RIGIDITY OF HIGHER RANK DIAGONALIZABLE ACTIONS

MANFRED EINSIEDLER

1. First examples

1.1. $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. We can look at multiplication by $p \in \mathbb{Z}$, $p \times \sim \mathbb{T}$. If $p = 3$, we get that the middle third Cantor set is a $\times 3$ invariant set, modulo integers. Thus, there are many different types of orbits, closed invariant sets, and invariant measures.

1.2. \mathbb{T}^2 . Consider the action $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$. Adler-Weiss gave a complete description of this dynamical system. We have a covering of \mathbb{T}^2 by a shift space in $\{0,1\}^{\mathbb{Z}}$. Again we get that there are many different types of orbits, closed invariant sets, and invariant measures

1.3. $X_2 = SL(2,\mathbb{R})/SL(2,\mathbb{Z})$. Where the action of $SL(2,\mathbb{Z})$ is by Möbius transformations, that is $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}.$

FIGURE 1. The space X_2 with identifications

Consider the action of the geodesic flow *A* = $\sqrt{e^2}$ e^{-t} ◆ by left multiplication on X_2 . There is a relation between the continued fraction expansion and the geodesic flow. Consider a geodesic with right endpoint $\alpha \in \mathbb{R}$, shifting the geodesic gets us another geodesic with right endpoint at $\alpha - 1$, eventually we will reach $\{\alpha\}$, the fractional part of α , see Figure 2.

2. Higher rank

Theorem 1 (Furstenberg, '67). *Consider the actions* $2 \times, 3 \times \sim \mathbb{T}$ *, and* $\alpha \in \mathbb{T}$ *. We have*

$$
S = \overline{\{2^n 3^m \alpha\}} = \begin{cases} \text{finite} & \text{if } \alpha \in \mathbb{Q} \\ \mathbb{T} & \text{otherwise} \end{cases}
$$

Date: February 03, 2015.

Figure 2. Relation between geodesic flow and continued fractions

Theorem 2 (Berend). *Consider the actions* $A, B: \mathbb{T}^k \to \mathbb{T}^k$. *Assume these actions are totally irreducible, hyperbolic, and faithfully* \mathbb{Z}^2 *. Take an A, B-invariant set S, then either* $|S| < \infty$ *or* $S = \mathbb{T}$ *.*

3. HOMOGENEOUS SETTING

We would like to get a higher rank picture so that we have 2 multiplicatively independent actions. Our space is $X_3 = SL(3, \mathbb{R})/SL(3, \mathbb{Z})$ where $SL(3, \mathbb{Z}) = \{g\mathbb{Z}^3 \mid g \in SL(3, \mathbb{R})\}$ and we consider the action of

$$
A = \left\{ \begin{pmatrix} e^{t_1} & & \\ & e^{t_2} & \\ & & e^{t^3} \end{pmatrix} \mid t_1 + t_2 + t_3 = 0 \right\}
$$

Conjecture 1 (Margulis). *If* $Ax \subseteq X_3$ *is bounded for some* $x \in X_3$ *, then* Ax *is periodic.*

This is somehow the correct analog for the theorems of Furstenberg and Berend in this situation. It also gives the following:

Conjecture 2 (Littlewood's Conjecture).

$$
\liminf_{n\to\infty}n|||n\alpha_1|||\cdot||||n\alpha_2|||=0
$$

4. Measure Rigidity

Theorem 3 (Rudolph '90). Suppose μ is \times 2, \times 3-invariant and ergodic, and $h_{\mu}(\times 2^m 3^n) > 0$ then $\mu = m =$ *Lebesgue.*

Generalizations:

- Katok-Saptzier: \mathbb{T}^k and G/Γ
- Kalinin-Katok: $A, B: \mathbb{T}^3$.

Theorem 4 (Einsiedler-Lindenstrauss, '04). *Consider the actions of* $A, B: \mathbb{T}^k \to \mathbb{T}^k$, *totally irreducible, hyperbolic, and faithful. Then if* $h_{\mu}(A^nB^m) > 0$ *and* μ *invariant and ergodic, then* $\mu = m_{\mathbb{T}^k}$ *.*

Theorem 5 (Lindenstrauss, '06). *Consider the space* $X_{2,p} = SL(2,\mathbb{R} \times \mathbb{Q}_p)/SL(2,\mathbb{Z}[\frac{1}{p}])$ *and the action of*

$$
A = \left\{ \begin{pmatrix} e^t & & \\ & e^{-t} \end{pmatrix}, \begin{pmatrix} p^n & & \\ & p^{-n} \end{pmatrix} \right\}
$$

If μ *is an A-invariant and ergodic measure, with* $h_{\mu}(a) > 0$ *then* $\mu = m_{X_{2,p}}$.

Theorem 6 (EKL). *Consider the action of A on* X_3 *and* μ *A-invariant and ergodic with* $h_{\mu}(a) > 0$ *, then* $\mu = m_{X_3}$. If we have A acting on X_n , then μ_n is homogeneous and if n is prime, $\mu = m_{X_n}$.

Our lattice needs to be $SL(3, \mathbb{Z})$ for the following reason:

Theorem 7 (Ree's example). *There exists* $\Gamma \subset SL(3,\mathbb{R})$ *, such that in* $X = SL(3,\mathbb{R})/\Gamma$ *we have a centralizer direction that closes up.*

Theorem 8 (EL). Let $X = \mathbb{G}(\mathbb{R} \times \mathbb{Q}_p)/\mathbb{G}(\mathbb{Z}[\frac{1}{p}])$ and consider the action of A, the maximal \mathbb{R}/\mathbb{Q}_p -split *subgroup in some of the (almost) direct factors. Then there are 4 possible conclusions depending on your measure and lattice, either:*

- (I) *Invariance*
- (Z) *Zero entropy*
- (R) *Rank one*
- (T) *Periodic orbit*