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1. Introduction

We would like to study integral quadratic forms through homogeneous dynamics.

Consider a quadratic form Q(z) =
P

1i,jn bi�̇xixj = xtBx we say Q(z) is integral if B 2 Zn⇥n. Let

A,B 2 Zn⇥n be symmetric and non singular.

Definition 1. We say A and B are integrally equivalent, denoted A
Z⇠ B if there exists �

0

2 GL(n,Z) such
that A = �t

0

B�
0

.

The main question we want to consider is: Given A,B decide whether A
Z⇠ B, and if they are, can we

e↵ectively find a �
0

, (i.e. is this possible using only a finite number of operations, or does there exists a
procedure that terminates in finite time).

1.1. Massur’s Conjecture.

Conjecture 1 (Masser). For all n � 3, there exists cn, dn > 0 satisfying the following properties, if A =
�t
0

B�
0

with �
0

2 GL(n,Z), then there exists � 2 GL(n,Z) such that A = �tB� and k�k < cn(kAk · kBk)dn
.

This conjecture provides a search bound for the main question, given A and B we can find all the matrices
that satisfy the bound, there are only finitely many of these, if we find one that satisfies the equivalence
property, then we are done, if not, the conjecture would tell us that we can stop and A and B are not
equivalent.

In 1972, Siegel wrote a paper which proved that for each given A, B, there exists a search bound and gave
a procedure to find this search bound. Massur and his students then tried to make this explicit. Following
Siegel’s method, Staurmann was able to show that for n � 2 , k�k, exp(cn(kAk · kBk)n3

). For n = 2
exponential bounds are sharp. Dietmann showed that for n = 3, the conjecture is true with d

3

= 231. He
also managed to prove that for special classes of integral quadratic forms in any variable with n � 4 you do
have polynomial search bounds. The general question still remained open.

Example 1 (Why exponential bounds are sharp for n = 2). x2 � 631y2 = 1, we have the trivial solution
(±1, 0), and we have some other non-trivial solutions (u, v). For any of these non-trivial solutions, |v| > 1022.
This type of equation should be the only exception to getting polynomial bounds.

2. Main result

Theorem 1 (Li-Margulis). For all n � 3, there exists cn > 0 such that if A = �t
0

B�
0

with �
0

2 GLn(Z)
then there exists � 2 GLn(Z) such that A = �tB� and k�k < cn(kAk · kBk)n3

.

We will prove a simpler version of this theorem. Let G = SL(n,R), and � = SL(n,Z). We know that
kabk ⌧ kak · kbk and ka�1k ⌧ | det(a)|�1kakn�1 (Cramer’s rule).

Theorem 2 (Li-Margulis). For all n � 3, if A = �t
0

B�
0

with �
0

2 �, then there exists � 2 � such that

A = �tB� and k�k ⌧ (kAk · kBk)n3
.
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Proof. First we try to show that there exists g 2 G that solves, A = gtBg and we show that kgk is small.
Then we try to show that there exists an integral solution that is not too far from the real solution, and
thus, is also small.

Step 1: Let (p, q) be the signature of A and B, they have the same signature since they are equivalent

over the real numbers. Let X
0

=

✓
Ip

Iq

◆
. Claim: There exists gA 2 G such that | detA|� 1

nA = gtAX0

gA

and kgAk ⌧ kAk 1
2 . Assume A is a binary form of signature (1, 1), then it can be written in the form

kt
✓
�

�µ

◆
k = kt

✓p
� p

µ

◆✓
1

�1

◆✓p
� p

µ

◆
k

where k is symmetric, and �, µ are its eigenvalues with �µ = 1. So gA =

✓p
� p

µ

◆
k

Similarly, there exists gB 2 G such that | detB|1 1
nB = gtBX0

gB and kgBk ⌧ kBk 1
2 .

Thus our small real solution is A = gtA(g
r
B)

�1Bg�1

B gA.

Step 2: Translate the problem into dynamical terms. Claim: HgA� = HgB� ✓ G where H = {h 2 G |
htX

0

h = X
0

} = SO(p, q). Proof: gtAX0

gA = �t
0

gtBX0

gB�0 ) gb�0g
�1

A 2 H ) HgB�0g
�1

A = H ) HgB� =
HgA�. View gA�, gB� 2 G/�, HgA� = HgB� ✓ G/�. Recall that H acts on G/� by left translations. The
claim says that gA� and gB� lie on the same orbit of H because they are integrally equivalent. Therefore
there exists h 2 H such that hgA� = gB�. Take � = g�1

B hgA 2 Gamma and A = �tB�. We now want to
find what the smallest element h is that would translate one element to the other. As long as we can find a
polynomial bound for h, we are done.

Step 3: We have that the orbit HgA� = H/�A, if A is integral then �A is a lattice in H. For example
H = SO(1, 2), �A a Fuchsian group. Fix Haar measure (H, vol), this induces a Haar measure on the quotient
(HgA�, vol). The total measure V = vol(HgA�) = covol(�A) in H.

The theorem will then follow from the following two dynamical results. ⇤
Theorem 3. There exists h 2 H such that hgA� = gB� and khk ⌧ [V (kgAk · kgBk)⇤]13/5 where ⇤ =
n
�
1 + dimH

2

�
.

Theorem 4. V ⌧ | detA| dimG�dimH
n

Proof of Thm. 3. Recall that our orbit HgA� is a homogeneous manifold. We want to know what is the
smallest element that moves the point gA� to gB�. Define the following flow

at =

0

@
cosh t sinh t

In�2

sinh t cosh t

1

A .

Consider a cube inHgA�, under at the cube will become very thing and very long. Take a ball, vA, containing
gA� and a ball, vB , gB�. Translate vA by at, when t is large, atvA \ vB 6= ;. We want to know what balls
vA, vB do we choose, and at what time t does this happen? To answer this question we use quantitative
mixing.

Theorem 5. For all ', 2 C1
c (HgA�), we have

|hat', i �
Z
' dµ

Z
 dµ| ⌧ e�

5
13 tk'k

sob

k k
sob

where µ = 1

V vol and k'k
sob

= k'kL2
(µ) +

P
D kD'kL2

(µ).

To apply this theorem, we take ' and  with supp(') ✓ vA and supp( ) ✓ vB , such that
R
' dµ = 1

V ,R
 dµ = 1

V , k'k
sob

⌧ 1p
v
kgAk⇤, and k k

sob

⌧ 1

V kgBk⇤. If hat', i 6= 0 then supp(at') \ supp( ) 6= ;.
This implies that atvA \ vB 6= ;. We want to know at what time t this happens. The critical point happens
when Z

' dµ

Z
 dµ = e�

5
13 tk'k

sob

k k
sob
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so
1

V 2

= e�
5
13 t

1

V
(kgAkkgBk)⇤

rearranging, we get
et = [V (kgAkkgBk)⇤]

13
5

⇤

To prove Thm 5, we fix SO(1, 2) ✓ SO(p, q), by the Buger-Sarnak restriction principle, we are still looking
at an automorphic form. We have to be a little careful though. For example if you have x2

1

+ · · ·x2

p �
y2
1

� · · · � y2q , we look at SO(1, 2) y SO(p, q)/�A, when you change the quadratic form the structure gets
twisted and it might not be a Q subgroup. The Witt extension theorem says that if we look at the set
{V ✓ Rn | dim = 3, Q

0

|V has signature (1, 2)} then the SO(p, q) action on this space is transitive.
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