Quadratic Weyl sums, Automorphic Functions, and Invariance Principles

Francesco Cellarosi (UIUC)

February 3, 2015

э

< 17 ▶

Francesco Cellarosi (UIUC)

Plan of the talk

- Motivation: Hardy and Littlewood's 1914 paper on exponential sums and their approximate functional equation for theta sums.
- A new approximate functional equation.
- Invariance principle for quadratic Weyl sums
- An outline of how homogeneous dynamics is used

Randomness in number theory: a disclaimer

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

(John von Neumann, 1951)

A (1) > A (1) > A

э

Francesco Cellarosi (UIUC)

Curlicues v. Brownian motion

Francesco Cellarosi (UIUC)

Jacobi theta function

Consider the classical Jacobi's elliptic theta function

$$\vartheta(z,w) = \sum_{n\in\mathbb{Z}} e(\frac{1}{2}n^2z + nw),$$

where $e(x) := e^{2\pi i x}$, $z \in \mathcal{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, $w \in \mathbb{C}$,

Francesco Cellarosi (UIUC)

Jacobi theta function

Consider the classical Jacobi's elliptic theta function

$$\vartheta(z,w) = \sum_{n\in\mathbb{Z}} e(\frac{1}{2}n^2z + nw),$$

where $e(x) := e^{2\pi i x}$, $z \in \mathcal{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, $w \in \mathbb{C}$,

Francesco Cellarosi (UIUC)

Jacobi theta function

Consider the classical Jacobi's elliptic theta function

$$\vartheta(z,w) = \sum_{n\in\mathbb{Z}} e(\frac{1}{2}n^2z + nw),$$

where $e(x) := e^{2\pi i x}$, $z \in \mathcal{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$, $w \in \mathbb{C}$,

which satisfies the exact functional equation

$$\vartheta(z,w) = \sqrt{\frac{i}{z}} e\left(-\frac{w^2}{z}\right) \vartheta\left(-\frac{1}{z},\frac{w}{z}\right)$$

(ロ) (四) (三) (三)

3

Francesco Cellarosi (UIUC)

Hardy and Littlewood's 1914 paper 1/2

G.H. Hardy and J.E. Littlewood (1914) studied the theta sum (quadratic Weyl sum)

$$S_N(x,\alpha) = \sum_{n=1}^N e\left(\frac{1}{2}n^2x + n\alpha\right), \quad x, \alpha \in \mathbb{R}$$

A (1) > A (1) > A

Ξ.

Hardy and Littlewood's 1914 paper 1/2

G.H. Hardy and J.E. Littlewood (1914) studied the theta sum (quadratic Weyl sum)

$$S_N(x,\alpha) = \sum_{n=1}^N e\left(\frac{1}{2}n^2x + n\alpha\right), \quad x, \alpha \in \mathbb{R}$$

and proved the approximate functional equation

$$S_{N}(x,\alpha) = \sqrt{\frac{i}{x}} e\left(-\frac{\alpha^{2}}{x}\right) S_{\lfloor xN \rfloor}\left(-\frac{1}{x},\frac{\alpha}{x}\right) + O\left(\frac{1}{\sqrt{x}}\right)$$

▲ @ ▶ ▲ @ ▶ ▲

э

valid for 0 < x < 2, $0 \le \alpha \le 1$.

Francesco Cellarosi (UIUC)

Hardy and Littlewood's 1914 paper 1/2

G.H. Hardy and J.E. Littlewood (1914) studied the theta sum (quadratic Weyl sum)

$$S_N(x,\alpha) = \sum_{n=1}^N e\left(\frac{1}{2}n^2x + n\alpha\right), \quad x, \alpha \in \mathbb{R}$$

and proved the approximate functional equation

$$S_{N}(x,\alpha) = \sqrt{\frac{i}{x}} e\left(-\frac{\alpha^{2}}{x}\right) S_{\lfloor xN \rfloor}\left(-\frac{1}{x},\frac{\alpha}{x}\right) + O\left(\frac{1}{\sqrt{x}}\right)$$

valid for 0 < x < 2, $0 \le \alpha \le 1$.

It is enough to consider 0 < x < 1. We have a renormalization formula, which can be iterated...

