Quadratic Weyl sums, Automorphic Functions, and Invariance Principles

Francesco Cellarosi (UIUC)

February 3, 2015

4 0 F

Ε

 Ω

Francesco Cellarosi (UIUC)

Plan of the talk

Motivation: Hardy and Littlewood's 1914 paper on exponential sums and their approximate functional equation for theta sums.

Ε

 Ω

- A new approximate functional equation.
- **Invariance principle for quadratic Weyl sums**
- An outline of how homogeneous dynamics is used

Randomness in number theory: a disclaimer

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

(John von Neumann, 1951)

4.0.3

ヨート

目

 Ω

Francesco Cellarosi (UIUC)

Curlicues v. Brownian motion

 299

Francesco Cellarosi (UIUC)

Jacobi theta function

Consider the classical Jacobi's elliptic theta function

$$
\vartheta(z,w)=\sum_{n\in\mathbb{Z}}e(\tfrac{1}{2}n^2z+nw),
$$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ 「君」 約 9,09

where $e(x) := e^{2\pi ix}$, $z \in \mathcal{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$, $w \in \mathbb{C}$,

Francesco Cellarosi (UIUC)

Jacobi theta function

Consider the classical Jacobi's elliptic theta function

$$
\vartheta(z,w)=\sum_{n\in\mathbb{Z}}e(\tfrac{1}{2}n^2z+nw),
$$

where $e(x) := e^{2\pi ix}$, $z \in \mathcal{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$, $w \in \mathbb{C}$,

メロメ メ都 メメ きょくきょうき

 2990

Francesco Cellarosi (UIUC)

Jacobi theta function

Consider the classical Jacobi's elliptic theta function

$$
\vartheta(z,w)=\sum_{n\in\mathbb{Z}}e(\tfrac{1}{2}n^2z+nw),
$$

where $e(x) := e^{2\pi ix}$, $z \in \mathcal{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$, $w \in \mathbb{C}$,

which satisfies the exact functional equation

$$
\vartheta(z,w)=\sqrt{\frac{i}{z}}\ e\left(-\frac{w^2}{z}\right)\vartheta\left(-\frac{1}{z},\frac{w}{z}\right).
$$

メロメ メ都 メメ きょ メモメ

 QQQ

重

Francesco Cellarosi (UIUC)

Hardy and Littlewood's 1914 paper 1/2

G.H. Hardy and J.E. Littlewood (1914) studied the theta sum (quadratic Weyl sum)

$$
S_N(x, \alpha) = \sum_{n=1}^N e\left(\frac{1}{2}n^2x + n\alpha\right), \quad x, \alpha \in \mathbb{R}
$$

4.0.3

4 何) 4

 $\mathbb{B} \rightarrow -4$

 299

Ε.

Hardy and Littlewood's 1914 paper 1/2

G.H. Hardy and J.E. Littlewood (1914) studied the theta sum (quadratic Weyl sum)

$$
S_N(x, \alpha) = \sum_{n=1}^N e\left(\frac{1}{2}n^2x + n\alpha\right), \quad x, \alpha \in \mathbb{R}
$$

and proved the approximate functional equation

$$
S_N(x,\alpha) = \sqrt{\frac{i}{x}} e\left(-\frac{\alpha^2}{x}\right) S_{\lfloor xN \rfloor}\left(-\frac{1}{x},\frac{\alpha}{x}\right) + O\left(\frac{1}{\sqrt{x}}\right)
$$

.

重

 Ω

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow

valid for $0 < x < 2$, $0 < \alpha < 1$.

Francesco Cellarosi (UIUC)

Hardy and Littlewood's 1914 paper 1/2

G.H. Hardy and J.E. Littlewood (1914) studied the theta sum (quadratic Weyl sum)

$$
S_N(x, \alpha) = \sum_{n=1}^N e\left(\frac{1}{2}n^2x + n\alpha\right), \quad x, \alpha \in \mathbb{R}
$$

and proved the approximate functional equation

$$
S_N(x, \alpha) = \sqrt{\frac{i}{x}} e\left(-\frac{\alpha^2}{x}\right) S_{\lfloor xN \rfloor}\left(-\frac{1}{x}, \frac{\alpha}{x}\right) + O\left(\frac{1}{\sqrt{x}}\right).
$$

valid for $0 < x < 2$, $0 < \alpha < 1$.

It is enough to consider $0 < x < 1$. We have a renormalization formula, which can be iterated...

