Introduction to Ratner's Theorems on Unipotent Flows

Dave Witte Morris

University of Lethbridge, Alberta, Canada [http://people.uleth.ca/](http://people.uleth.ca/~dave.morris)∼dave.morris Dave.Morris@uleth.ca

Part 3: Completion of the Proof of Ratner's Measure-Classification Theorem

Measure-Classification Theorem [Furstenberg, Dani]

$$
G = SL(2, \mathbb{R}), \quad \Gamma = \text{lattice in } G, \quad u^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix},
$$

^µ ⁼ ergodic *ut*-inv't probability measure on *G/*^Γ

 \Rightarrow µ is Lebesgue measure or on closed orbit.

Step 1 of the proof (yesterday)

Shearing: fastest motion is parallel to the orbits.

Prop. Fastest transverse motion is along norm'zer.

∗ 1

Cor.
$$
\mu
$$
 is inv't under $a^s = \begin{bmatrix} e^s & 0 \\ 0 & e^{-s} \end{bmatrix}$ unless supported on closed u^t -orbit.

Step 2: μ is inv't under $\begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix}$

. *entropy calculation*

Step 2: Entropy calculation

What is entropy?

Fix **partition** $P = \{A_1, \ldots, A_n\}$ of *X*. Let $p_i = \mu(A_i)$. Suppose *x* is an unknown point in *X*. Learning $x \in A_i$ gives us information: # bits of info is $|\log(\mu(A_i))| = |\log p_i|$. **Expected** # bits info is $\sum_i p_i |\log p_i|$ = the **entropy** of $P = h_u(P) \ge 0$.

For
$$
T: X \to X
$$
, **entropy** $h_{\mu}(T)$
\n= growth rate from x, Tx, T^2x , ..., $T^n x$.
\n $P_n = \{A_i\} \vee \{T^{-1}A_i\} \vee \qquad \vee \{T^{-n}A_i\}$
\n $h_{\mu}(T) := \lim_{n \to \infty} h_{\mu}(P_n)/n$. (usually independent of P)

$$
h_{\mu}(T) := \lim_{n \to \infty} h_{\mu}(P_n)/n \ge 0
$$

Eg.
$$
T(x) = x + \alpha \pmod{1}
$$
 (with α irrational).
\n $[0, 1) = [0, 1/2) \cup [1/2, 1)$
\n $\Rightarrow #P_n \le 2 + #P_{n-1} \le n$
\n $\Rightarrow h_{leb}(P_n) \le \log 2n$
\n $h_{leb}(T) \le \lim_{n \to \infty} \frac{1}{n} \log 2n = 0.$

More generally:

Prop. $T \in \text{Isom}(X) \implies h_u(T) = 0.$

no distances are stretched \Rightarrow *entropy is 0*

amount of stretching $=$ entropy for diffeos

Dave Witte Morris (Univ. of Lethbridge) [Introduction to Ratner's Theorems](#page-0-0) [MSRI, Jan 2015](#page-4-0) 4/10

Pesin Entropy Formula [1977]

- *T* = *vol-pres diffeo of manifold M* (*cpct, smooth*)
- \bullet tangent bundle $\mathcal{T}M = \mathcal{F}_1 \oplus \cdots \oplus \mathcal{F}_n$ (*T-inv't*)*,* $\forall \xi \in \mathcal{F}_i$, $||T(\xi)|| = \tau_i ||\xi||$.
- *Then* $h_{\text{vol}}(T) = \sum_{\tau_i > 1} (\dim \mathcal{E}_i) \log \tau_i$.

Example (entropy of geodesic flow)

Recall
$$
a^sqa^{-s} = \begin{bmatrix} \alpha & \beta e^{2s} \\ \gamma e^{-2s} & \delta \end{bmatrix}
$$
. $h_{vol}(a^s) = 2|s|$
\n
$$
\mathcal{T}M = \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ * & 0 \end{bmatrix}
$$

Theorem (Ledrappier-Young [1985])

- *T* = *meas-pres diffeo of manifold M*
- \bullet tangent bundle $\mathcal{T}M = \mathcal{F}_1 \oplus \cdots \oplus \mathcal{F}_n$ (*T-inv't*)*,* $\forall \xi \in \mathcal{F}_i$, $||T(\xi)|| = \tau_i ||\xi||$.
- *H-orbits are tangent to* $\bigoplus_{\tau_i>1} \mathcal{I}_i$
- $η = \sum_{τ_i>1} (dim E_i) log τ_i$
- *Then* $h_{\mu}(T) \leq \eta$ *. Equality* $\Leftrightarrow \mu$ *is H-inv't.*

"measure of maximal entropy is nice"

Idea. If supp *µ* misses directions that are stretched, they do not contribute as much as they should. To exploit all directions (along the *H*-orbits), *µ* must be Lebesgue on every *H*-orbit. So μ is *H*-invariant.

