EXPONENTIAL DECAY OF MATRIX COEFFICIENTS

HEE OH

1. INTRODUCTION

We will work in the setting G = PSL(2,R) and I < G a discrete subgroup, not virtually cyclic. Define
t/2
a; = (e e‘t/2>' We have a Cartan decomposition for K = PSO(2), G = KATK. For f1, f2 € C.(T'\G)
we consider ¢ — fF\G fi(zay) fa(z) de. We want to answer the same 3 questions in the setting where T is
not a lattice.
We will operate under the following assumptions:

(1) vol(I'\G) = >0
(2) T is finitely generated, this is the same as saying I'\H is of finite type

convex core

FiGure 1. T\H

Cusps may or may not exist, but there will always be flares because of the volume assumption.

There is a natural correspondence between T (I'\H) and I'\PSL(2,R) where geodesic flow for time ¢
precisely corresponds to right translation by a;.

We define the following invariants:
Definition 1.

(1) Ar = the limit set of I' = the set of all accumulation points of I'(0) C S' = 0, (H?).
(2) or = the critical exponent of I' = Hausdorff dimension of Ar (Theorem of Patterson-Sullivan ’76).
(3) vo = Patterson-Sullivan measure on Ar = §-dimensional measure on Ar (if there are no cusps).

Under our assumptions we have that 0 < dr < 1, since I' is not elementary and not a lattice.

Definition 2 (Bowen-Margulis-Sullivan measure).

_ dvg(g+) drg(g™) dt
BMS, \ _ 4¥0
) = g g

This measure is left T-invariant and right A-invariant, and induces a measure, m?™3 on T'\G.

Theorem 1 (Sullivan). mZM5(T\G) < oo.
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FIGURE 2. The unique geodesic determined by the vector g

This theorem essentially says that the Bowen-Margulis-Sullivan measure is supported on the convex core.
Sullivan also proved that this measure is ergodic.

2. LIMIT OF THE CORRELATION FUNCTION
Theorem 2 (Rudolph ’82, Babillot '02). For f1, fo € C.(I'\G),

/ f1 () fo() dmPMS(z) .

oo mPVS(T\G)

’ mBMS(f1)mBMS(f2)

We define the Burger-Roblin measure, mB®, the unique nontrivial ergodic measure for the action of the
expanding horocyclic subgroup and the measure mPR+, the unique nontrivial ergodic measure for the action
of the contracting horocyclic subgroup. Then we have the following theorem:

Theorem 3 (Roblin ’03).

6(1_6)t/f1($at)f2(l') dx P mBMsl(]_"\G) -mPE(f1)m P (f2)

3. EXPONENTIAL RATE

There are two cases we need to consider, when § > % and when § < % Let A = (negative) Laplacian on
L?(T'\H) so that its spectrum o(A) C [0, 0).

Theorem 4 (Patterson, Lax-Phillips ’82).

(1) If § > 1, o(A) = 0,(A) U oc(A), a union of a descrete point spectrum o,(A) =
{0 <A <M< <A< i} and a purely continuous spectrum o.(A) = H, oo). Patterson showed
that Ao = 6(1 — 6).
(2) If 6 < %, o(A) =0.(A) = [%,oo).
Definition 3. The spectral gap is defined to be A\; — Ag.

3.1. Case 1: § > % To formulate the exponential error term statement, it will be convenient to
reparametrize the eigenvalues. Write A; = S1(I')(1 — S1(I')), where we choose a unique 3 < S; < 4.

In this case, Theorem 4 is equivalent to the statement that L?(T\G) = Hg, ®Hs, O - -OHs,, ® “tempered”.
We can think of Hg, as the “minimal” representation.

Theorem 5 (Bourgain-Kontorovich-Sarnak, Mohammadi-Oh). If § > L, then, for f1, fo € C(T\G),
0 [ fu@an) fole) de = g mBE(F)mP (f2) + O(S) (f1)Sh (fa)e™ (-0
BMS
mPYS(\G)
Let T' < SL(2,X) be a finitely generated, noncyclic subgroup. For g we define

I'(q) ={y €T'| v = 0mod ¢}
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Fix a finite symmetric generating set S of I' with |S| = k. Then we define the Cayley graph G(T'(¢)\7, S) to
be the graph whose vertices are elements in I'(¢)\I' = {v1,v2, ..., v, } and where edges are elements of the
set {(7,7s) | v € T'(¢)\I', s € S}. We have an adjacency matrix

A, = (aij) = { 1 if {v1,v2} € Edge

0 otherwise
and a combinatorial Laplacian ﬁq = K\ Ay, it has eigenvalues 0 < Xl(q) < Xg(q) < ..., If inf, Xl(q) > 0,
we have an expander family.

Theorem 6 (Bourgain-Gamburd for prime moduli '06, Bourgain-Gamburd-Sarnak for square-free moduli
'11). ForT' < SL(2,X) be a finitely generated, noncyclic subgroup,

{C(T(g@)\I',S) | q is square free}
forms an expander family.

Theorem 7 (Transfer principle, Bourgain-Gamburd-Sarnak). If § > %, the combinatorial spectral gap is the
same as the archimedian spectral gap,

inf A (¢) >0 <= infA\;(q) > 6(1 —0)
q q

3.2. Case 2: § < % From now on we assume I' is convex cocompact (i.e. no cusps).

Theorem 8 (Dolgopyat ’98, Stoyanov 2011).

fiwan) fo() dim M5 () = |m§MS| mPM(F)mPME(f2) + O( fllen | fallere™)

r\G
So we have exponential mixing of the BMS measure.

Theorem 9 (Oh-Winter).

[ fi(wa) fala) do = g mPR(F)mE (f1) + O( fillon | fallore™)
G Im \

here the error term depends on the support of f1 and fs.

Theorem 10 (Oh-Winter). Let T' < SL(2,Z), convex cocompact, then there exists n > 0 and ¢ > 3 such
that for all square-free q (with no small divisors) we have

0 [ e fa(o) do = e m PR A)mP () + O il [allcre ™)
r@\G [m B3]

We define a resolvant operator
Ry(s) := (A = s(1—=s))7": CZ(T()\H) — C°(T'(g)\H)

It follows from the work of Patterson that R,(s) is holomorphic for %(s) > ¢ and s = ¢ is the unique pole
on R(s) = § of rank 1. The resonances are then the poles of the meromorphic continuation of the resolvant.
For each ¢ € N, Naud showed that there exists e, > 0 such that {R(s) > § —¢,} is resonance-free, except
for s = ¢.

Theorem 11 (Oh-Winter). There exists € > 0 such that for all g square-free, ®(s) > 0 —e} is resonance-free
for Ry(s).