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Ε

 Ω

Hardy and Littlewood's 1914 paper 2/2

Iterating the approximate functional equation for $S_N(x, \alpha)$ we can get estimates in terms of the continued fraction expansion of $x = [a_1, a_2, a_3, \ldots].$

K ロ ▶ K 何 ▶ K 手 ▶ K

重

 Ω

Hardy and Littlewood's 1914 paper 2/2

Iterating the approximate functional equation for $S_N(x, \alpha)$ we can get estimates in terms of the continued fraction expansion of $x = [a_1, a_2, a_3, \ldots].$

Theorem A (Hardy-Littlewood)

If *x* is of bounded type, then $S_N(x, \alpha) = O(\sqrt{N})$.

If
$$
a_n = O(n^{\rho})
$$
, then $S_N(x, \alpha) = O(N^{\frac{1}{2}}(\log N)^{\frac{\rho}{2}})$.

- If $a_n = O(e^{\sigma n})$ and $\sigma < \frac{\log 2}{2}$, then $S_N(x, \alpha) = O\Big(N^{\frac{1}{2} + \frac{\sigma}{\log 2} + \varepsilon}\Big)$ for every $\varepsilon > 0$.
- For almost every *x*, $S_N(x, \alpha) = O\left(N^{\frac{1}{2}}(\log N)^{\frac{1}{2}+\varepsilon}\right)$ for every $\varepsilon > 0$.

イロト イ母 トイヨ トイヨ トー

重

 Ω

Francesco Cellarosi (UIUC)

Hardy and Littlewood's 1914 paper 2/2

Iterating the approximate functional equation for $S_N(x, \alpha)$ we can get estimates in terms of the continued fraction expansion of $x = [a_1, a_2, a_3, \ldots].$

Theorem A (Hardy-Littlewood)

If *x* is of bounded type, then $S_N(x, \alpha) = O(\sqrt{N})$.

If
$$
a_n = O(n^{\rho})
$$
, then $S_N(x, \alpha) = O(N^{\frac{1}{2}}(\log N)^{\frac{\rho}{2}})$

If
$$
a_n = O(e^{\sigma n})
$$
 and $\sigma < \frac{\log 2}{2}$, then $S_N(x, \alpha) = O\left(N^{\frac{1}{2} + \frac{\sigma}{\log 2} + \epsilon}\right)$
for every $\epsilon > 0$.

.

 209

For almost every *x*, $S_N(x, \alpha) = O\left(N^{\frac{1}{2}}(\log N)^{\frac{1}{2}+\varepsilon}\right)$ for every $\varepsilon > 0$.

Theorem B (Fiedler-Jurkat-Körner / Flaminio-Forni) For almost every x there is a full measure set of α so that $\mathcal{S}_{\mathcal{N}}(\mathsf{x}, \alpha) = O\!\left(N^{\frac{1}{2}}(\log N)^{\frac{1}{4} + \varepsilon}\right)$ for every $\varepsilon > 0.$ $\varepsilon > 0.$ $\varepsilon > 0.$

Francesco Cellarosi (UIUC)

A new approximate functional equation 1/2 Consider the Jacobi group $G = \widetilde{\mathrm{SL}}(2,\mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$

Francesco Cellarosi (UIUC)

[Quadratic Weyl sums, Automorphic Functions, and Invariance Principles](#page-0-0)

 $\langle \overline{m} \rangle$ and $\langle \overline{m} \rangle$ and $\langle \overline{m} \rangle$

4.0.3

ミー 2990

Consider the Jacobi group $G = \widetilde{\mathrm{SL}}(2,\mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$
\Phi^{\textbf{s}}=\left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix}\right); \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right), \mathbf{0}\right)
$$

4 0 8

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow

 \equiv Ω

Consider the Jacobi group $G = \widetilde{\mathrm{SL}}(2,\mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$
\Phi^{\textbf{s}}=\left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix}\right); \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right), \mathbf{0}\right)
$$

We have the decomposition $G = H_+ Z H_-$ almost everywhere on *G*, where H_+ (resp. H_-) is the unstable (resp. stable) manifold for Φ^s , and Z is the centralizer:

K ロ ▶ K 何 ▶ K 手 ▶ K

重

 Ω

Consider the Jacobi group $G = \widetilde{\mathrm{SL}}(2,\mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$
\Phi^{\textbf{s}}=\left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix}\right); \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right), \mathbf{0}\right)
$$

We have the decomposition $G = H_+ Z H_-$ almost everywhere on *G*, where H_+ (resp. H_-) is the unstable (resp. stable) manifold for Φ^s , and Z is the centralizer:

$$
H_{+} = \{ g \in G : \Phi^{s} g \Phi^{-s} \to e \text{ as } s \to \infty \} = \{ ((\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix}), (\begin{smallmatrix} \alpha \\ 0 \end{smallmatrix}), 0) \}
$$

\n
$$
H_{-} = \{ g \in G : \Phi^{-s} g \Phi^{s} \to e \text{ as } s \to \infty \} = \{ ((\begin{smallmatrix} 1 & 0 \\ u & 1 \end{smallmatrix}), (\begin{smallmatrix} 0 \\ \beta \end{smallmatrix}), 0) \}
$$