(日) (同) (三) (三)

Hardy and Littlewood's 1914 paper 2/2

Iterating the approximate functional equation for $S_N(x, \alpha)$ we can get estimates in terms of the continued fraction expansion of $x = [a_1, a_2, a_3, \ldots]$.

Hardy and Littlewood's 1914 paper 2/2

Iterating the approximate functional equation for $S_N(x, \alpha)$ we can get estimates in terms of the continued fraction expansion of $x = [a_1, a_2, a_3, \ldots]$.

Theorem A (Hardy-Littlewood)

If x is of bounded type, then $S_N(x, \alpha) = O(\sqrt{N})$.

If
$$a_n = O(n^{\rho})$$
, then $S_N(x, \alpha) = O\left(N^{\frac{1}{2}}(\log N)^{\frac{\rho}{2}}\right)$

- If $a_n = O(e^{\sigma n})$ and $\sigma < \frac{\log 2}{2}$, then $S_N(x, \alpha) = O\left(N^{\frac{1}{2} + \frac{\sigma}{\log 2} + \varepsilon}\right)$ for every $\varepsilon > 0$.
- For almost every x, $S_N(x, \alpha) = O\left(N^{\frac{1}{2}}(\log N)^{\frac{1}{2}+\varepsilon}\right)$ for every $\varepsilon > 0$.

(日) (同) (三) (三)

3

Hardy and Littlewood's 1914 paper 2/2

Iterating the approximate functional equation for $S_N(x, \alpha)$ we can get estimates in terms of the continued fraction expansion of $x = [a_1, a_2, a_3, \ldots]$.

Theorem A (Hardy-Littlewood)

If x is of bounded type, then $S_N(x, \alpha) = O(\sqrt{N})$.

If
$$a_n = O(n^{\rho})$$
, then $S_N(x, \alpha) = O\left(N^{\frac{1}{2}}(\log N)^{\frac{\rho}{2}}\right)$

• If
$$a_n = O(e^{\sigma n})$$
 and $\sigma < \frac{\log 2}{2}$, then $S_N(x, \alpha) = O\left(N^{\frac{1}{2} + \frac{\sigma}{\log 2} + \varepsilon}\right)$
for every $\varepsilon > 0$.

• For almost every x, $S_N(x, \alpha) = O\left(N^{\frac{1}{2}}(\log N)^{\frac{1}{2}+\varepsilon}\right)$ for every $\varepsilon > 0$.

Theorem B (Fiedler-Jurkat-Körner / Flaminio-Forni) For almost every x there is a full measure set of α so that $S_N(x, \alpha) = O\left(N^{\frac{1}{2}}(\log N)^{\frac{1}{4}+\varepsilon}\right)$ for every $\varepsilon > 0$.

Francesco Cellarosi (UIUC)

A new approximate functional equation 1/2Consider the Jacobi group $G = \widetilde{SL}(2, \mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Francesco Cellarosi (UIUC)

Consider the Jacobi group $G = \widetilde{SL}(2, \mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$\Phi^{s} = \left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix} \right); \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 0 \right)$$

▲ @ ▶ ▲ @ ▶ ▲

э.

Francesco Cellarosi (UIUC)

Consider the Jacobi group $G = \widetilde{SL}(2, \mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$\Phi^{s} = \left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix} \right); \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 0 \right)$$

We have the decomposition $G = H_+ZH_-$ almost everywhere on G, where H_+ (resp. H_-) is the unstable (resp. stable) manifold for Φ^s , and Z is the centralizer:

▲ @ ▶ ▲ @ ▶ ▲

Consider the Jacobi group $G = \widetilde{SL}(2, \mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$\Phi^{s} = \left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix} \right); \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 0 \right)$$

We have the decomposition $G = H_+ZH_-$ almost everywhere on G, where H_+ (resp. H_-) is the unstable (resp. stable) manifold for Φ^s , and Z is the centralizer:

$$\begin{aligned} & \mathcal{H}_{+} = \{g \in G : \ \Phi^{s}g\Phi^{-s} \to e \ \text{ as } s \to \infty\} = \{\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \alpha \\ 0 \end{pmatrix}, 0\} \} \\ & \mathcal{H}_{-} = \{g \in G : \ \Phi^{-s}g\Phi^{s} \to e \ \text{ as } s \to \infty\} = \{\left(\begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}, \begin{pmatrix} \alpha \\ 0 \end{pmatrix}, 0\} \} \\ & Z = \{g \in G : \ \Phi^{-s}g\Phi^{s} = g \ \text{ for all } s \in \mathbb{R}\} \end{aligned}$$