Theorem (Ledrappier-Young [1985])

If H-orbits tangent to the expanding directions of T, then $h_u(T) \leq \eta$ = *total stretching. Equality* $\Leftrightarrow \mu$ *is H-inv't.*

Cor. Suppose *^µ* is *^as*-inv't on SL*(*2*,* ^R*)/*^Γ . Then $h_u(a^s) \leq 2|s|$, with equality iff μ is u^t -inv't.

Step 2. *µ* inv't under u^t and $a^s \Rightarrow u =$ Lebesgue.

Proof.

$$
\mu \text{ is } u^t\text{-inv't } \implies h_{\mu}(a^s) = 2|s| \implies h_{\mu}(a^{-s}) = 2|s|
$$

\n
$$
\implies \mu \text{ is invariant under } \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix} = v^r.
$$

\n
$$
\mu \text{ is invariant under } \langle u^t, a^s, v^r \rangle = \text{SL}(2, \mathbb{R}).
$$

Measure-classification ⇒ Equidistribution

Show
$$
M_T(f) := \frac{1}{T} \int_0^T f(u^t x) dt \to \int_{S_X} f dvol
$$
 $\exists S$

Measure-Classification.

- Each ergodic measure is vol_s_y.
- Every inv't meas is ∞ $\sum_i \text{vol}_{S_i, y_i}$.

Recall that $M_T \in Meas X$ and $Meas(X)$ is compact. Need to show only acc pt M_{∞} of $\{M_T\}$ is some vol_{Sy}.

Key to Proof. Show $M_{\infty}(Sy) \neq 0 \Rightarrow \{u^t x\} \subseteq Sy$.

∴ $\{u^t x\}$ ⊆ *Sx* and dim *S* minimal \Rightarrow *M*_∞ = vol_{*Sx*}.

Claim. $d(u^t x, Sy)^2$ is polynomial function of *t*.

Claim. $d(u^t x, Sy)^2$ is polynomial function of *t*.

Taylor series: $\log u = \sum_{k=1}^{n} (-1)^{k+1} \frac{1}{k} (u - I)^k$ So $u^t = \exp(t \log u) = \sum_{k=1}^n$ $\frac{1}{k!} t^k (\log u)^k$. Each matrix entry of u^t is polynomial function.

Linearization (Dani-Margulis [1993])

Can show $S = \overline{S}$, so \exists homo $\rho: G \to SL(D, \mathbb{R})$, and $\vec{v} \in \mathbb{R}^D$, such that $S = \text{Stab}_G(\vec{v})$ (Chevalley's Theorem) Write $x = g\Gamma$, and assume $\gamma = e\Gamma$. $d(u^t x, Sv)^2 \doteq d(u^t a, S)^2 \doteq d(u^t av, v)^2$. u^t is polynomial func of $t \rightarrow u^t g v$ is polynomial \Rightarrow $d(u^t q v, v)^2$ is polynomial.

Key to Proof. Show $M_{\infty}(S\gamma) \neq 0 \Rightarrow \{u^{\dagger}x\} \subseteq S\gamma$.

We know
$$
d(u^t x, Sy)^2
$$
 is poly func of t of degree N .

 $f \in C_c(X)_{\leq 1}$, supported in δ -neigh of $S\gamma$, such that $M_T(f) > 0.01$. $0.01 < M_T(f) = \frac{1}{T}$ $\int_0^T f(u^t x) dt$ $\leq \frac{1}{T} \ell(\lbrace t | f(u^t x) \neq 0 \rbrace)$ $\leq \frac{1}{T} \ell({t | d(u^t x, S y) < \delta})$ $d(u^t x, Sy)^2$ is poly that is $\lt \delta$ on 1% of [0*,T*] $\Rightarrow d(u^t x, Sy)^2 < \epsilon$ on [0, T]. Let $T_k \rightarrow \infty$: $d(u^t x, S y) = 0$ for all *t*. $\{u^t x\} \subseteq S_{\mathcal{V}}$.