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Plan of the talk

Motivation: Hardy and Littlewood’s 1914 paper on
exponential sums and their approximate functional equation
for theta sums.

A new approximate functional equation.

Invariance principle for quadratic Weyl sums

An outline of how homogeneous dynamics is used
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Randomness in number theory: a disclaimer

Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin.

.
(John von Neumann, 1951)
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Curlicues v. Brownian motion

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

x = 0.4201141490785808..., N = 60000

-0.2 0.0 0.2 0.4 0.6

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Francesco Cellarosi (UIUC)

Quadratic Weyl sums, Automorphic Functions, and Invariance Principles



Jacobi theta function
Consider the classical Jacobi’s elliptic theta function

#(z ,w) =
X

n2Z
e
�

1

2

n2z + nw
�

,

where e(x) := e2⇡ix , z 2 H = {z 2 C : Im(z) > 0}, w 2 C,

which satisfies the exact functional equation

#(z ,w) =
q
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e
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Hardy and Littlewood’s 1914 paper 1/2

G.H. Hardy and J.E. Littlewood (1914) studied the theta sum
(quadratic Weyl sum)

S
N

(x ,↵) =
N

X

n=1

e
�

1

2

n2x + n↵
�

, x ,↵ 2 R

and proved the approximate functional equation

S
N

(x ,↵) =

r

i

x
e

✓

�↵2

x

◆

SbxNc

✓

�1

x
,
↵

x

◆

+ O

✓

1p
x

◆

.

valid for 0 < x < 2, 0  ↵  1.
It is enough to consider 0 < x < 1. We have a renormalization
formula, which can be iterated...
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Hardy and Littlewood’s 1914 paper 2/2
Iterating the approximate functional equation for S

N

(x ,↵) we can
get estimates in terms of the continued fraction expansion of
x = [a

1

, a
2

, a
3

, . . .]. .

Theorem A (Hardy-Littlewood)

If x is of bounded type, then S
N

(x ,↵) = O(
p
N).

If a
n

= O(n⇢), then S
N

(x ,↵) = O
⇣

N
1

2 (logN)
⇢
2

⌘

.

If a
n

= O(e�n) and � < log 2

2

, then S
N

(x ,↵) = O
⇣

N
1

2

+

�
log 2

+"
⌘

for every " > 0.

For almost every x , S
N

(x ,↵) = O
⇣

N
1

2 (logN)
1

2

+"
⌘

for every

" > 0.

Theorem B (Fiedler-Jurkat-Körner / Flaminio-Forni)
For almost every x there is a full measure set of ↵ so that

S
N

(x ,↵) = O
⇣

N
1

2 (logN)
1

4

+"
⌘

for every " > 0.
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A new approximate functional equation 1/2

Consider the Jacobi group G = fSL(2,R)nH(R)

and the geodesic
flow on it, acting by right multiplication by

�s =
⇣⇣

e

�s/2
0

0 e

s/2

⌘

; (0
0

) , 0
⌘

We have the decomposition G = H
+

ZH� almost everywhere on
G , where H

+

(resp. H�) is the unstable (resp. stable) manifold for
�s , and Z is the centralizer:

H
+

= {g 2 G : �sg��s ! e as s ! 1} = {(( 1 x

0 1

) , (↵
0

) , 0)}
H� = {g 2 G : ��sg�s ! e as s ! 1} =

��

( 1 0

u 1

) ,
�

0

�

�

, 0
� 

Z = {g 2 G : ��sg�s = g for all s 2 R}

We have H
+

= {n
+

(x ,↵)} ⇠= R2 and H� = {n�(u,�)} ⇠= R2.
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A new approximate functional equation 2/2
Theorem 1 (C.-Marklof)
There exist a cofinite � < G and a square-integrable function
⇥ : �\G ! C and, for every x 2 R, a measurable function
E x : H� ! [0,1) and a set Px ⇢ H� of full measure, such that
for all x ,↵ 2 R and n�(u,�) 2 Px ,

�

�

�

S
N

(x ,↵)� es/4⇥(�n
+

(x ,↵)n�(u,�)�
s)
�

�

�

 E x(u,�),

where N = bes/2c.