\n
$$
Z = \{ g \in G : \Phi^{-s} g \Phi^{s} = g \text{ for all } s \in \mathbb{R} \}
$$

K ロ ▶ K 何 ▶ K 手 ▶ K

重

 Ω

Francesco Cellarosi (UIUC)

Consider the Jacobi group $G = \widetilde{\mathrm{SL}}(2,\mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$ and the geodesic flow on it, acting by right multiplication by

$$
\Phi^{\textbf{s}}=\left(\left(\begin{smallmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{smallmatrix}\right); \left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right), \mathbf{0}\right)
$$

We have the decomposition $G = H_+ Z H_-$ almost everywhere on *G*, where H_+ (resp. H_-) is the unstable (resp. stable) manifold for Φ^s , and Z is the centralizer:

$$
H_{+} = \{ g \in G : \Phi^{s} g \Phi^{-s} \to e \text{ as } s \to \infty \} = \{ ((\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix}), (\begin{smallmatrix} \alpha \\ 0 \end{smallmatrix}), 0) \}
$$

\n
$$
H_{-} = \{ g \in G : \Phi^{-s} g \Phi^{s} \to e \text{ as } s \to \infty \} = \{ ((\begin{smallmatrix} 1 & 0 \\ u & 1 \end{smallmatrix}), (\begin{smallmatrix} 0 \\ \beta \end{smallmatrix}), 0) \}
$$

\n
$$
Z = \{ g \in G : \Phi^{-s} g \Phi^{s} = g \text{ for all } s \in \mathbb{R} \}
$$

 209

 W e have $H_{+} = \{n_{+}(x, \alpha)\} \cong \mathbb{R}^{2}$ and $H_{-} = \{n_{-}(u, \beta)\} \cong \mathbb{R}^{2}$ $H_{-} = \{n_{-}(u, \beta)\} \cong \mathbb{R}^{2}$ $H_{-} = \{n_{-}(u, \beta)\} \cong \mathbb{R}^{2}$ [.](#page-59-0)

Francesco Cellarosi (UIUC)

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < G$ and a square-integrable function Θ : $\Gamma \backslash G \rightarrow \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function E^{\times} : $H_{-} \rightarrow [0,\infty)$ and a set $P^{\times} \subset H_{-}$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_-(u, \beta) \in P^x$,

Francesco Cellarosi (UIUC)

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < G$ and a square-integrable function Θ : $\Gamma \backslash G \rightarrow \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function E^{\times} : $H_{-} \rightarrow [0,\infty)$ and a set $P^{\times} \subset H_{-}$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_-(u, \beta) \in P^x$,

$$
\left|S_N(x,\alpha)-e^{s/4}\Theta(\Gamma n_+(x,\alpha)n_-(u,\beta)\Phi^s)\right|\leq E^x(u,\beta),
$$

where $N = |e^{s/2}|$.

Using the Γ -invariance of Θ we re-obtain Hardy-Littlewood's approximate functional equation.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

重

 Ω

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < 0$ and a square-integrable function Θ : $\Gamma \backslash G \rightarrow \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function E^{\times} : $H_{-} \rightarrow [0,\infty)$ and a set $P^{\times} \subset H_{-}$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_{-}(u, \beta) \in P^{x}$,

$$
\left|S_N(x,\alpha)-e^{s/4}\Theta(\Gamma n_+(x,\alpha)n_-(u,\beta)\Phi^s)\right|\leq E^x(u,\beta),
$$

where $N = |e^{s/2}|$.

- Using the Γ -invariance of Θ we re-obtain Hardy-Littlewood's approximate functional equation.
- \blacksquare We can estimate Θ directly, this yields estimates for $S_N(x, \alpha)$ directly. No need to iterate the approximate functional eq.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 209

Theorem 1 (C.-Marklof)

There exist a cofinite $\Gamma < 0$ and a square-integrable function Θ : $\Gamma \backslash G \rightarrow \mathbb{C}$ and, for every $x \in \mathbb{R}$, a measurable function E^{\times} : $H_{-} \rightarrow [0,\infty)$ and a set $P^{\times} \subset H_{-}$ of full measure, such that for all $x, \alpha \in \mathbb{R}$ and $n_-(u, \beta) \in P^x$,

$$
\left|S_N(x,\alpha)-e^{s/4}\Theta(\Gamma n_+(x,\alpha)n_-(u,\beta)\Phi^s)\right|\leq E^x(u,\beta),
$$

where $N = |e^{s/2}|$.