▲ @ ▶ ▲ @ ▶ ▲

Francesco Cellarosi (UIUC)

Consider the Jacobi group $G = \widetilde{SL}(2, \mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$\Phi^{s} = \left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix} \right); \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 0 \right)$$

We have the decomposition $G = H_+ZH_-$ almost everywhere on G, where H_+ (resp. H_-) is the unstable (resp. stable) manifold for Φ^s , and Z is the centralizer:

$$\begin{aligned} & \mathcal{H}_{+} = \{g \in G : \ \Phi^{s}g\Phi^{-s} \to e \ \text{ as } s \to \infty\} = \{\left(\begin{pmatrix}1 & x \\ 0 & 1\end{pmatrix}, \begin{pmatrix}\alpha \\ 0\end{pmatrix}, 0\} \right\} \\ & \mathcal{H}_{-} = \{g \in G : \ \Phi^{-s}g\Phi^{s} \to e \ \text{ as } s \to \infty\} = \{\left(\begin{pmatrix}1 & 0 \\ u & 1\end{pmatrix}, \begin{pmatrix}0 \\ \beta\end{pmatrix}, 0\right)\} \\ & Z = \{g \in G : \ \Phi^{-s}g\Phi^{s} = g \ \text{ for all } s \in \mathbb{R}\} \end{aligned}$$

We have $H_+ = \{n_+(x,\alpha)\} \cong \mathbb{R}^2$ and $H_- = \{n_-(u,\beta)\} \cong \mathbb{R}^2$.

Francesco Cellarosi (UIUC)

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < G$ and a square-integrable function $\Theta: \Gamma \setminus G \to \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function $E^x: H_- \to [0, \infty)$ and a set $P^x \subset H_-$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_-(u, \beta) \in P^x$,

Francesco Cellarosi (UIUC)

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < G$ and a square-integrable function $\Theta: \Gamma \setminus G \to \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function $E^x: H_- \to [0, \infty)$ and a set $P^x \subset H_-$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_-(u, \beta) \in P^x$,

$$\left| S_N(x,\alpha) - e^{s/4} \Theta(\Gamma n_+(x,\alpha) n_-(u,\beta) \Phi^s) \right| \leq E^x(u,\beta),$$

where $N = \lfloor e^{s/2} \rfloor$.

 Using the Γ-invariance of Θ we re-obtain Hardy-Littlewood's approximate functional equation.

(人間) システン イラン

э

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < G$ and a square-integrable function $\Theta: \Gamma \setminus G \to \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function $E^x: H_- \to [0, \infty)$ and a set $P^x \subset H_-$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_-(u, \beta) \in P^x$,

$$\left| S_N(x,\alpha) - e^{s/4} \Theta(\Gamma n_+(x,\alpha) n_-(u,\beta) \Phi^s) \right| \leq E^x(u,\beta),$$

where $N = \lfloor e^{s/2} \rfloor$.

- Using the Γ-invariance of Θ we re-obtain Hardy-Littlewood's approximate functional equation.
- We can estimate Θ directly, this yields estimates for S_N(x, α) directly. No need to iterate the approximate functional eq.

イロト イポト イヨト イヨト

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < G$ and a square-integrable function $\Theta: \Gamma \setminus G \to \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function $E^x: H_- \to [0, \infty)$ and a set $P^x \subset H_-$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_-(u, \beta) \in P^x$,

$$\left|S_N(x,\alpha)-e^{s/4}\Theta(\Gamma n_+(x,\alpha)n_-(u,\beta)\Phi^s)\right|\leq E^x(u,\beta),$$

where $N = \lfloor e^{s/2} \rfloor$.

- Using the Γ-invariance of Θ we re-obtain Hardy-Littlewood's approximate functional equation.
- We can estimate Θ directly, this yields estimates for S_N(x, α) directly. No need to iterate the approximate functional eq.
- The set P^x is explicit (in terms of a Diophantine condition).

