Introduction to Ratner's Theorems on Unipotent Flows

Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Part 3: Completion of the Proof of an easy special case of Ratner's Measure-Classification Theorem

Dave Witte Morris (Univ. of Lethbridge) Introduction to Ratner's Theorems

Measure-Classification Theorem [Furstenberg, Dani]

$$G = SL(2, \mathbb{R}), \quad \Gamma = \text{lattice in } G, \quad u^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix},$$

 $\mu = \text{ergodic} \ u^t$ -inv't probability measure on G/Γ

 \Rightarrow *µ* is Lebesgue measure or on closed orbit.

Step 1 of the proof (yesterday)

Shearing: fastest motion is parallel to the orbits.

Prop. Fastest **transverse** motion is along norm'zer.

Cor.
$$\mu$$
 is inv't under $a^s = \begin{bmatrix} e^s & 0 \\ 0 & e^{-s} \end{bmatrix}$ unless supported on closed u^t -orbit.

-orbit.

Step 2: Entropy calculation

What is entropy?

Fix **partition** $\mathcal{P} = \{A_1, \dots, A_n\}$ of *X*. Let $p_i = \mu(A_i)$. Suppose *x* is an <u>unknown</u> point in *X*. Learning $x \in A_i$ gives us information: # bits of info is $|\log(\mu(A_i))| = |\log p_i|$. **Expected** # bits info is $\sum_i p_i |\log p_i|$ = the **entropy** of $\mathcal{P} = h_{\mu}(\mathcal{P}) \ge 0$.

For $T: X \to X$, **entropy** $h_{\mu}(T)$ = growth rate from x, Tx, T^2x, \dots, T^nx . $\mathcal{P}_n = \{A_i\} \lor \{T^{-1}A_i\} \lor \dots \lor \{T^{-n}A_i\}$ $h_{\mu}(T) := \lim_{n \to \infty} h_{\mu}(\mathcal{P}_n)/n$. (usually independent of \mathcal{P})

$$h_{\mu}(T) := \lim_{n \to \infty} h_{\mu}(\mathcal{P}_n) / n \ge 0$$

Eg.
$$T(x) = x + \alpha \pmod{1}$$
 (with α irrational).
 $[0,1) = [0,1/2) \cup [1/2,1)$
 $\Rightarrow \#\mathcal{P}_n \le 2 + \#\mathcal{P}_{n-1} \le n$
 $\Rightarrow h_{leb}(\mathcal{P}_n) \le \log 2n$
 $h_{leb}(T) \le \lim_{n \to \infty} \frac{1}{n} \log 2n = 0.$

More generally:

Prop. $T \in \text{Isom}(X) \implies h_{\mu}(T) = 0.$

no distances are stretched \Rightarrow *entropy is 0*

amount of stretching = entropy for diffeos

Dave Witte Morris (Univ. of Lethbridge) Introduction to Ratner's Theorems

Pesin Entropy Formula [1977]

- T = vol-pres diffeo of manifold M (cpct, smooth)
- tangent bundle $\mathcal{T}M = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_n$ (*T-inv't*), $\forall \xi \in \mathcal{E}_i, ||T(\xi)|| = \tau_i ||\xi||.$

Then
$$h_{\text{vol}}(T) = \sum_{\tau_i > 1} (\dim \mathcal{E}_i) \log \tau_i.$$

Example (entropy of geodesic flow)

Recall
$$a^{s}qa^{-s} = \begin{bmatrix} \alpha & \beta e^{2s} \\ \gamma e^{-2s} & \delta \end{bmatrix}$$
. $h_{\text{vol}}(a^{s}) = 2|s|$
 $\mathcal{T}M = \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ * & 0 \end{bmatrix}$

Theorem (Ledrappier-Young [1985])

- *T* = meas-pres diffeo of manifold *M*
- tangent bundle $\mathcal{T}M = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_n$ (*T-inv't*), $\forall \xi \in \mathcal{E}_i, ||T(\xi)|| = \tau_i ||\xi||.$
- *H*-orbits are tangent to $\bigoplus_{\tau_i>1} \mathcal{I}_i$
- $\eta = \sum_{\tau_i > 1} (\dim \mathcal{E}_i) \log \tau_i$ Then $h_{\mu}(T) \le \eta$. Equality $\Leftrightarrow \mu$ is *H*-inv't.