- Using the Γ -invariance of Θ we re-obtain Hardy-Littlewood's approximate functional equation.
- \blacksquare We can estimate Θ directly, this yields estimates for $S_N(x, \alpha)$ directly. No need to iterate the approximate functional eq.
- Th[e](#page-22-0) set P^x is explicit (in terms of a Di[op](#page-20-0)h[a](#page-22-0)[nt](#page-17-0)[i](#page-18-0)[n](#page-21-0)e [co](#page-0-0)[nd](#page-59-0)[iti](#page-0-0)[on](#page-59-0)[\).](#page-0-0)

 OQ

Francesco Cellarosi (UIUC)

 \blacksquare Theorem 1 allows us to study the exact behavior of the partial sums of $S_N(x, \alpha)$ for *random x* and for fixed α (no need to average over α).

重

 Ω

 \blacksquare Theorem 1 allows us to study the exact behavior of the partial sums of $S_N(x, \alpha)$ for *random* x and for fixed α (no need to average over α).

重

 Ω

Q: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?

Francesco Cellarosi (UIUC)

- \blacksquare Theorem 1 allows us to study the exact behavior of the partial sums of $S_N(x, \alpha)$ for *random* x and for fixed α (no need to average over α).
	- **Q**: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?
- We can be more general and replace $\frac{1}{2}n^2$ by any quadratic polynomial $P(n) = \frac{1}{2}n^2 + c_1n + c_0$ with real coefficients. Our method allows us to consider $P(n)x + \alpha n$, as long as $(c_1,\alpha) \notin \mathbb{Q}^2$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

重

 Ω

- \blacksquare Theorem 1 allows us to study the exact behavior of the partial sums of $S_N(x, \alpha)$ for *random* x and for fixed α (no need to average over α).
	- **Q**: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?
- We can be more general and replace $\frac{1}{2}n^2$ by any quadratic polynomial $P(n) = \frac{1}{2}n^2 + c_1n + c_0$ with real coefficients. Our method allows us to consider $P(n)x + \alpha n$, as long as $(c_1,\alpha) \notin \mathbb{Q}^2$. **Q**: How randomly does $(\frac{1}{2}n^2x + n\sqrt{3}x)_{n\geq 1}$ behave?

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Ω

- \blacksquare Theorem 1 allows us to study the exact behavior of the partial sums of $S_N(x, \alpha)$ for *random* x and for fixed α (no need to average over α).
	- **Q**: How randomly does $(\frac{1}{2}n^2x + n\sqrt{2})_{n\geq 1}$ behave?
- We can be more general and replace $\frac{1}{2}n^2$ by any quadratic polynomial $P(n) = \frac{1}{2}n^2 + c_1n + c_0$ with real coefficients. Our method allows us to consider $P(n)x + \alpha n$, as long as $(c_1,\alpha) \notin \mathbb{Q}^2$. **Q**: How randomly does $(\frac{1}{2}n^2x + n\sqrt{3}x)_{n\geq 1}$ behave?
- What do we mean by "random behavior"? Look at the "deterministic" random walk with increments $e(P(n)x + n\alpha)$...

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 209

We consider exponential sums

$$
S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \text{ where } P(n) = \frac{1}{2}n^2 + c_1 n + c_0,
$$

メロメ メ部 メメ きょくきょう

 $E = \Omega Q$

$$
e(z) = e^{2\pi i z}
$$
, and $c_1, c_2, \alpha \in \mathbb{R}$ are fixed.

Francesco Cellarosi (UIUC)

■ We consider exponential sums

$$
S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \text{ where } P(n) = \frac{1}{2}n^2 + c_1 n + c_0,
$$

$$
e(z) = e^{2\pi i z}
$$
, and $c_1, c_2, \alpha \in \mathbb{R}$ are fixed.

N When x is randomly distributed on \mathbb{R} according to some density *h* with $\int_{\mathbb{R}} h(x) dx = 1$ then $S_N(x)$ is a random variable on C.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 QQQ

Ε

■ We consider exponential sums

$$
S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \text{ where } P(n) = \frac{1}{2}n^2 + c_1 n + c_0,
$$

$$
e(z) = e^{2\pi iz}
$$
, and $c_1, c_2, \alpha \in \mathbb{R}$ are fixed.

N When x is randomly distributed on \mathbb{R} according to some density *h* with $\int_{\mathbb{R}} h(x) dx = 1$ then $S_N(x)$ is a random variable on C.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

重

 Ω

■ $S_N(x)$ is a sum of *strongly dependent* random variables. (Methods from Probability do not apply).

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ 「君」 めなひ

Francesco Cellarosi (UIUC)

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

Francesco Cellarosi (UIUC)

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

Francesco Cellarosi (UIUC)

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

Define the rescaled random walk on C

$$
X_N(t)=\frac{1}{\sqrt{N}}S_{\lfloor tN\rfloor}(x)
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 $E = \Omega Q$

for $t \in [0, 1]$.