Francesco Cellarosi (UIUC)

Theorem 1 allows us to study the exact behavior of the partial sums of S_N(x, α) for random x and for fixed α (no need to average over α).

э

Theorem 1 allows us to study the exact behavior of the partial sums of S_N(x, α) for random x and for fixed α (no need to average over α).

▲ @ ▶ ▲ @ ▶ ▲

э

Q: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?

Francesco Cellarosi (UIUC)

Theorem 1 allows us to study the exact behavior of the partial sums of S_N(x, α) for random x and for fixed α (no need to average over α).

Q: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?

• We can be more general and replace $\frac{1}{2}n^2$ by any quadratic polynomial $P(n) = \frac{1}{2}n^2 + c_1n + c_0$ with real coefficients. Our method allows us to consider $P(n)x + \alpha n$, as long as $(c_1, \alpha) \notin \mathbb{Q}^2$.

Theorem 1 allows us to study the exact behavior of the partial sums of S_N(x, α) for random x and for fixed α (no need to average over α).

Q: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?

We can be more general and replace ¹/₂n² by any quadratic polynomial P(n) = ¹/₂n² + c₁n + c₀ with real coefficients. Our method allows us to consider P(n)x + αn, as long as (c₁, α) ∉ Q².
 Q: How randomly does (¹/₂n²x + n√3x)_{n>1} behave?

(a)

Theorem 1 allows us to study the exact behavior of the partial sums of S_N(x, α) for random x and for fixed α (no need to average over α).

Q: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?

- We can be more general and replace ¹/₂n² by any quadratic polynomial P(n) = ¹/₂n² + c₁n + c₀ with real coefficients. Our method allows us to consider P(n)x + αn, as long as (c₁, α) ∉ Q².
 Q: How randomly does (¹/₂n²x + n√3x)_{n>1} behave?
- What do we mean by "random behavior"? Look at the "deterministic" random walk with increments e(P(n)x + nα)...

イロト イポト イヨト イヨト

We consider exponential sums

$$S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \text{ where } P(n) = \frac{1}{2}n^2 + c_1n + c_0,$$

イロン イロン イヨン イヨン

ъ.

$$e(z) = e^{2\pi i z}$$
, and $c_1, c_2, lpha \in \mathbb{R}$ are fixed.

Francesco Cellarosi (UIUC)

We consider exponential sums

$$S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \text{ where } P(n) = \frac{1}{2}n^2 + c_1n + c_0,$$

$$e(z) = e^{2\pi i z}$$
, and $c_1, c_2, \alpha \in \mathbb{R}$ are fixed.

When x is randomly distributed on ℝ according to some density h with ∫_ℝ h(x)dx = 1 then S_N(x) is a random variable on ℂ.

A (1) > A (1) > A

э

We consider exponential sums

$$S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \text{ where } P(n) = \frac{1}{2}n^2 + c_1n + c_0,$$

$$e(z) = e^{2\pi i z}$$
, and $c_1, c_2, lpha \in \mathbb{R}$ are fixed.

When x is randomly distributed on ℝ according to some density h with ∫_ℝ h(x)dx = 1 then S_N(x) is a random variable on ℂ.

- < 同 > < 三 > < 三 >

э

 S_N(x) is a sum of strongly dependent random variables. (Methods from Probability do not apply).

Francesco Cellarosi (UIUC)

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$

. .

◆□ > ◆□ > ◆臣 > ◆臣 > □ = −の < ⊙

Francesco Cellarosi (UIUC)

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$

. .

Francesco Cellarosi (UIUC)

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$

◆□ > ◆□ > ◆臣 > ◆臣 > □ = −の < ⊙

Francesco Cellarosi (UIUC)

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$

Define the rescaled random walk on $\ensuremath{\mathbb{C}}$

$$X_N(t) = \frac{1}{\sqrt{N}} S_{\lfloor tN \rfloor}(x)$$

・ロト ・四ト ・ヨト ・ヨト

∃ 990

for $t \in [0, 1]$.

Francesco Cellarosi (UIUC)

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$

Define the rescaled random walk on $\ensuremath{\mathbb{C}}$

$$X_N(t) = \frac{1}{\sqrt{N}} S_{\lfloor tN \rfloor}(x)$$

・ロト ・回ト ・ヨト ・ヨト

3

for $t \in [0,1]$. Notice that this is a curve of length \sqrt{N} in \mathbb{C} .

