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1. The Bowen-Margulis and Burger-Roblin measures

Recall our setting from yesterday. We have ⇤� ⇢ S1 the limit set and T 1S = �\(S1 ⇥S1 \ diag⇥R). We
defined the sets ⌦ = �\(⇤� ⇥ ⇤� \ diag ⇥ R), which is not (hs)-invariant, and E =

S
s h

s⌦ = �\(⇤� ⇥ S1 \
diag⇥ R).

We also defined the Bowen-Margulis (Patterson-Sullivan) measure which was the measure of maximal
entropy of (gt) on ⌦ and m̃BM ⇠ ⌫ ⇥ ⌫ ⇥ dt, where ⌫ is the Hausdor↵ measure of ⇤�. If the volume of S is
finite, then L̃ = m̃BM ⇠ �⇥�⇥ dt. This measure is not ⌫ invariant under horocycle flow, so we constructed
a new infinite (except in the finite volume case) measure m̃BR ⇠ ⌫ ⇥ �⇥ dt.

We can write v = (v�, v+, t), then any vector on its orbit has coordinates hsv = (v�t, w+, t). The set
of (hs) orbits is equal to the set of W su(v) which is the unstable foliation of T 1S. Given B a chart of the
foliation we have mBM

��
B

= µT · µ)H and mBR

��
B

= µT · ds, where H is an unstable leaf, and T is the
transverse direction. If the volume of S is finite, these measures are equal to the Liouville measure.

2. Proofs

2.1. Finite volume case. In this setting we have that the Liouville measure decomposes into �⇥ �⇥ dt,
using Hopf’s argument one can show that it is ergodic with respect to the geodesic flow. From this one can
deduce the ergodicity of the horocycle flow and hence that the geodesic flow is mixing. One can then show
that the Liouville measure is the unique hs ergodic measure, except for periodic orbits, which then implies
the equidistribution of non-periodic orbits.

2.2. Infinite volume case. Assume mBM is finite or � is finitely generated.

Theorem 1 (Sullivan). If � is finitely generated then mBM is finite.

This theorem requires constant curvature, it is false in variable or negative curvature. It boils down to a
computation on hyperbolic spaces.

Theorem 2 (Hopf argument). If mBM is finite, then it is ergodic.

Use the fact that mBM has a product structure. Consider any map and look at its ergodic averages. Apply
the Birkho↵ ergodic theorem and get that the ergodic averages converge positively and negatively to the
conditional expectation. Project to the invariant sets, since the limits are the same positively and negatively,
you can show that you get a map which is almost surely constant. This conclusion is false for non-ergodic
measures, so you have to use the product structure and Fubini’s theorem to complete the argument.

Theorem 3 (Rudolph, Babillot). If mBM is finite, then it is mixing.

The proof is a refinement of Hopf’s argument. First, assume it is not mixing and then find a contradiction.
The product structure gives that the past and the future are independent.
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Corollary 1. If mBM is a finite probability measure, then for all v 2 E ,' 2 Cc(T 1S),
Z 1

�1
(' � gt)(hsv) dµH �!

Z
' dmBM

Thicken the piece of horocycle into a set A✏, then you can rewrite the left had side as 1
✏

R
' ·gt · A✏ dmBM .

Now use mixing to show that this converges to
R
' dmBM · mBM (A✏)

✏

Theorem 4 (Roblin). If mBM is finite, then mBR is the unique (hs)-invariant measure supported on the

set {v� | g�tv returns infinitely often to a compact set}

Theorem 5 (Schapira). If � is finitely generated, then for all v 2 E, non (hs) periodic, and for all ' 2
Cc(T 1S), we have R

(hsv)|s|R
' dµH

µH

�
(hsv)|s|R

� �!
R
' dmBM

mBM (T 1S)

where the convergence is uniform on compact sets.

Theorem 6 (Maucourant-Schapira). For v and ' as above,

Z R

�R

'(hsv) ds ⇠ R�⌧(v,R)

Z
' dmBR

where R�⌧(v,R) = µ((hsv)|s|R).

Proof of Thm. 4. Let µ be an ergodic invariant conservative measure on

{v | g�tv returns infinitely often to a compact set}.

Let v 2 T 1S be generic for µ, we can find a sequence {tk} such that g�tkv �! v1, and V , a compact
neighborhood of v1. Then for k large enough (hsg�tkv)|s|<1 ⇢ V . Let ', 2 Cc(T 1S),

R
(hs)|s|etk

'(hsv) dµH

R
(hs)|s|etk

 (hsv) dµH
=

R
(hsg�tkv)|s|1

'(gtkhsg�tkv) dµH
R
(hsg�tkv)|s|1

 (gtkhsg�tkv) dµH
�!

R
' dmBMR
 dmBM

from Theorem 3.

Let B be a chart of the foliation and ' 2 Cc(B). Consider the specific case when  = B . Then to each
' we can associate the following ratio

R
(hsv)|s|etk

'(hsv) dµH

R
(hsv)|s|etk

B(hsv) dµH
'

Z

T

✓Z

leaf
' dµH

◆
d⌫T,tk ,

where

⌫T,tk =

P
t2T\(hsv)|s|<etk

�+
R
(hsv)|s|<etk

B(hsv) dµH
�! µT .

Since v is generic for µ, we get
R
(hsv)|s|etk

'(hsv) ds
R
(hsv)|s|etk

B(hsv) ds
�!

R
' dµR
B dµ

.

We can also write the denominator as
Z

T

✓Z

leaf
'(hsv) ds

◆
d⌫T,tk ⇥ c(T, tk),

since ⌫T,tk �! µT we get that the double integral converges to
R
' dmBR. From this we see that the

constant, c(T, tk) cannot go to 0 and cannot go to 1, and in fact it can be proven that the limit point must
be constant. Thus we get our conclusion that µ = mBR, up to a normalization constant. ⇤
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Pf of Thm. 6. We follow a very similar strategy to the proof of theorem 4. Let R = etk and consider
' 2 Cc(T 1S) and the averages R

(hsv)|s|R
' dµH

µH

�
(hsv)|s|R

� �!
Z
' dmBM ,

by Thm. 5. Further assume that ' 2 Cc(B), where B is a chart of the foliation. Then we can rewrite the
left hand side as Z

T

✓Z

leaf
' dµH

◆
d⌫T,R,

where ⌫T,R is as before. The right hand side can also be rewritten as
Z

T

✓Z

leaf
' dµH

◆
dµT .

Taking these together implies that ⌫T,R �! µT .

Now consider the following ratios,
R R

�R
'(hsv) ds

R R

�R B(hsv) ds
=

Z

T

✓Z

leaf
'(hsv) ds

◆
d⌫T,R ⇥

µH

�
(hsv)|s|R

�
R R

�R B(hsv) ds
.

We can view the left hand side as a probability measure on B, which means the right hand side converges,
up to subsequences, and thus

µH

�
(hsv)|s|R

�
R R

�R B(hsv) ds
�! c

and Z

T

✓Z

leaf
'(hsv) ds

◆
d⌫T,R �!

Z
' dmBR.

Thus we get the conclusion
Z R

�R

'(hsv) ds ⇠ µH

�
(hsv)|s|R

�
c

Z
' dmBR.

⇤
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