Francesco Cellarosi (UIUC)

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

Define the rescaled random walk on C

$$
X_N(t)=\frac{1}{\sqrt{N}}S_{\lfloor tN\rfloor}(x)
$$

 2990

Ε

メロメ メ母メ メミメ メミメ

for $t\in [0,1].$ Notice that this is a curve of length \sqrt{N} in $\mathbb C.$

Francesco Cellarosi (UIUC)

A "deterministic" random walk - *curlicues*

Francesco Cellarosi (UIUC)

Invariance Principle for *X^N*

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

$$
X_N(t) = \frac{1}{\sqrt{N}} S_{\lfloor tN \rfloor}(x)
$$

メロメ メ御 メメ きょく ミメー

 $E = \Omega Q$

Francesco Cellarosi (UIUC)

Invariance Principle for *X^N*

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

$$
X_N(t) = \frac{1}{\sqrt{N}} S_{\lfloor tN \rfloor}(x)
$$

N

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 QQQ

重

Our assumptions:

- $(c_1,\alpha) \notin \mathbb{Q}^2$.
- \blacksquare *x* is randomly distributed on $\mathbb R$ w.r.t. an absolutely continuous probability density, say $\int_{\mathbb{R}} h(u) \mathrm{d}u = 1$.

Invariance Principle for X_N

$$
P(n) = \frac{1}{2}n^2 + c_1 n + c_0, \quad S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha)
$$

$$
X_N(t) = \frac{1}{\sqrt{N}} S_{\lfloor tN \rfloor}(x)
$$

N

 209

Our assumptions:

- $(c_1,\alpha) \notin \mathbb{Q}^2$.
- \blacksquare *x* is randomly distributed on $\mathbb R$ w.r.t. an absolutely continuous probability density, say $\int_{\mathbb{R}} h(u) \mathrm{d}u = 1$.
- Theorem 2 (C.-Marklof).
	- **There exists a random process** $t \mapsto X(t)$ such that $X_N(t) \Longrightarrow X(t)$ as $N \to \infty$.
	- The pro[c](#page-35-0)ess $t \mapsto X(t)$ does not depend [o](#page-37-0)n (c_1, α) (c_1, α) (c_1, α) (c_1, α) (c_1, α) (c_1, α) [or](#page-59-0) *h*[.](#page-0-0)

Properties of the process $t \mapsto X(t)$

Theorem 2' (C.-Marklof).

The process $t \mapsto X(t)$ satisfies the following properties:

Tail asymptotics $(+)$ power saving).

$$
\mathbb{P}\{|X(1)| > R\} = \frac{6}{\pi^2}R^{-6}\left(1 + O(R^{-\frac{12}{31}})\right).
$$

Increments. For every $t_0 < t_1 < \ldots < t_k$ the increments

$$
X(t_2)-X(t_1),X(t_3)-X(t_2),\ldots,X(t_k)-X(t_{k-1})
$$

K ロ ▶ K 何 ▶ K

ヨ トー

重

 Ω

are not independent.

Scaling For
$$
a > 0
$$
 let $Y(t) = \frac{1}{a}X(a^2t)$. Then $Y \sim X$.

Francesco Cellarosi (UIUC)

Properties of the process $t \mapsto X(t)$

Time inversion. Let

$$
Y(t) := \begin{cases} 0 & \text{if } t = 0; \\ tX(1/t) & \text{if } t > 0. \end{cases}
$$

Then $Y \sim X$

- **Law of large numbers**. Almost surely, $\lim_{t\to\infty} \frac{X(t)}{t} = 0$.
- **Stationarity**. For $t_0 \ge 0$ let $Y(t) = X(t_0 + t) X(t_0)$. Then $Y \sim X$

KED KARD KED KED E VOOR

Rotational invariance. For $\theta \in \mathbb{R}$ let $Y(t) = e^{2\pi i \theta} X(t)$. Then $Y \sim X$.

Francesco Cellarosi (UIUC)

Properties of the process $t \mapsto X(t)$

Modulus of continuity. For every $\varepsilon > 0$ there exists a constant $C_{\epsilon} > 0$ such that

$$
\limsup_{h \downarrow 0} \sup_{0 \leq t \leq 1-h} \frac{|X(t+h) - X(t)|}{\sqrt{h}(\log(1/h))^{1/4+\varepsilon}} \leq C_{\varepsilon}
$$

almost surely.

- **E** Hölder continuity. Fix θ < 1/2. Then, almost surely, the curve $t \mapsto X(t)$ is everywhere locally θ -Hölder continuous.
- **Nondifferentiability**. Fix $t_0 \geq 0$. Then, almost surely, the curve $t \mapsto X(t)$ is not differentiable at t_0 .