Francesco Cellarosi (UIUC)

A "deterministic" random walk - curlicues

Invariance Principle for X_N

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \qquad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$
$$X_N(t) = \frac{1}{\sqrt{N}}S_{\lfloor tN \rfloor}(x)$$

• •

Francesco Cellarosi (UIUC)

Invariance Principle for X_N

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \qquad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$
$$X_N(t) = \frac{1}{\sqrt{N}}S_{\lfloor tN \rfloor}(x)$$

. .

(日) (同) (三) (

э

Our assumptions:

- $(c_1, \alpha) \notin \mathbb{Q}^2$.
- x is randomly distributed on \mathbb{R} w.r.t. an absolutely continuous probability density, say $\int_{\mathbb{R}} h(u) du = 1$.

Invariance Principle for X_N

$$P(n) = \frac{1}{2}n^2 + c_1n + c_0, \qquad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)$$
$$X_N(t) = \frac{1}{\sqrt{N}}S_{\lfloor tN \rfloor}(x)$$

. .

Our assumptions:

- $(c_1, \alpha) \notin \mathbb{Q}^2$.
- x is randomly distributed on \mathbb{R} w.r.t. an absolutely continuous probability density, say $\int_{\mathbb{R}} h(u) du = 1$.
- Theorem 2 (C.-Marklof).
 - There exists a random process $t \mapsto X(t)$ such that $X_N(t) \Longrightarrow X(t)$ as $N \to \infty$.
 - The process $t \mapsto X(t)$ does not depend on (c_1, α) or h.

Francesco Cellarosi (UIUC)

Properties of the process $t \mapsto X(t)$

Theorem 2' (C.-Marklof).

The process $t \mapsto X(t)$ satisfies the following properties:

Tail asymptotics (+ power saving).

$$\mathbb{P}\{|X(1)| > R\} = rac{6}{\pi^2} R^{-6} \left(1 + O(R^{-rac{12}{31}})\right).$$

Increments. For every $t_0 < t_1 < \ldots < t_k$ the increments

$$X(t_2) - X(t_1), X(t_3) - X(t_2), \dots, X(t_k) - X(t_{k-1})$$

э

are not independent.

Scaling For
$$a > 0$$
 let $Y(t) = \frac{1}{a}X(a^2t)$. Then $Y \sim X$.

Francesco Cellarosi (UIUC)

Properties of the process $t \mapsto X(t)$

Time inversion. Let

$$Y(t) := \begin{cases} 0 & \text{if } t = 0; \\ tX(1/t) & \text{if } t > 0. \end{cases}$$

Then $Y \sim X$.

- **Law of large numbers**. Almost surely, $\lim_{t\to\infty} \frac{X(t)}{t} = 0$.
- Stationarity. For $t_0 \ge 0$ let $Y(t) = X(t_0 + t) X(t_0)$. Then $Y \sim X$.

э.

Rotational invariance. For $\theta \in \mathbb{R}$ let $Y(t) = e^{2\pi i \theta} X(t)$. Then $Y \sim X$.

Francesco Cellarosi (UIUC)

Properties of the process $t \mapsto X(t)$

Modulus of continuity. For every ε > 0 there exists a constant C_ε > 0 such that

$$\limsup_{h\downarrow 0} \sup_{0 \le t \le 1-h} \frac{|X(t+h) - X(t)|}{\sqrt{h} (\log(1/h))^{1/4+\varepsilon}} \le C_{\varepsilon}$$

almost surely.

- Hölder continuity. Fix θ < 1/2. Then, almost surely, the curve t → X(t) is everywhere locally θ-Hölder continuous.</p>
- Nondifferentiability. Fix t₀ ≥ 0. Then, almost surely, the curve t → X(t) is not differentiable at t₀.

イロン 不同 とくほう イロン

3

 Thm 2 is proved using equidistribution of long, closed horocycles in a homogeneous space Γ\G under the geodesic flow.

A (1) > A (2) > A

3

Francesco Cellarosi (UIUC)

Thm 2 is proved using equidistribution of long, closed horocycles in a homogeneous space $\Gamma \setminus G$ under the geodesic flow.

