Introduction to Ratner's Theorems on Unipotent Flows

Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Part 2: Variations of Ratner's Theorem and Additional Ideas of the Proof

Ratner's Theorem [1991]

- G = Lie group = closed subgroup of SL (n, \mathbb{R})
- Γ = lattice in *G* = discrete subgroup
- $X = G/\Gamma$ with $\operatorname{vol}(G/\Gamma) < \infty$ H = subgroup of G gen'd by unips $\subseteq \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- $\Rightarrow \overline{Hx} = Sx$ for some subgroup S of G.

Conjecture (Shah [1998])

Suffices to assume **Zariski closure** \overline{H} gen'd by unips \approx smallest almost conn subgrp of G that \supseteq H.

Progress by Benoist-Quint [2013]

True if $\overline{H} = SL(n, \mathbb{R})$ (or semisimple) and H/H° is finitely gen'd

Ratner's Theorem

- G = Lie group= closed subgroup of $SL(n, \mathbb{R})$
- Γ = lattice in G = discrete subgroup
- $X = G/\Gamma$ with $\operatorname{vol}(G/\Gamma) < \infty$ $H = \operatorname{subgroup}$ of G gen'd by unips $\subseteq \begin{bmatrix} 1 & * \\ & \ddots \\ & 0 & 1 \end{bmatrix}$
- $\Rightarrow \overline{Hx} = Sx$ for some subgroup S of G.

Derived from special case where $H = \{u^t\}$ is 1-dim'l

Ratner's Theorem

 $\{u^t\}$ unipotent $\Rightarrow \overline{\{u^t\}x} = Sx$, \exists subgrp *S* of *G*.

Also: $S \supseteq \{u^t\}$ and Sx has finite S-inv't volume.

Example

Let $X = \text{torus } \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$. Any $v \in \mathbb{R}^2$ defines a flow on \mathbb{T}^2 : $x_t = x + tv \doteq u^t x$ If the slope of v is irrational, it is classical that every orbit is dense (& unif dist). *Also:* Lebesgue is the only inv't probability measure.

v = (a, b, 0) defines a flow on $\mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$ and $\mathbb{T}^2 \times \{0\}$ is invariant. Lebesgue on $\mathbb{T}^2 \times \{0\}$ is an invariant measure.

 $\forall v$, any ergodic inv't probability meas for flow on \mathbb{T}^3 is Lebesgue meas on some subtorus \mathbb{T}^k $(0 \le k \le 3)$. **Ratner's Theorem on Orbit Closures**

 $\{u^t\}$ unipotent $\Rightarrow \overline{\{u^t\}x} = Sx$, \exists subgrp *S* of *G*.

Ratner's Equidistribution Theorem

 $\{u^t\}x$ is -dense- equidistributed in Sx: $\frac{1}{T}\int_0^T f(u^tx) dt \rightarrow \int_{Sx} f d \text{ vol } \text{ for } f \in C_c(G/\Gamma)$ where vol = S-invariant volume form on Sx.

Ratner's Measure-Classification Theorem

Any ergodic u^t -invariant probability measure on G/Γ is *S*-invariant volume form on some Sx.

Generalized to *p*-adic groups. ¿ characteristic *p* ? [Ratner, Margulis-Tomanov] [Einsiedler, Ghosh, Mohammadi]

measure-classification \Rightarrow equidist \Rightarrow orbit-closure

measure-classification
$$\Rightarrow$$
 equidistribution
 $\frac{1}{T} \int_0^T f(u^t x) dt \rightarrow \int_{Sx} f d \text{vol}$

Easy case

 μ = **unique** u^{t} -inv't probability meas on X (compact) \Rightarrow every u^{t} -orbit is equidistributed.

Proof.
$$M_T(f) := \frac{1}{T} \int_0^T f(u^t x) dt$$

 $M_T: C_c(X) \to \mathbb{C}$ positive linear functional
Riesz Rep Thm: $M_T \in \text{Meas}(X) = \{\text{prob meas on } X\}.$
Banach-Alaoglu: $\text{Meas}(X)$ weak* compact
 \Rightarrow subsequence $M_{T_n} \to M_\infty$ u^t -invariant.
Therefore $M_\infty = \mu$. So $M_T(f) \to \mu(f) = \int f d\mu$.

Example: $G = SL(2, \mathbb{R})$

Theorem (Furstenberg [1973])

SL(2, \mathbb{R})/ Γ compact \Rightarrow the only invariant probability measure for $u^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$ is the ordinary volume.

Corollary

Every u^t *-orbit is equidistributed* (\therefore *dense*).