イロト イ押 トイヨ トイヨ トー

重

 Ω

Thm 2 is proved using equidistribution of long, closed horocycles in a homogeneous space $\Gamma \backslash G$ under the geodesic flow.

4.0.3

4 何) 4

重き

 2990

Ε

Francesco Cellarosi (UIUC)

Thm 2 is proved using equidistribution of long, closed horocycles in a homogeneous space $\Gamma \backslash G$ under the geodesic flow.

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \left\langle \mathbf{q} \right\rangle \right\vert$

Ε

 Ω

■ Our "averaging" over *x* relates to *one of the unstable directions* of the geodesic flow. We need more than just mixing (we use Ratner's measure classification).

- **Thm 2** is proved using equidistribution of long, closed horocycles in a homogeneous space $\Gamma \backslash G$ under the geodesic flow.
- Our "averaging" over *x* relates to *one of the unstable directions* of the geodesic flow. We need more than just mixing (we use Ratner's measure classification).
- **The limiting process** $t \mapsto X(t)$ is the image of the geodesic flow on Γ *\G* (started at a Haar-random point) under a complex-valued function Θ (from **Thm 1**).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

重

 Ω

- **Thm 2** is proved using equidistribution of long, closed horocycles in a homogeneous space $\Gamma \backslash G$ under the geodesic flow.
- Our "averaging" over *x* relates to *one of the unstable directions* of the geodesic flow. We need more than just mixing (we use Ratner's measure classification).
- **The limiting process** $t \mapsto X(t)$ is the image of the geodesic flow on Γ *\G* (started at a Haar-random point) under a complex-valued function Θ (from Thm 1).
- \blacksquare The properties of $X(t)$ in **Thm 2'** come from properties of the geodesic flow on $\Gamma \backslash G$ (e.g. excursions into the cusp) and Θ .

イロメ イ団メ イモメ イモメー

重

 Ω

An application

A particular case of Thm 2' is:

Theorem 2" (C. - Marklof) Fix $c_1, c_0, \alpha \in \mathbb{R}$, $(c_1, \alpha) \notin \mathbb{Q}^2$. There exists a probability measure $\mathbb P$ on $\mathbb C$ such that for every bounded continuous function $F: \mathbb{C} \to \mathbb{R}$ we have

$$
\int_{\mathbb{R}} F\left(N^{-\frac{1}{2}} S_N(x)\right) d\lambda(x) \stackrel{N\to\infty}{\longrightarrow} \int_{\mathbb{C}} F d\mathbb{P}.
$$

(Brita)

K 向 > K

Ε

 Ω

Francesco Cellarosi (UIUC)

An application

A particular case of Thm 2' is:

Theorem 2" (C. - Marklof) Fix $c_1, c_0, \alpha \in \mathbb{R}$, $(c_1, \alpha) \notin \mathbb{Q}^2$. There exists a probability measure $\mathbb P$ on $\mathbb C$ such that for every bounded continuous function $F: \mathbb{C} \to \mathbb{R}$ we have

$$
\int_{\mathbb{R}} F\left(N^{-\frac{1}{2}} S_N(x)\right) d\lambda(x) \stackrel{N\to\infty}{\longrightarrow} \int_{\mathbb{C}} F d\mathbb{P}.
$$

Corollary. Fix $c_1, c_0, \alpha \in \mathbb{R}$, $(c_1, \alpha) \notin \mathbb{Q}^2$. Then

$$
\lim_{N \to \infty} \lambda \left\{ x \in \mathbb{R} : \left| \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \cos(2\pi (P(n)x + n\alpha)) \right| > R \right\} = \frac{15}{16\pi^2} R^{-6} \left(1 + O(R^{-12/31}) \right).
$$

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow

Ε

 Ω

Francesco Cellarosi (UIUC)

Francesco Cellarosi (UIUC)

Francesco Cellarosi (UIUC)

[Quadratic Weyl sums, Automorphic Functions, and Invariance Principles](#page-0-0)

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Appendix: More on the tail asymptotics $S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \quad P(n) = \frac{1}{2}n^2 + c_1 n + c_0.$

For $(c_1, \alpha) \notin \mathbb{Q}^2$ we have

$$
\lim_{N\to\infty}\lambda\Big\{x\in\mathbb{R}: \ \Big|N^{-\frac{1}{2}}S_N(x)\Big|>R\Big\}=\frac{6}{\pi^2}R^{-6}\left(1+O(R^{-12/31})\right)
$$

メロメ メ都 メメ きょうぼおう

 $E = \Omega Q$

Francesco Cellarosi (UIUC)

Appendix: More on the tail asymptotics $S_N(x) = \sum_{n=1}^N e(P(n)x + n\alpha), \quad P(n) = \frac{1}{2}n^2 + c_1 n + c_0.$