A (1) > A (1) > A

э

 Our "averaging" over x relates to one of the unstable directions of the geodesic flow. We need more than just mixing (we use Ratner's measure classification).

- **Thm 2** is proved using equidistribution of long, closed horocycles in a homogeneous space $\Gamma \setminus G$ under the geodesic flow.
- Our "averaging" over x relates to one of the unstable directions of the geodesic flow. We need more than just mixing (we use Ratner's measure classification).
- The limiting process t → X(t) is the image of the geodesic flow on Γ\G (started at a Haar-random point) under a complex-valued function Θ (from Thm 1).

<ロ> <同> <同> < 回> < 回>

3

- **Thm 2** is proved using equidistribution of long, closed horocycles in a homogeneous space $\Gamma \setminus G$ under the geodesic flow.
- Our "averaging" over x relates to one of the unstable directions of the geodesic flow. We need more than just mixing (we use Ratner's measure classification).
- The limiting process t → X(t) is the image of the geodesic flow on Γ\G (started at a Haar-random point) under a complex-valued function Θ (from Thm 1).
- The properties of X(t) in Thm 2' come from properties of the geodesic flow on Γ\G (e.g. excursions into the cusp) and Θ.

3

An application

A particular case of Thm 2' is:

Theorem 2" (C. - Marklof) Fix $c_1, c_0, \alpha \in \mathbb{R}$, $(c_1, \alpha) \notin \mathbb{Q}^2$. There exists a probability measure \mathbb{P} on \mathbb{C} such that for every bounded continuous function $F : \mathbb{C} \to \mathbb{R}$ we have

$$\int_{\mathbb{R}} F\left(N^{-\frac{1}{2}}S_N(x)\right) d\lambda(x) \stackrel{N \to \infty}{\longrightarrow} \int_{\mathbb{C}} F d\mathbb{P}$$

▲ 同 ▶ → 三 ▶

э

Francesco Cellarosi (UIUC)

An application

A particular case of Thm 2' is:

Theorem 2" (C. - Marklof) Fix $c_1, c_0, \alpha \in \mathbb{R}$, $(c_1, \alpha) \notin \mathbb{Q}^2$. There exists a probability measure \mathbb{P} on \mathbb{C} such that for every bounded continuous function $F : \mathbb{C} \to \mathbb{R}$ we have

$$\int_{\mathbb{R}} F\left(N^{-\frac{1}{2}}S_N(x)\right) d\lambda(x) \stackrel{N \to \infty}{\longrightarrow} \int_{\mathbb{C}} F d\mathbb{P}$$

Corollary. Fix $c_1, c_0, \alpha \in \mathbb{R}$, $(c_1, \alpha) \notin \mathbb{Q}^2$. Then

$$\begin{split} &\lim_{N\to\infty}\lambda\left\{x\in\mathbb{R}:\ \left|\frac{1}{\sqrt{N}}\sum_{n=1}^{N}\cos(2\pi(P(n)x+n\alpha))\right|>R\right\}=\\ &=\frac{15}{16\pi^2}R^{-6}\left(1+O(R^{-12/31})\right). \end{split}$$

Francesco Cellarosi (UIUC)

Francesco Cellarosi (UIUC)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

Francesco Cellarosi (UIUC)

Appendix: More on the tail asymptotics $S_N(x) = \sum_{n=1}^{N} e(P(n)x + n\alpha), \quad P(n) = \frac{1}{2}n^2 + c_1n + c_0.$

For $(c_1, \alpha) \notin \mathbb{Q}^2$ we have

$$\lim_{N \to \infty} \lambda \left\{ x \in \mathbb{R} : \left| N^{-\frac{1}{2}} S_N(x) \right| > R \right\} = \frac{6}{\pi^2} R^{-6} \left(1 + O(R^{-12/31}) \right)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

Francesco Cellarosi (UIUC)

Appendix: More on the tail asymptotics $S_N(x) = \sum_{n=1}^{N} e(P(n)x + n\alpha), \quad P(n) = \frac{1}{2}n^2 + c_1n + c_0.$