Using the �-invariance of ⇥ we re-obtain Hardy-Littlewood’s
approximate functional equation.
We can estimate ⇥ directly, this yields estimates for S

N

(x ,↵)
directly. No need to iterate the approximate functional eq.
The set Px is explicit (in terms of a Diophantine condition).
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How random are quadratic Weyl sums?

Theorem 1 allows us to study the exact behavior of the partial
sums of S

N

(x ,↵) for random x and for fixed ↵ (no need to
average over ↵).

Q: How randomly does (1
2

n2x + n
p
2)

n�1

behave?

We can be more general and replace 1

2

n2 by any quadratic
polynomial P(n) = 1

2

n2 + c
1

n + c
0

with real coe�cients. Our
method allows us to consider P(n)x + ↵n, as long as
(c

1

,↵) /2 Q2.
Q: How randomly does (1

2

n2x + n
p
3x)

n�1

behave?

What do we mean by “random behavior”? Look at the
“deterministic” random walk with increments e(P(n)x +n↵)...
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A “deterministic” random walk

We consider exponential sums

S
N

(x) =
N

X

n=1

e(P(n)x + n↵), where P(n) = 1

2

n2 + c
1

n + c
0

,

e(z) = e2⇡iz , and c
1

, c
2

,↵ 2 R are fixed.

When x is randomly distributed on R according to some
density h with

R

R h(x)dx = 1 then S
N

(x) is a random variable
on C.
S
N

(x) is a sum of strongly dependent random variables.
(Methods from Probability do not apply).
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(Methods from Probability do not apply).
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A “deterministic” random walk

P(n) = 1

2

n2 + c
1

n + c
0

, S
N

(x) =
N

X

n=1

e(P(n)x + n↵)
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, S
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N

X

n=1

e(P(n)x + n↵)

Define the rescaled random walk on C

X
N

(t) =
1p
N
SbtNc(x)

for t 2 [0, 1]. Notice that this is a curve of length
p
N in C.
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A “deterministic” random walk - curlicues
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1.0

x = 0.??..., N = 60000
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Invariance Principle for XN

P(n) = 1

2

n2 + c
1

n + c
0

, S
N

(x) =
N

X

n=1

e(P(n)x + n↵)

X
N

(t) =
1p
N
SbtNc(x)

Our assumptions:

(c
1

,↵) /2 Q2.

x is randomly distributed on R w.r.t. an absolutely continuous
probability density, say

R

R h(u)du = 1.

Theorem 2 (C.-Marklof).

There exists a random process t 7! X (t) such that
X
N

(t) =) X (t) as N ! 1.

The process t 7! X (t) does not depend on (c
1

,↵) or h.
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Properties of the process t 7! X (t)

Theorem 2’ (C.-Marklof).
The process t 7! X (t) satisfies the following properties:

Tail asymptotics (+ power saving).

P{|X (1)| > R} =
6

⇡2

R�6

⇣

1 + O(R� 12

31 )
⌘

.

Increments. For every t
0

< t
1

< . . . < t
k

the increments

X (t
2

)� X (t
1

),X (t
3

)� X (t
2

), . . . ,X (t
k

)� X (t
k�1

)

are not independent.

Scaling For a > 0 let Y (t) = 1

a

X (a2t). Then Y ⇠ X .
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Properties of the process t 7! X (t)

Time inversion. Let

Y (t) :=

(

0 if t = 0;

tX (1/t) if t > 0.

Then Y ⇠ X .

Law of large numbers. Almost surely, lim
t!1

X (t)

t

= 0.

Stationarity. For t
0

� 0 let Y (t) = X (t
0

+ t)� X (t
0

). Then
Y ⇠ X .

