from X to an isometric extension of Z_j , $Z_j \times_{\sigma} M$, where $\sigma : Z_j \to \text{Isom}(M)$.

In the second case we see that

$$
\frac{1}{N} \sum_{n \leq N} \mu \left(A \cap T^{-n} A \cap \dots \cap T^{-(k-1)n} A \right) \sim \frac{1}{N} \int \pi_{*_{k-2}} \mathbb{1}_A(z) \pi_{*_{k-2}} \mathbb{1}_A(Tz) \cdots \pi_{*_{k-2}} \mathbb{1}_A(T^{(k-1)n} z) d\pi_{*_{k-2}} \mu
$$

Theorem 7 (Furstenberg). *The* lim inf *of the above average is positive.*

2.4. Generalization of Roth's argument. (Gowers)

Let $A \subset [N]$ have density δ , then

- either *A* has lots, $> \frac{N^2 \delta^k}{2}$, of *k*-term progressions
- or there exists a partition of *N* into progressions P_i , $|P_i| \geq N^{\alpha_k(\delta)}$, such that

$$
\sum_{i}\left|\sum_{x\in P_i}(\mathbb{1}_A(x)-\delta)e(p_i(x)\alpha)\right|\gg_{\delta}N
$$

where $p_i(x)$ are polynomials of degree $k-2$.