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Measure-Classification Theorem [Furstenberg, Dani]

G = SL(2,R), Γ = lattice in G, ut =
[

1 t
0 1

]
,

µ = ergodic ut-inv’t probability measure on G/Γ
!⇒ µ is Lebesgue measure or on closed orbit.

Step 1 of the proof (yesterday)

Shearing: fastest motion is parallel to the orbits.

Prop. Fastest transverse motion is along norm’zer.

Cor. µ is inv’t under as =
[
es 0
0 e−s

]
unless supported on

closed ut-orbit.

Step 2: µ is inv’t under
[

1 0
∗ 1

]
. entropy calculation
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Step 2: Entropy calculation

What is entropy?
Fix partition P = {A1, . . . , An} of X. Let pi = µ(Ai).
Suppose x is an unknown point in X.
Learning x ∈ Ai gives us information:

# bits of info is
∣∣log

(
µ(Ai)

)∣∣ = |logpi|.
Expected # bits info is

∑
i pi |logpi|

= the entropy of P = hµ(P) ≥ 0.

For T : X → X, entropy hµ(T)
= growth rate from x,Tx, T 2x, . . . , Tnx.

Pn = {Ai}∨ {T−1Ai}∨ · · · ∨ {T−nAi}
hµ(T) := limn→∞hµ(Pn)/n. (usually independent of P)
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hµ(T) := limn→∞hµ(Pn)/n ≥ 0

Eg. T(x) = x +α (mod 1) (with α irrational).
[0,1) = [0,1/2)∪ [1/2,1)

⇒ #Pn ≤ 2+ #Pn−1 ≤ n
⇒ hleb(Pn) ≤ log 2n

hleb(T) ≤ limn→∞
1
n log 2n = 0.

More generally:

Prop. T ∈ Isom(X) !⇒ hµ(T) = 0.

no distances are stretched !⇒ entropy is 0

amount of stretching = entropy for diffeos
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amount of stretching = entropy for diffeos

Pesin Entropy Formula [1977]

T = vol-pres diffeo of manifold M (cpct, smooth)

tangent bundle TM = E1 ⊕ · · ·⊕En (T -inv’t),
∀ξ ∈ Ei, ∥T(ξ)∥ = τi ∥ξ∥.

Then hvol(T) =
∑
τi>1 (dimEi) logτi.

Example (entropy of geodesic flow)

Recall asqa−s =
[

α βe2s

γe−2s δ

]
. hvol(as) = 2|s|

TM =
[

0 ∗
0 0

]
⊕
[
∗ 0
0 ∗

]
⊕
[

0 0
∗ 0

]
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Theorem (Ledrappier-Young [1985])
T = meas-pres diffeo of manifold M
tangent bundle TM = E1 ⊕ · · ·⊕En (T -inv’t),

∀ξ ∈ Ei, ∥T(ξ)∥ = τi ∥ξ∥.
H-orbits are tangent to

⊕
τi>1Ei

η =
∑
τi>1(dimEi) logτi

Then hµ(T) ≤ η. Equality " µ is H-inv’t.

“measure of maximal entropy is nice”

Idea. If suppµ misses directions that are stretched,
they do not contribute as much as they should.

To exploit all directions (along the H-orbits),
µ must be Lebesgue on every H-orbit.

So µ is H-invariant.
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Theorem (Ledrappier-Young [1985])
If H-orbits tangent to the expanding directions of T ,
then hµ(T) ≤ η = total stretching.

Equality " µ is H-inv’t.

Cor. Suppose µ is as-inv’t on SL(2,R)/Γ .
Then hµ(as) ≤ 2|s|, with equality iff µ is ut-inv’t.

Step 2. µ inv’t under ut and as !⇒ µ = Lebesgue.

Proof.
µ is ut-inv’t !⇒ hµ(as) = 2|s| !⇒ hµ(a−s) = 2|s|

!⇒ µ is invariant under
[

1 0
r 1

]
= vr .

µ is invariant under ⟨ut,as, vr⟩ = SL(2,R).
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Measure-classification⇒⇒⇒ Equidistribution

Show MT(f) := 1
T
∫ T
0 f(utx)dt →

∫
Sx f d vol ∃S

Measure-Classification.
Each ergodic measure is volSy .
Every inv’t meas is (≈)

∑
i volSiyi.

Recall that MT ∈ MeasX and Meas(X) is compact.
Need to show only acc pt M∞ of {MT} is some volSy .

Key to Proof. Show M∞(Sy) ≠ 0 ⇒ {utx} ⊆ Sy .

∴ {utx} ⊆ Sx and dimS minimal ⇒ M∞ = volSx.

Claim. d(utx, Sy)2 is polynomial function of t.
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Claim. d(utx, Sy)2 is polynomial function of t.

Taylor series: logu =
∑n
k=1(−1)k+1 1

k(u− I)k
So ut = exp(t logu) =

∑n
k=1

1
k! t

k (logu)k.
Each matrix entry of ut is polynomial function.

Linearization (Dani-Margulis [1993])

Can show S 5 S, so
∃ homo ρ : G → SL(D,R), and v⃗ ∈ RD,

such that S = StabG(v⃗). (Chevalley’s Theorem)

Write x = gΓ , and assume y = eΓ .
d(utx, Sy)2 5 d(utg, S)2 5 d(utgv,v)2.

ut is polynomial func of t ⇒ utgv is polynomial
⇒ d(utgv,v)2 is polynomial.
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Key to Proof. Show M∞(Sy) ≠ 0 ⇒ {utx} ⊆ Sy .

We know d(utx, Sy)2 is poly func of t of degree N.

f ∈ Cc(X)≤1, supported in δ-neigh of Sy ,
such that MT(f) > 0.01.

0.01 < MT(f) = 1
T
∫ T
0 f(utx)dt

≤ 1
T ℓ
(
{ t | f(utx) ≠ 0 }

)

≤ 1
T ℓ
(
{ t | d(utx, Sy) < δ }

)

d(utx, Sy)2 is poly that is < δ on 1% of [0, T ]
⇒ d(utx, Sy)2 < ϵ on [0, T ].

Let Tk →∞: d(utx, Sy) = 0 for all t.
So {utx} ⊆ Sy .
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