Theorem (Dani [1978])

SL(2, \mathbb{R})/ Γ noncompact \Rightarrow other ergodic u^t -invariant measure is the measure supported on a closed orbit.

Theorem (Dani [1978])

SL(2, \mathbb{R})/ Γ noncompact \Rightarrow other ergodic u^t -invariant measure is the measure supported on a closed orbit.

General fact

Every invariant measure is a combination of ergodic measures.

Corollary

Every u^t -inv't probability meas on SL(2, \mathbb{R})/ Γ is a combination of Lebesgue measure with measures on cylinders of closed orbits.

Ratner's Measure-Classification Theorem

Ergodic u^t -inv't prob meas is *S*-inv't vol on Sx ($\exists S, x$)

Fix x_0 . Sx_0 has finite *S*-inv't volume $\Leftrightarrow gSx_0$ has finite gSg^{-1} -inv't volume. If $u^t \subseteq gSg^{-1}$, this provides a u^t -invariant measure. • gSx_0 is analogue of a closed orbit.

 $N(u^t, S) := \{g \in G \mid u^t \subseteq gSg^{-1}\}$ (~submanifold). $N(u^t, S)x_0 \subseteq G/\Gamma \sim$ cylinder of closed orbits: each gSx_0 has an u^t -invariant prob meas.

Lem. \exists only countably many possible subgroups *S*.

Cor. Every u^t -inv't prob meas on G/Γ is a combo of measures on these countably many "tubes."

What does "ergodic" mean?

Defn. μ **ergodic** u^t -inv't meas: every u^t -inv't meas'ble func is constant (a.e.)

Pointwise Ergodic Theorem

 μ ergodic \Leftrightarrow a.e. u^t -orbit is μ -equidistributed. $\frac{1}{T} \int_0^T f(u^t x) dt \rightarrow \int_X f d\mu$ a.e.

Exer. $\mu_1 \neq \mu_2$, both ergodic $\Rightarrow \mu_1$ and μ_2 are mutually singular. $\mu_1(C_1) = 1, \ \mu_2(C_2) = 1, \ C_1 \cap C_2 = \emptyset$

Hint. $\mu_1 = f\mu_2 + \mu_{sing}$ and f is u^t -inv't.

Proof of Measure-Classification

Shearing: Fastest motion is parallel to the orbits.

Shearing

Fastest motion is parallel to the orbits.

Contrast:
$$a^{s}qa^{-s} = \begin{bmatrix} \alpha & \beta e^{2s} \\ \gamma e^{-2s} & \delta \end{bmatrix}$$

Fastest motion is transverse to the orbits.

ShearingFastest motion is parallel to the orbits. $\begin{array}{c} y \\ x \end{array}$ $\begin{array}{c} y \\ x \end{array}$ $\begin{array}{c} y \\ x \end{array}$

Key idea in proof of Measure-Classification

Ignore motion along the orbit, and look at the *transverse* motion perpendicular to the orbit.

Example

$$u^{t} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, u^{t}qu^{-t} = \begin{bmatrix} \alpha + \gamma t & \beta + (\delta - \alpha)t - \gamma t^{2} \\ \gamma & \delta - \gamma t \end{bmatrix}$$

Fastest motion is along $\{u^t\}$.

Ignoring this, largest terms are diagonal (in $\{a^s\}$)

Observation

$$a^{s}\begin{bmatrix}1&*\\0&1\end{bmatrix}a^{-s}=\begin{bmatrix}1&*\\0&1\end{bmatrix}:$$
 a^{s} normalizes $\{u^{t}\}.$

Proposition

For action of a unipotent subgroup, the fastest transverse divergence is along the normalizer.

Prop. Fastest transverse div is along normalizer.

Corollary (Step 1 of Ratner's Proof)

 μ is u^t -inv't and ergodic (and ...) $\Rightarrow \mu$ is a^s -inv't.

Proof.

 a^{s} normalizes $u^{t} \Rightarrow u^{t}(a^{s}\mu) = a^{s}(u^{t'}\mu) = a^{s}\mu$. μ and $a^{s}\mu$ are two *different* ergodic measures \Rightarrow live on disjoint u^{t} -invariant sets C and $a^{s}C$. Assume $d(C, a^{s}C) > \epsilon$. For $x \approx y$ in C: $C \ni u^{t}x \approx a^{s}u^{t'}y \in a^{s}C$ ($\exists t, t'$). $\Rightarrow d(C, a^{s}C) < \epsilon$.

Step 2: entropy calculation $\Rightarrow \mu$ inv't under $\begin{vmatrix} 1 \\ * 1 \end{vmatrix}$.