Rotational invariance. For ✓ 2 R let Y (t) = e2⇡i✓X (t).
Then Y ⇠ X .
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Properties of the process t 7! X (t)

Modulus of continuity. For every " > 0 there exists a
constant C" > 0 such that

lim sup
h#0

sup
0t1�h

|X (t + h)� X (t)|p
h(log(1/h))1/4+"

 C"

almost surely.

Hölder continuity. Fix ✓ < 1/2. Then, almost surely, the
curve t 7! X (t) is everywhere locally ✓-Hölder continuous.

Nondi↵erentiability. Fix t
0

� 0. Then, almost surely, the
curve t 7! X (t) is not di↵erentiable at t

0

.
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Remarks

Thm 2 is proved using equidistribution of long, closed
horocycles in a homogeneous space �\G under the geodesic
flow.

Our “averaging” over x relates to one of the unstable
directions of the geodesic flow.

We need more than just
mixing (we use Ratner’s measure classification).

The limiting process t 7! X (t) is the image of the geodesic
flow on �\G (started at a Haar-random point) under a
complex-valued function ⇥ (from Thm 1).

The properties of X (t) in Thm 2’ come from properties of the
geodesic flow on �\G (e.g. excursions into the cusp) and ⇥.
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An application
A particular case of Thm 2’ is:

Theorem 2” (C. - Marklof) Fix c
1

, c
0

,↵ 2 R, (c
1

,↵) /2 Q2. There
exists a probability measure P on C such that for every bounded
continuous function F : C ! R we have

Z

R
F
⇣

N� 1

2S
N

(x)
⌘

d�(x)
N!1�!

Z

C
FdP.

Corollary. Fix c
1

, c
0

,↵ 2 R, (c
1

,↵) /2 Q2. Then

lim
N!1

�

(

x 2 R :

�

�

�

�

�

1p
N

N

X

n=1

cos(2⇡(P(n)x + n↵))

�

�

�

�

�

> R

)

=

=
15

16⇡2

R�6

⇣

1 + O(R�12/31)
⌘

.
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Appendix: More on the tail asymptotics
S
N

(x) =
P

N

n=1

e(P(n)x + n↵), P(n) = 1

2

n2 + c
1

n + c
0

.

For (c
1

,↵) /2 Q2 we have

lim
N!1

�
n

x 2 R :
�

�

�

N� 1

2S
N

(x)
�

�

�

> R
o

=
6

⇡2

R�6

⇣

1 + O(R�12/31)
⌘

Where does 6

⇡2

come from? In our proof

6

⇡2

=
1
⇡2

3

· 2
3
· 2 · I

I =

Z 1

�1

Z 1

�1

�

�

�

�

Z

1

0

e(z
1

x2 + z
2

x)dx

�

�

�

�

6

dz
1

dz
2

=
3

2
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�
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�

�

�

�

6
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Counting integer points on Vinogradov’s quadric 1/3
Let N (R) be the number of integer solutions to the equations

x
1

+ x
2

+ x
3

= y
1

+ y
2

+ y
3

x2
1

+ x2
2

+ x2
3

= y2
1

+ y2
2

+ y2
3

with 1  x
j

, y
j

 R for j = 1, 2, 3.

Hua (1947) showed that

N (R) = O(R3 log3 R).

Hua (1959) also showed that the number Ñ (a) of solutions
with x2

1

+ x2
2

+ x2
3

 a and y2
1

+ y2
2

+ y2
3

 a is

Ñ (a) =
35
p
3

2
a3/2 log a+ O(a3/2

p

log a).
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Counting integer points on Vinogradov’s quadric 2/3

Bykovskii (1984) showed that

N (R) =
12

⇡2

I R3 logR + O(R3)

where I =

Z 1

�1

Z 1

�1

�

�

�

�

Z

1

0

e(z
1

x2 + z
2

x)dx

�

�

�

�

6

dz
1

dz
2

.