"measure of maximal entropy is nice"

Idea. If $\operatorname{supp} \mu$ misses directions that are stretched, they do not contribute as much as they should. To exploit all directions (along the *H*-orbits), μ must be Lebesgue on every *H*-orbit. So μ is *H*-invariant.

Theorem (Ledrappier-Young [1985])

If *H*-orbits tangent to the expanding directions of *T*, then $h_{\mu}(T) \leq \eta = \text{total stretching.}$ Equality $\Leftrightarrow \mu$ is *H*-inv't.

Cor. Suppose μ is a^s -inv't on SL(2, \mathbb{R})/ Γ . Then $h_{\mu}(a^s) \le 2|s|$, with equality iff μ is u^t -inv't.

Step 2. μ inv't under u^t and $a^s \implies \mu$ = Lebesgue.

Proof.

$$\mu \text{ is } u^{t} \text{-inv't } \implies h_{\mu}(a^{s}) = 2|s| \implies h_{\mu}(a^{-s}) = 2|s|$$
$$\implies \mu \text{ is invariant under } \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix} = v^{r}.$$
$$\mu \text{ is invariant under } \langle u^{t}, a^{s}, v^{r} \rangle = \text{SL}(2, \mathbb{R}).$$

Measure-classification ⇒ Equidistribution

Show
$$M_T(f) := \frac{1}{T} \int_0^T f(u^t x) dt \rightarrow \int_{Sx} f d \operatorname{vol} \exists S$$

Measure-Classification.

- Each ergodic measure is vol_{Sy} .
- Every inv't meas is $(\approx) \sum_i \text{vol}_{S_i \mathcal{Y}_i}$.

Recall that $M_T \in \text{Meas } X$ and Meas(X) is compact. Need to show only acc pt M_{∞} of $\{M_T\}$ is some vol_{Sy} .

Key to Proof. Show $M_{\infty}(Sy) \neq 0 \Rightarrow \{u^t x\} \subseteq Sy$.

 $\therefore \{u^t x\} \subseteq Sx \text{ and } \dim S \text{ minimal} \Rightarrow M_{\infty} = \operatorname{vol}_{Sx}.$

Claim. $d(u^t x, Sy)^2$ is polynomial function of *t*.

Claim. $d(u^t x, Sy)^2$ is polynomial function of *t*.

Taylor series: $\log u = \sum_{k=1}^{n} (-1)^{k+1} \frac{1}{k} (u-I)^{k}$ So $u^{t} = \exp(t \log u) = \sum_{k=1}^{n} \frac{1}{k!} t^{k} (\log u)^{k}$. Each matrix entry of u^{t} is polynomial function.

Linearization (Dani-Margulis [1993])

Can show $S \doteq \overline{S}$, so $\exists \text{ homo } \rho \colon G \to \operatorname{SL}(D, \mathbb{R})$, and $\vec{v} \in \mathbb{R}^D$, such that $S = \operatorname{Stab}_G(\vec{v})$. (Chevalley's Theorem) Write $x = g\Gamma$, and assume $y = e\Gamma$. $d(u^t x, Sy)^2 \doteq d(u^t g, S)^2 \doteq d(u^t gv, v)^2$. u^t is polynomial func of $t \Rightarrow u^t gv$ is polynomial $\Rightarrow d(u^t gv, v)^2$ is polynomial.

Key to Proof. Show $M_{\infty}(S\gamma) \neq 0 \Rightarrow \{u^t x\} \subseteq S\gamma$.

We know
$$d(u^t x, Sy)^2$$
 is poly func of *t* of degree *N*.

 $f \in C_c(X)_{\leq 1}$, supported in δ -neigh of $S\gamma$, such that $M_T(f) > 0.01$. $0.01 < M_T(f) = \frac{1}{T} \int_0^T f(u^t x) dt$ $\leq \frac{1}{T} \ell(\{t \mid f(u^t x) \neq 0\})$ $\leq \frac{1}{T} \ell(\{t \mid d(u^t x, S \gamma) < \delta\})$ $d(u^t x, S y)^2$ is poly that is $< \delta$ on 1% of [0, T] $\Rightarrow d(u^t x, Sv)^2 < \epsilon \text{ on } [0, T].$ Let $T_k \to \infty$: $d(u^t x, S \gamma) = 0$ for all t. So $\{u^t x\} \subseteq S v$.