PATTERNS IN PRIMES AND DYNAMICS ON NILMANIFOLDS

TAMAR ZIEGLER

Goal: Describe intertwining developments in ergodic theory, combinatorics and number theory related to solving linear equations in subsets of integers.

1. FIRST CASE: UNDERSTANDING ONE EQUATION IN THREE VARIABLES

1.1. Number Theory.

Theorem 1 (Vingoradov 1937). Every sufficiently large odd number is the sum of 3 primes.

$$N = x_1 + x_2 + x_3$$

Theorem 2 (Van der Corput 1939). The primes contain infinitely many 3-term arithmetic progressions.

$$x_1 + x_2 = 2x_3$$

Both results used the circle method for proof. Define the function

$$f(\alpha) = \sum_{\substack{p \le N\\ p \in \mathbb{P}}} e(p\alpha) = \sum \mathbb{1}_{\mathbb{P}}(x)e(\alpha x)$$

The number of solution to $x_1 + x_2 = 2x_3$ with $x_1 \leq N$ is

$$\int_{\alpha \in \mathbb{T}} (f(\alpha))^2 \overline{f(2\alpha)} d\alpha = \int e(\alpha(p_1 + p_2 - 2p_3)) d\alpha = 1$$

if and only if $p_1 + p_2 - 2p_3 = 0$. Now, $f(0) = \sum_{p \leq N} \mathbb{1}_{\mathbb{P}} \approx \frac{N}{\log N}$, so the contribution from an interval of size $\frac{1}{N}$ around zero is roughly

$$\left(\frac{N}{\log N}\right)^3 \cdot \frac{1}{N} = \frac{N^2}{(\log N)^3}$$

We can get an asymptotic formula using results on primes in arithmetic progressions.

1.2. Combinatorics.

Theorem 3 (Roth 1953). Let $E \subset [N] = 1, 2, ..., N$, with $|E| = \delta N$ for $\delta > 0$, then for N large enough, E contains 3-term arithmetic progressions.

Apply the same idea. Set

$$f(\alpha) = \sum_{x \le N} \mathbb{1}_E(x) e(\alpha x)$$

Then the number of 3-term arithmetic progression in E is

$$\int \left(f(\alpha)\right)^2 \overline{f(2\alpha)} \mathrm{d}\alpha$$

Now, $f(0) = \delta N$, so if we take a small $(\frac{1}{N})$ interval around 0, then $\frac{(\delta N)^3}{N} = \delta^3 N^2$.

The argument proceeds as follows. Think of $E \subset P$, where P is an arithmetic progression of |P| = N then:

• either E has lots, $> \frac{\delta^3 N^2}{2}$, of of 3-term progressions

Date: January 29, 2015.

• or there is a nontrivial contribution from α not $\frac{1}{N}$ -close to zero. There exists α such that

$$\left|\sum_{x\leq N} \left(\mathbb{1}_E(x) - \delta\right) e(\alpha x)\right| \gg_{\delta} N$$

In the second case, we use the equidistribution of $\{\alpha x\}_{x \leq N}$ to find a sub progression $P' \subset P$ with $|P'| = N^{1/3}$ such that

$$\frac{|E \cap P'|}{|P'|} > \delta + c(\delta)$$

after finitely many steps you end up with either many progressions, or a long progression of size N^{α} .

1.3. Ergodic Theory. An ergodic theoretic approach to Roth's Theorem, due to Furstenberg.

Observation 1 (Furstenberg Correspondence Principle). Let $E \subseteq \mathbb{Z}$ of positive upper density, that is

$$\overline{\lim} \left| \frac{E \cap [N]}{N} \right| = \delta > 0,$$

then there exists a measure preserving system (X, \mathcal{B}, μ, T) , μ T-invariant, and a set A of positive measure, such that if

$$\mu\left(A\cap T^{-n_1}A\cap\cdots\cap T^{-n_k}A\right)>0\Rightarrow E\cap E_{-n_1}\cap\cdots\cap E_{-n_k}\neq\emptyset$$

which means there exists an x such that $x, x + n_1, \ldots, x + n_k \in E$.

For Roth's Theorem, we need to find n > 0 such that $\mu \left(A \cap T^{-n}A \cap T^{-2n}A\right) > 0$. Assume X is ergodic, then we want to investigate the following average:

$$\frac{1}{N}\sum_{n\leq N}\mu\left(A\cap T^{-n}A\cap T^{-2n}A\right)$$

In this case we have that

• either

$$\frac{1}{N}\sum_{n\leq N}\mu\left(A\cap T^{-n}A\cap T^{-2n}A\right)\xrightarrow[n\to\infty]{}(\mu(A))^3$$

for all sets A with positive measure,

• or, G has a nontrivial eigenfunction.

