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1. Introduction

1.1. What is the statistics of directions? Take a set P of points. Look at all the points which fall in a
ball of radius T and consider their projection to the unit sphere, as in Fig. 1.
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Figure 1. The projection of points within a ball of radius T to the unit sphere around the observer

There are several natural questions one can ask, such as:

(1) What happens as the radius T goes to infinity?
(2) What is the distribution of gaps between these projected points?
(3) What do the local statistics looks like?

1.2. Examples.

Example 1 (Quasicriystals). You can use the set of vertices of an aperiodic tiling to get your point set.
Baake, Göthe, Huck and Jakobi, examined this question for several sets of tilings. Numerically the distribu-
tions do not quite match up with the distribution from Z2.

Example 2 (P = Z2 ⇢ Rn). The limiting distribution on angle spacings has been computed exactly by
Boca, et al.

Example 3 (P ⇢ R2 a random set). This is a realization of a Poisson point process and the spacings have
an exponential distribution.
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Example 4 (Other settings).

P = Zd or L
= Ẑ primitive lattice points without multiplicity

= Zd + ↵

= e�, e 2 Rd

= families of closed geodesics on translation surfaces - Athreya, Lelievre, Chaika

= hyperbolic lattice points

1.3. Questions. Let PT = P \Bd
T , 0 /2 P. There are several questions we want to explore

(1) How many elements are there in PT ?
(2) As T ! 1, does #PT ⇠ ⇥vol(Bd

T )? (i.e. does it grow like a constant times the volume?) We call
✓vol(Bd

T ) the density of P.

(3) Is
n

y
kyk | y 2 PT

o

uniformally distributed on Sd�1?

(4) Do the local statistics of the projection of PT converge? For example, in d = 2 we can look at the gap
distribution. In general we can look at the distribution in small randomly placed discs, D�

T (v) ⇢ Sd�1

1

.
Where v is the center of the disc, random according to a Borel probability measure � ⌧ !, the natural
volume measure on the unit sphere, � is a fixed constant, and vol(D�

T (v)) = �
✓Td

volBd . We would
then like to know what the probability is of finding k points from our sequence in these discs.

2. Statistics of Directions

2.1. Setting.

Observation 1. Let D�
T (v) ⇢ Sd�1 be one of the small discs. Then counting points that fall in this disc of

radius approximately T� d
d�1 is the same as counting points in the cone above the disk.

CT (v)

T

T
�1
d�1

D�
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Sd�1

Figure 2. The cone CT (v) above the disc D�
T (v).

2.2. Homogeneous Flows. We need to rescale the picture in the following way to make our cone well
proportioned. Apply a rotation matrix K : Sd�1

1

! SO(d) such that vK(v) = e
1

= (1, 0, . . . , 0).

Set D(T ) = diag(T�1, T
1

d�1 , . . . T
1

d�1 ) 2 SL(d,R). Then CT (v)K(v)D(T ) = CT (e1)D(T ) �����!
T�!1

C =
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. Now our new question becomes counting #(PK(v)D(T )\A),
where A is a “nice” set, in this case C. Choosing v random according to � makes

⌅T = PK(v)D(T )

a point process, i.e. a random point set. We would like to know whether this sequence of random point
sequences has a limit.

Definition 1. Let ⌅T be sequence of random point processes, and ⌅ another point process. We say ⌅T ) ⌅
in finite-dimensional distribution if for all nice sets Ai ⇢ Rd we have

P(#(⌅T \A
1

= k
1

, . . .#(⌅T \Ar) = kr) �! P(#(⌅ \A
1

) = k
1

, . . . ,#(⌅ \Ar) = kr)

for all k
1

, . . . , kr 2 Z�0

.

3. Relative compactness

Define ET (k,A) := P(#(⌅T \A) = k). In this setting, relative compactness means that if we fix A 2 Rd be
a bounded set, with vol(@A) = 0, and � ⌧ ! where � has bounded density, and assume supT>0

#PT

volBd
T
< 1.

Then for all " > 0, there exists k" such that for all A ⇢ Bd
R

1
X

k=k"

ET (k,A) < ✏.

Without loss of generality, we can assume � = !.

To prove this statement, it su�ces to prove
1
X

k=0

kET (k,B
d
R) < 1

which is just the expectation value of the number of points.

4. Trivial Examples

Fix v
0

2 Sd�1

1

. Consider P = {u1/dv
0

| n 2 N} then #P = T d +O(1).

Exercise: If

lim
T!1

ET (k,A) =

⇢

1 if k = 0
0 if k > 0

who that ⌅T ) ⌅ converges in finite distribution to a no-point process.

Note. lim infT!1 E(#(⌅T \A)) > 0, for the limiting no-point process this expectation is 0.
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