For $(c_1, \alpha) \notin \mathbb{Q}^2$ we have

$$
\lim_{N\to\infty}\lambda\Big\{x\in\mathbb{R}: \ \Big|N^{-\frac{1}{2}}S_N(x)\Big|>R\Big\}=\frac{6}{\pi^2}R^{-6}\left(1+O(R^{-12/31})\right)
$$

Where does $\frac{6}{\pi^2}$ come from? In our proof

$$
\frac{6}{\pi^2} = \frac{1}{\frac{\pi^2}{3}} \cdot \frac{2}{3} \cdot 2 \cdot \mathcal{I}
$$

$$
\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_1 x^2 + z_2 x) dx \right|^6 dz_1 dz_2 = \frac{3}{2}
$$

メロメ メ都 メメ きょうくぼ メー

 QQQ

GB.

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 1/3 Let $\mathcal{N}(R)$ be the number of integer solutions to the equations

$$
x_1 + x_2 + x_3 = y_1 + y_2 + y_3
$$

$$
x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Œ.

 Ω

with $1 \leq x_i, y_i \leq R$ for $j = 1, 2, 3$.

Counting integer points on Vinogradov's quadric 1/3 Let $\mathcal{N}(R)$ be the number of integer solutions to the equations

$$
x_1 + x_2 + x_3 = y_1 + y_2 + y_3
$$

$$
x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2
$$

with $1 \leq x_i, y_i \leq R$ for $j = 1, 2, 3$.

 \blacksquare Hua (1947) showed that

$$
\mathcal{N}(R) = O(R^3 \log^3 R).
$$

メロト メ何ト メミトメ

G.

 Ω

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 1/3 Let $\mathcal{N}(R)$ be the number of integer solutions to the equations

$$
x_1 + x_2 + x_3 = y_1 + y_2 + y_3
$$

$$
x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2
$$

with $1 \leq x_i, y_i \leq R$ for $j = 1, 2, 3$.

 \blacksquare Hua (1947) showed that

$$
\mathcal{N}(R) = O(R^3 \log^3 R).
$$

Hua (1959) also showed that the number $\tilde{\mathcal{N}}(a)$ of solutions with $x_1^2 + x_2^2 + x_3^2 \le a$ and $y_1^2 + y_2^2 + y_3^2 \le a$ is

$$
\tilde{\mathcal{N}}(a) = \frac{35\sqrt{3}}{2}a^{3/2}\log a + O(a^{3/2}\sqrt{\log a}).
$$

メロメ メ都 メメ きょ メモメ

重

 Ω

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 2/3

Bykovskii (1984) showed that

$$
\mathcal{N}(R) = \frac{12}{\pi^2} \mathcal{I} R^3 \log R + O(R^3)
$$

where
$$
\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_1 x^2 + z_2 x) dx \right|^{6} dz_1 dz_2.
$$

造わす者 わい

K ロ ▶ K 何 ▶ K

 $E = \Omega Q$

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 2/3

Bykovskii (1984) showed that

$$
\mathcal{N}(R) = \frac{12}{\pi^2} \mathcal{I} R^3 \log R + O(R^3)
$$

where
$$
\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_1 x^2 + z_2 x) dx \right|^{6} dz_1 dz_2.
$$

Rogovskaya (1986) showed that

$$
\mathcal{N}(R)=\frac{18}{\pi^2}R^3\log R+O(R^3).
$$

4 0 8

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

造っ

Box

 2990

ミー

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 2/3

Bykovskii (1984) showed that

$$
\mathcal{N}(R) = \frac{12}{\pi^2} \mathcal{I} R^3 \log R + O(R^3)
$$

where
$$
\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_1 x^2 + z_2 x) dx \right|^{6} dz_1 dz_2.
$$

■ Rogovskaya (1986) showed that

$$
\mathcal{N}(R)=\frac{18}{\pi^2}R^3\log R+O(R^3).
$$

If It was shown by V. Blomer and J. Brüdern (2010) that

$$
\mathcal{N}(R) = \frac{18}{\pi^2} R^3 \log R + \frac{3}{\pi^2} \left(\gamma - 6\frac{\zeta'(2)}{\zeta(2)} - 5\right) R^3 + O(R^{5/2} \log R).
$$

イロメ イ押メ イヨメ イヨメ

 \equiv Ω

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 3/3 Rogovskaya's work implies that

$$
\mathcal{I}=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\left|\int_{0}^{1}e(z_{1}x^{2}+z_{2}x)dx\right|^{6}dz_{1}dz_{2}=\frac{3}{2}
$$

4.0.3

4 何 ▶

 299

Э× Ε

Francesco Cellarosi (UIUC)