Rogovskaya (1986) showed that

N (R) =
18

⇡2

R3 logR + O(R3).

It was shown by V. Blomer and J. Brüdern (2010) that

N (R) =
18

⇡2

R3 logR +
3

⇡2

✓

� � 6
⇣ 0(2)

⇣(2)
� 5

◆

R3 + O(R5/2 logR).
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Counting integer points on Vinogradov’s quadric 3/3
Rogovskaya’s work implies that
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Z 1

�1
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�1

�

�

�
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e(z
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x2 + z
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x)dx
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QUADRATIC WEYL SUMS, AUTHOMORPHIC FUNCTIONS, AND INVARIANCE

PRINCIPLE

FRANCESCO CELLAROSI

1. Homogeneous Dynamics

1.1. Setup. We start with the Jacobi group G = fSL(2,R)nH(R). We can represent this as H⇥R⇥R2⇥R,
a six dimensional space with coordinates given by (x+ iy,�; ⇠, ⇣) = g. In these coordinates the Haar measure

is dg = dx dy d� d⇠1 d⇠2 d⇣

y

2 .

1.2. Description of the limiting process t 7! X(t). In Theorem 2, we state that there exists a random
process, but we can do better. We can actually give a description of this limiting process.

X(t) =
p
t⇥(�g�2 log t)

for g Haar-random on �\G. We can think of (�\G, dg) as a probability space. We need to understand ⇥.

We have a Schrödinger - Weyl representation of G. To each element G we associate a unitary operator
U(L2(R)), where g 7! R(G), and R(g) gives an operator L2 ! L

2, where f 7! R(g)f . We define ⇥ : G ! C
in terms of this representation as follows:

⇥
f

(g) =
X

n2Z
[R(g)f ](n) = y

1/4

e

✓
⇣ � 1

2
⇠

1

⇠

2

◆X

n2Z
f

�

⇣
(n� ⇠

2

)y1/2
⌘
e

✓
1

2
(n� ⇠

2

)2x+ n⇠

1

◆

where f

�

(t) =
P1

k=0

f̂(k)e
�i2k�1

2 �

 

k

(t), { 
k

} is a hermit orthonormal basis of L2(R), and f̂(k) = hf, 
k

i.
Note that when � = 0, f

�

is the identity, if � = ⇡/2, then f

�

is the Fourier transform of f .

Fact 1. If f is, for example, Schwartz, then ⇥
f

is �-invariant for an explicit � < G. If f is not Schwartz,

then we do not understand how to interpret ⇥
f

point wise.

Observation 1 (Why we care about ⇥
f

). When y = 1

N

2 and � =
(0,1]

, we have

S

N

(x) = y

�1/4⇥
�

✓
x+ iy, 0;

✓
↵+ c

1

x

0

◆
, c

0

x

◆
.

Moreover,

X

N

(t) = e

s/4⇥
�

✓
x+ iye

�s

, 0;

✓
↵+ c

1

x

0

◆
, c

0

x

◆
,

s = 2 log t. We can use the group law to rewrite this as

e

s/4⇥

✓✓
1;

✓
↵+ c

1

x

0

◆
, c

0

x

◆
 x�s�2 logN

◆

where  x =

✓✓
1 x

0 1

◆
,

✓
0
0

◆
, 0

◆
, horocycle flow, and � is the geodesic flow.

Now, fix t, then we define e⇥(g) = e

s/4⇥(g�s). The existence of finite dimensional limiting distribution
means for B : C ! R

lim
⌧!1

Z

R
B

✓
e⇥
✓✓

1;

✓
↵+ c

1

x

0

◆
, c

0

x

◆
 x�⌧

◆◆
d�(x) =

Z

�\G
B

⇣
e⇥(g)

⌘
dg,

⌧ = 2 logN , using the equidistribution of long closed horocycles in �\G.
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