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1. Introduction

We will work in the setting G = PSL(2,R) and � < G a discrete subgroup, not virtually cyclic. Define

at =

✓
et/2

e�t/2

◆
. We have a Cartan decomposition for K = PSO(2), G = KA+K. For f1, f2 2 Cc(�\G)

we consider t 7! R
�\G f1(xat)f2(x) dx. We want to answer the same 3 questions in the setting where � is

not a lattice.

We will operate under the following assumptions:

(1) vol(�\G) = 1
(2) � is finitely generated, this is the same as saying �\H is of finite type

convex core

flare

cusp

Figure 1. �\H

Cusps may or may not exist, but there will always be flares because of the volume assumption.

There is a natural correspondence between T 1(�\H) and �\PSL(2,R) where geodesic flow for time t
precisely corresponds to right translation by at.

We define the following invariants:

Definition 1.

(1) ⇤� = the limit set of � = the set of all accumulation points of �(0) ⇢ S1 = @1(H2).
(2) �� = the critical exponent of � = Hausdor↵ dimension of ⇤� (Theorem of Patterson-Sullivan ’76).
(3) ⌫0 = Patterson-Sullivan measure on ⇤� = �-dimensional measure on ⇤� (if there are no cusps).

Under our assumptions we have that 0 < �� < 1, since � is not elementary and not a lattice.

Definition 2 (Bowen-Margulis-Sullivan measure).

demBMS(g) =
d⌫0(g+) d⌫0(g�) dt

|g+ � g�|2�

This measure is left �-invariant and right A-invariant, and induces a measure, mBMS, on �\G.

Theorem 1 (Sullivan). mBMS(�\G) < 1.
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Figure 2. The unique geodesic determined by the vector g

This theorem essentially says that the Bowen-Margulis-Sullivan measure is supported on the convex core.
Sullivan also proved that this measure is ergodic.

2. Limit of the correlation function

Theorem 2 (Rudolph ’82, Babillot ’02). For f1, f2 2 Cc(�\G),
Z

f1(xat)f2(x) dm
BMS(x) ���!

t!1

1

mBMS(�\G)
·mBMS(f1)m

BMS(f2)

We define the Burger-Roblin measure, mBR, the unique nontrivial ergodic measure for the action of the
expanding horocyclic subgroup and the measure mBR⇤ , the unique nontrivial ergodic measure for the action
of the contracting horocyclic subgroup. Then we have the following theorem:

Theorem 3 (Roblin ’03).

e(1��)t

Z
f1(xat)f2(x) dx ����!

t!+1

1

mBMS(�\G)
·mBR(f1)m

BR⇤(f2)

3. Exponential rate

There are two cases we need to consider, when � > 1
2 and when �  1

2 . Let � = (negative) Laplacian on
L2(�\H) so that its spectrum �(�) ⇢ [0,1).

Theorem 4 (Patterson, Lax-Phillips ’82).

(1) If � > 1
2 , �(�) = �p(�) [ �c(�), a union of a descrete point spectrum �p(�) =�

0 < �0 < �1  · · ·  �m < 1
4

 
and a purely continuous spectrum �c(�) =

⇥
1
4 ,1

�
. Patterson showed

that �0 = �(1� �).
(2) If �  1

2 , �(�) = �c(�) =
⇥
1
4 ,1

�
.

Definition 3. The spectral gap is defined to be �1 � �0.

3.1. Case 1: � > 1
2 . To formulate the exponential error term statement, it will be convenient to

reparametrize the eigenvalues. Write �1 = S1(�)(1� S1(�)), where we choose a unique 1
2 < Si < �.

In this case, Theorem 4 is equivalent to the statement that L2(�\G) = HS0�HS1�· · ·�HSm�“tempered”.
We can think of HS0 as the “minimal” representation.

Theorem 5 (Bourgain-Kontorovich-Sarnak, Mohammadi-Oh). If � > 1
2 , then, for f1, f2 2 C1

c (�\G),

e(1��)t

Z
f1(xat)f2(x) dx =

1

mBMS(�\G)
·mBR(f1)m

BR⇤(f2) +O(S1(f1)S1(f2)e
�(1�")(��S1(�))t

Let � < SL(2,X) be a finitely generated, noncyclic subgroup. For q we define

�(q) = {� 2 � | � ⌘ 0mod q}
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Fix a finite symmetric generating set S of � with |S| = k. Then we define the Cayley graph G(�(q)\�, S) to
be the graph whose vertices are elements in �(q)\� = {v1, v2, . . . , vmq} and where edges are elements of the
set {(�, �s) | � 2 �(q)\�, s 2 S}. We have an adjacency matrix

Aq = (aij) =

⇢
1 if {v1, v2} 2 Edge
0 otherwise

and a combinatorial Laplacian

e�q = K \ Aq, it has eigenvalues 0 < e�1(q)  e�2(q)  · · · . If infq e�1(q) > 0,
we have an expander family.

Theorem 6 (Bourgain-Gamburd for prime moduli ’06, Bourgain-Gamburd-Sarnak for square-free moduli
’11). For � < SL(2,X) be a finitely generated, noncyclic subgroup,

{C(�(q)\�, S) | q is square free}
forms an expander family.

Theorem 7 (Transfer principle, Bourgain-Gamburd-Sarnak). If � > 1
2 , the combinatorial spectral gap is the

same as the archimedian spectral gap,

inf
q
e�1(q) > 0 () inf

q
�1(q) > �(1� �)

3.2. Case 2: �  1
2 . From now on we assume � is convex cocompact (i.e. no cusps).

Theorem 8 (Dolgopyat ’98, Stoyanov 2011).
Z

�\G
f1(xat)f2(x) dm

BMS(x) =
1

|mBMS|m
BMS(f1)m

BMS(f2) +O(kf1kC1kf2kC1e�⌘t)

So we have exponential mixing of the BMS measure.

Theorem 9 (Oh-Winter).

e(1��)t

Z

�\G
f1(xat)f2(x) dx =

1

|mBMS|m
BR(f1)m

BR⇤(f1) +O(kf1kC1kf2kC1e�⌘t)

here the error term depends on the support of f1 and f2.

Theorem 10 (Oh-Winter). Let � < SL(2,Z), convex cocompact, then there exists ⌘ > 0 and c � 3 such

that for all square-free q (with no small divisors) we have

e(1��)t

Z

�(q)\G
f1(xat)f2(x) dx =

1

|mBMS|m
BR(f1)m

BR⇤(f1) +O(qckf1kC1kf2kC1e�⌘t)

We define a resolvant operator

Rq(s) := (�� s(1� s))�1 : C1
c (�(q)\H) ! C1

c (�(q)\H)

It follows from the work of Patterson that Rq(s) is holomorphic for <(s) > � and s = � is the unique pole
on <(s) = � of rank 1. The resonances are then the poles of the meromorphic continuation of the resolvant.
For each q 2 N, Naud showed that there exists "q > 0 such that {<(s) > � � "q} is resonance-free, except
for s = �.

Theorem 11 (Oh-Winter). There exists " > 0 such that for all q square-free, <(s) > ��"} is resonance-free

for Rq(s).
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