If ψ is a nontrivial eigenfunction, $T\psi(x) = \lambda\psi(x)$, and $|\psi|$ is *T*-invariant. Without loss of generality, ψ takes values in S^1 . We then get a morphism from X to a circle rotation system, $\psi : X \to S^2$, $x \mapsto \psi(x)$.

$$\begin{array}{c|c} X & \xrightarrow{T} & X \\ \psi & \downarrow & & \downarrow \\ \psi & \downarrow & & \downarrow \\ S^1 \xrightarrow{\lambda} \\ \psi(x) \mapsto \lambda \psi(x) S^1 \end{array}$$

You can collect the contribution from all the ψ_i , normalized eigenfunctions, which gives a map, $\Pi : X \to \prod(S^1)$, from X to an abelian rotation system.

This is an example of a Kronecker system, the image, denoted Z(X), is an abelian group and is called the Kronecker factor of X.

Theorem 4 (Furstenberg). Let X be an ergodic measure preserving system, and let $A \subset X$ be a set of positive measure. Consider the average

$$\begin{aligned} \frac{1}{N}\sum_{n\leq N}\mu\left(A\cap T^{-n}A\cap T^{-2n}A\right) &= \frac{1}{N}\sum_{n\leq N}\int_{X}\mathbbm{1}_{A}(x)\mathbbm{1}_{A}(T^{n}x)\mathbbm{1}_{A}(T^{2n}x)\\ &\sim \frac{1}{N}\sum_{n\leq N}\int\pi_{*}\mathbbm{1}_{A}(z)\pi_{*}\mathbbm{1}_{A}(z+n\alpha)\pi_{*}\mathbbm{1}_{A}(z+2n\alpha)dz \quad (*) \end{aligned}$$

For $\alpha \in Z$, and where dz is the Haar measure on Z(X).

Since we are in an abelian group,

$$(*) \to \int \pi_* \mathbb{1}_A(z) \pi_* \mathbb{1}_A(z+\beta) \pi_* \mathbb{1}_A(z+2\beta) \mathrm{d}z \mathrm{d}\beta > 0$$

In particular, if the projection $\pi_* \mathbb{1}_A$ is not trivial, we have

$$\left|\int \left(\pi_* \mathbb{1}_A - \mu(A)\right) \chi(z)\right| > 0$$

where χ is a nontrivial character.

2. Finding k-term arithmetic progressions

2.1. Example. The following system of linear equations corresponds to 4-term arithmetic progressions:

$$\begin{cases} x_1 + x_3 = 2x_2 \\ x_2 + x_4 = 2x_3 \end{cases}$$

This can be generalized to find systems of linear equations corresponding to k-term arithmetic progressions.

2.2. Combinatorics.

Theorem 5 (Szemerédi 1975). Let $E \subset \mathbb{Z}$ be a set of positive upper density, then E contains k-term arithmetic progressions for any k.

Proof. Graph theoretic, does not generalize Roth's argument.

2.3. Ergodic Theory.

Theorem 6 (Furstenberg 1977). Let (X, \mathcal{B}, μ, T) be a measure preserving system, and $A \subset X$ with $\mu(A) > 0$, then there exists n > 0 such that

$$\mu\left(A\cap T^{-n}A\cap\cdots\cap T^{-(k-1)n}A\right)>0$$

Theorem 6 implies Theorem 5 by the Furstenberg correspondence principle.

For the proof we investigate $\frac{1}{N} \sum_{n \leq N} \mu \left(A \cap T^{-n} A \cap \cdots \cap T^{-(k-1)n} A \right)$. Furstenberg constructs a sequence of factors

$$X \to Z_{k-1} \to Z_{k-3} \to \dots \to Z_1 \to \{*\}$$

where Z_1 is the Kronecker factor, satisfying the following:

- either $\pi_j: X \to Z_j$ is "relatively weakly mixing"
- or there is a morphism from X to an isometric extension of $Z_j, Z_j \times_{\sigma} M$, where $\sigma : Z_j \to \text{Isom}(M)$.

In the second case we see that

$$\frac{1}{N}\sum_{n\leq N}\mu\left(A\cap T^{-n}A\cap\dots\cap T^{-(k-1)n}A\right)\sim\frac{1}{N}\int\pi_{*_{k-2}}\mathbb{1}_A(z)\pi_{*_{k-2}}\mathbb{1}_A(Tz)\dots\pi_{*_{k-2}}\mathbb{1}_A(T^{(k-1)n}z)\mathrm{d}\pi_{*_{k-2}}\mu$$

Theorem 7 (Furstenberg). The lim inf of the above average is positive.

2.4. Generalization of Roth's argument. (Gowers)

Let $A \subset [N]$ have density δ , then

- either A has lots, > N²δ^k/2, of k-term progressions
 or there exists a partition of N into progressions P_i, |P_i| ≥ N^{α_k(δ)}, such that

$$\sum_{i} \left| \sum_{x \in P_i} (\mathbb{1}_A(x) - \delta) e(p_i(x)\alpha) \right| \gg_{\delta} N$$

where $p_i(x)$ are polynomials of degree k-2.