Counting integer points on Vinogradov's quadric 3/3 Rogovskaya's work implies that

$$
\mathcal{I} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \int_{0}^{1} e(z_{1}x^{2} + z_{2}x) dx \right|^{6} dz_{1} dz_{2} = \frac{3}{2}
$$

Francesco Cellarosi (UIUC)

QUADRATIC WEYL SUMS, AUTHOMORPHIC FUNCTIONS, AND INVARIANCE PRINCIPLE

FRANCESCO CELLAROSI

1. Homogeneous Dynamics

1.1. **Setup.** We start with the Jacobi group $G = \widetilde{SL}(2, \mathbb{R}) \ltimes \mathbb{H}(\mathbb{R})$. We can represent this as $\mathcal{H} \times \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}$, a six dimensional space with coordinates given by $(x+iy, \phi; \xi, \zeta) = g$. In these coordinates the Haar measure is $dg = \frac{dx dy d\phi d\xi_1 d\xi_2 d\zeta}{y^2}$.

1.2. Description of the limiting process $t \mapsto X(t)$. In Theorem 2, we state that there exists a random process, but we can do better. We can actually give a description of this limiting process.

$$
X(t) = \sqrt{t} \Theta(\Gamma g \Phi^{2 \log t})
$$

for g Haar-random on $\Gamma \backslash G$. We can think of $(\Gamma \backslash G, dg)$ as a probability space. We need to understand Θ .

We have a Schrödinger - Weyl representation of *G*. To each element *G* we associate a unitary operator $U(L^2(\mathbb{R}))$, where $g \mapsto R(G)$, and $R(g)$ gives an operator $L^2 \to L^2$, where $f \mapsto R(g)f$. We define $\Theta : G \to \mathbb{C}$ in terms of this representation as follows:

$$
\Theta_f(g) = \sum_{n \in \mathbb{Z}} [R(g)f](n) = y^{1/4} e \left(\zeta - \frac{1}{2} \xi_1 \xi_2 \right) \sum_{n \in \mathbb{Z}} f_{\phi} \left((n - \xi_2) y^{1/2} \right) e \left(\frac{1}{2} (n - \xi_2)^2 x + n \xi_1 \right)
$$

where $f_{\phi}(t) = \sum_{k=0}^{\infty} \hat{f}(k) e^{\frac{-i2k-1}{2}\phi} \psi_k(t)$, $\{\psi_k\}$ is a hermit orthonormal basis of $L^2(\mathbb{R})$, and $\hat{f}(k) = \langle f, \psi_k \rangle$. Note that when $\phi = 0$, f_{ϕ} is the identity, if $\phi = \pi/2$, then f_{ϕ} is the Fourier transform of f.

Fact 1. If f is, for example, Schwartz, then Θ_f is Γ -invariant for an explicit $\Gamma < G$. If f is not Schwartz, *then we do not understand how to interpret* Θ_f *point wise.*

Observation 1 (Why we care about Θ_f). When $y = \frac{1}{N^2}$ and $\chi = \mathbb{1}_{(0,1]}$, we have

$$
S_N(x) = y^{-1/4} \Theta_x \left(x + iy, 0; \begin{pmatrix} \alpha + c_1 x \\ 0 \end{pmatrix}, c_0 x \right).
$$

Moreover,

$$
X_N(t) = e^{s/4} \Theta_\chi \left(x + i y e^{-s}, 0; \begin{pmatrix} \alpha + c_1 x \\ 0 \end{pmatrix}, c_0 x \right),
$$

 $s = 2 \log t$. We can use the group law to rewrite this as

$$
e^{s/4}\Theta\left(\left(1;\begin{pmatrix} \alpha+c_1x\\0 \end{pmatrix},c_0x\right)\Psi^x\Phi^s\Phi^{2\log N}\right)
$$

where $\Psi^x = \left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \right)$ $\sqrt{0}$ θ ◆ *,* 0 ◆ , horocycle flow, and Φ is the geodesic flow.

Now, fix *t*, then we define $\tilde{\Theta}(g) = e^{s/4} \Theta(g \Phi^s)$. The existence of finite dimensional limiting distribution means for $B: \mathbb{C} \to \mathbb{R}$

$$
\lim_{\tau \to \infty} \int_{\mathbb{R}} B\left(\widetilde{\Theta}\left(\left(1; \begin{pmatrix} \alpha + c_1 x \\ 0 \end{pmatrix}, c_0 x\right) \Psi^x \Phi^\tau\right)\right) d\lambda(x) = \int_{\Gamma \backslash G} B\left(\widetilde{\Theta}(g)\right) dg,
$$

 $\tau = 2 \log N$, using the equidistribution of long closed horocycles in $\Gamma \backslash G$.

Date: February 03, 2015.