For $(c_1, \alpha) \notin \mathbb{Q}^2$ we have

$$\lim_{N \to \infty} \lambda \left\{ x \in \mathbb{R} : \left| N^{-\frac{1}{2}} S_N(x) \right| > R \right\} = \frac{6}{\pi^2} R^{-6} \left(1 + O(R^{-12/31}) \right)$$

• Where does $\frac{6}{\pi^2}$ come from? In our proof

$$\frac{6}{\pi^2} = \frac{1}{\frac{\pi^2}{3}} \cdot \frac{2}{3} \cdot 2 \cdot \mathcal{I}$$
$$\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_1 x^2 + z_2 x) dx \right|^{6} dz_1 dz_2 = \frac{3}{2}$$

3

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 1/3Let $\mathcal{N}(R)$ be the number of integer solutions to the equations

$$x_1 + x_2 + x_3 = y_1 + y_2 + y_3$$
$$x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2$$

with $1 \le x_j, y_j \le R$ for j = 1, 2, 3.

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 1/3Let $\mathcal{N}(R)$ be the number of integer solutions to the equations

$$x_1 + x_2 + x_3 = y_1 + y_2 + y_3$$
$$x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2$$

with $1 \le x_j, y_j \le R$ for j = 1, 2, 3.

Hua (1947) showed that

$$\mathcal{N}(R) = O(R^3 \log^3 R).$$

э

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 1/3Let $\mathcal{N}(R)$ be the number of integer solutions to the equations

$$x_1 + x_2 + x_3 = y_1 + y_2 + y_3$$
$$x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2$$

with $1 \le x_j, y_j \le R$ for j = 1, 2, 3.

Hua (1947) showed that

$$\mathcal{N}(R) = O(R^3 \log^3 R).$$

• Hua (1959) also showed that the number $\tilde{\mathcal{N}}(a)$ of solutions with $x_1^2 + x_2^2 + x_3^2 \le a$ and $y_1^2 + y_2^2 + y_3^2 \le a$ is

$$ilde{\mathcal{N}}(a) = rac{35\sqrt{3}}{2} a^{3/2} \log a + O(a^{3/2}\sqrt{\log a}).$$

(日) (同) (三) (三)

э

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 2/3

Bykovskii (1984) showed that

$$\mathcal{N}(R) = \frac{12}{\pi^2} \mathcal{I} R^3 \log R + O(R^3)$$

where $\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_0^1 e(z_1 x^2 + z_2 x) dx \right|^6 dz_1 dz_2.$

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 2/3

Bykovskii (1984) showed that

$$\mathcal{N}(R) = \frac{12}{\pi^2} \mathcal{I} R^3 \log R + O(R^3)$$

where $\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_0^1 e(z_1 x^2 + z_2 x) dx \right|^6 dz_1 dz_2.$

Rogovskaya (1986) showed that

$$\mathcal{N}(R) = rac{18}{\pi^2} R^3 \log R + O(R^3).$$

(日) (同) (三) (三)

Ξ.

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 2/3

Bykovskii (1984) showed that

$$\mathcal{N}(R) = \frac{12}{\pi^2} \mathcal{I} R^3 \log R + O(R^3)$$

where $\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_0^1 e(z_1 x^2 + z_2 x) dx \right|^6 dz_1 dz_2.$

Rogovskaya (1986) showed that

$$\mathcal{N}(R) = \frac{18}{\pi^2} R^3 \log R + O(R^3).$$

■ It was shown by V. Blomer and J. Brüdern (2010) that

$$\mathcal{N}(R) = rac{18}{\pi^2} R^3 \log R + rac{3}{\pi^2} \left(\gamma - 6 rac{\zeta'(2)}{\zeta(2)} - 5
ight) R^3 + O(R^{5/2} \log R).$$

イロト イポト イヨト イヨト

3

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 3/3 Rogovskaya's work implies that

$$\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_{1}x^{2} + z_{2}x) dx \right|^{6} dz_{1} dz_{2} = \frac{3}{2}$$

_ _

A (1) > A (1) > A

문어 문

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 3/3 Rogovskaya's work implies that

$$\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_1 x^2 + z_2 x) dx \right|^{6} dz_1 dz_2 = \frac{3}{2}$$

Francesco Cellarosi (UIUC)

QUADRATIC WEYL SUMS, AUTHOMORPHIC FUNCTIONS, AND INVARIANCE PRINCIPLE

FRANCESCO CELLAROSI

1. Homogeneous Dynamics

1.1. Setup. We start with the Jacobi group $G = \widetilde{\operatorname{SL}}(2, \mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$. We can represent this as $\mathcal{H} \times \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}$, a six dimensional space with coordinates given by $(x + iy, \phi; \xi, \zeta) = g$. In these coordinates the Haar measure is $dg = \frac{dx \, dy \, d\phi \, d\xi_1 \, d\xi_2 \, d\zeta}{y^2}$.

