
RIGIDITY OF HIGHER RANK DIAGONALIZABLE ACTIONS

MANFRED EINSIEDLER

1. First examples

1.1. T = R/Z. We can look at multiplication by p 2 Z, p⇥ y T. If p = 3, we get that the middle third
Cantor set is a ⇥3 invariant set, modulo integers. Thus, there are many di↵erent types of orbits, closed
invariant sets, and invariant measures.

1.2. T2. Consider the action A =

✓
0 1
1 1

◆
: T2 ! T2. Adler-Weiss gave a complete description of this

dynamical system. We have a covering of T2 by a shift space in {0, 1}Z. Again we get that there are many
di↵erent types of orbits, closed invariant sets, and invariant measures

1.3. X2 = SL(2,R)/SL(2,Z). Where the action of SL(2,Z) is by Möbius transformations, that is✓
a b

c d

◆
z =

az + b

cz + d

.
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z = z + 1

✓
0 �1
1 0

◆
z =

1

z

1/2�1/2
0

Figure 1. The space X2 with identifications

Consider the action of the geodesic flow A =

✓
e

2

e

�t

◆
by left multiplication on X2. There is a relation

between the continued fraction expansion and the geodesic flow. Consider a geodesic with right endpoint
↵ 2 R, shifting the geodesic gets us another geodesic with right endpoint at ↵� 1, eventually we will reach
{↵}, the fractional part of ↵, see Figure 2.

2. Higher rank

Theorem 1 (Furstenberg, ’67). Consider the actions 2⇥, 3⇥ y T, and ↵ 2 T. We have

S = {2n3m↵} =

⇢
finite if ↵ 2 Q
T otherwise
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Figure 2. Relation between geodesic flow and continued fractions

Theorem 2 (Berend). Consider the actions A,B : Tk ! Tk
. Assume these actions are totally irreducible,

hyperbolic, and faithfully Z2
. Take an A,B-invariant set S, then either |S| < 1 or S = T.

3. Homogeneous Setting

We would like to get a higher rank picture so that we have 2 multiplicatively independent actions. Our
space is X3 = SL(3,R)/SL(3,Z) where SL(3,Z) = {gZ3 | g 2 SL(3,R) and we consider the action of

A =

8
<

:

0

@
e

t1

e

t2

e

t3

1

A | t1 + t2 + t3 = 0

9
=

;

Conjecture 1 (Margulis). If Ax ✓ X3 is bounded for some x 2 X3, then Ax is periodic.

This is somehow the correct analog for the theorems of Furstenberg and Berend in this situation. It also
gives the following:

Conjecture 2 (Littlewood’s Conjecture).

lim inf
n!1

n|||n↵1||| · ||||n↵2||| = 0

4. Measure Rigidity

Theorem 3 (Rudolph ’90). Suppose µ is ⇥2,⇥3-invariant and ergodic, and hµ(⇥2m3n) > 0 then µ = m =
Lebesgue.

Generalizations:r Katok-Saptzier: Tk and G/�r Kalinin-Katok: A,B : T3.

Theorem 4 (Einsiedler-Lindenstrauss, ’04). Consider the actions of A,B : Tk ! Tk
, totally irreducible,

hyperbolic, and faithful. Then if hµ(A
n
B

m) > 0 and µ invariant and ergodic, then µ = mTk .

Theorem 5 (Lindenstrauss, ’06). Consider the space X2,p = SL(2,R⇥Qp)/SL(2,Z[ 1p ]) and the action of

A =

⇢✓
e

t

e

�t

◆
,

✓
p

n

p

�n

◆�

If µ is an A-invariant and ergodic measure, with hµ(a) > 0 then µ = mX2,p .

Theorem 6 (EKL). Consider the action of A on X3 and µ A-invariant and ergodic with hµ(a) > 0, then
µ = mX3 . If we have A acting on Xn, then µn is homogeneous and if n is prime, µ = mXn .
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Our lattice needs to be SL(3,Z) for the following reason:

Theorem 7 (Ree’s example). There exists � ⇢ SL(3,R), such that in X = SL(3,R)/� we have a centralizer

direction that closes up.

Theorem 8 (EL). Let X = G(R ⇥ Qp)/G(Z[ 1p ]) and consider the action of A, the maximal R/Qp-split

subgroup in some of the (almost) direct factors. Then there are 4 possible conclusions depending on your

measure and lattice, either:

(I) Invariance

(Z) Zero entropy

(R) Rank one

(T) Periodic orbit
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