1.2. Description of the limiting process $t \mapsto X(t)$. In Theorem 2, we state that there exists a random process, but we can do better. We can actually give a description of this limiting process.

$$X(t) = \sqrt{t}\Theta(\Gamma g \Phi^{2\log t})$$

for g Haar-random on $\Gamma \backslash G$. We can think of $(\Gamma \backslash G, dg)$ as a probability space. We need to understand Θ .

We have a Schrödinger - Weyl representation of G. To each element G we associate a unitary operator $U(L^2(\mathbb{R}))$, where $g \mapsto R(G)$, and R(g) gives an operator $L^2 \to L^2$, where $f \mapsto R(g)f$. We define $\Theta : G \to \mathbb{C}$ in terms of this representation as follows:

$$\Theta_f(g) = \sum_{n \in \mathbb{Z}} [R(g)f](n) = y^{1/4} e\left(\zeta - \frac{1}{2}\xi_1\xi_2\right) \sum_{n \in \mathbb{Z}} f_\phi\left((n - \xi_2)y^{1/2}\right) e\left(\frac{1}{2}(n - \xi_2)^2 x + n\xi_1\right)$$

where $f_{\phi}(t) = \sum_{k=0}^{\infty} \hat{f}(k) e^{\frac{-i2k-1}{2}\phi} \psi_k(t)$, $\{\psi_k\}$ is a hermit orthonormal basis of $L^2(\mathbb{R})$, and $\hat{f}(k) = \langle f, \psi_k \rangle$. Note that when $\phi = 0$, f_{ϕ} is the identity, if $\phi = \pi/2$, then f_{ϕ} is the Fourier transform of f.

Fact 1. If f is, for example, Schwartz, then Θ_f is Γ -invariant for an explicit $\Gamma < G$. If f is not Schwartz, then we do not understand how to interpret Θ_f point wise.

Observation 1 (Why we care about Θ_f). When $y = \frac{1}{N^2}$ and $\chi = \mathbb{1}_{(0,1]}$, we have

$$S_N(x) = y^{-1/4} \Theta_{\chi} \left(x + iy, 0; \begin{pmatrix} \alpha + c_1 x \\ 0 \end{pmatrix}, c_0 x \right).$$

Moreover,

$$X_N(t) = e^{s/4} \Theta_{\chi} \left(x + iye^{-s}, 0; \begin{pmatrix} \alpha + c_1 x \\ 0 \end{pmatrix}, c_0 x \right),$$

 $s=2\log t.$ We can use the group law to rewrite this as

$$e^{s/4}\Theta\left(\left(1; \begin{pmatrix} lpha+c_1x\\0 \end{pmatrix}, c_0x
ight) \Psi^x \Phi^s \Phi^{2\log N}
ight)$$

where $\Psi^x = \left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 0 \right)$, horocycle flow, and Φ is the geodesic flow.

Now, fix t, then we define $\widetilde{\Theta}(g) = e^{s/4} \Theta(g \Phi^s)$. The existence of finite dimensional limiting distribution means for $B : \mathbb{C} \to \mathbb{R}$

$$\lim_{\tau \to \infty} \int_{\mathbb{R}} B\left(\widetilde{\Theta}\left(\left(1; \begin{pmatrix} \alpha + c_1 x \\ 0 \end{pmatrix}, c_0 x \right) \Psi^x \Phi^\tau\right)\right) \, \mathrm{d}\lambda(x) = \int_{\Gamma \setminus G} B\left(\widetilde{\Theta}(g)\right) \, \mathrm{d}g,$$

 $\tau = 2 \log N$, using the equidistribution of long closed horocycles in $\Gamma \backslash G$.

Date: February 03, 2015.