EXPONENTIAL DECAY OF MATRIX COEFFICIENTS

HEE OH

1. INTRODUCTION

We will look at the exponential decay of matrix coefficients of functions over $\Gamma \setminus G$ where G is a connected, simple, non-compact linear real group, $\Gamma < G$ a discrete subgroup and dx an invariant measure on $\Gamma \setminus G$. We want to ask the following questions,

Question 1. For $f_1, f_2 \in C_c(\Gamma \setminus G)$, to every g we can associate a correlation function: $g \mapsto \int_{\Gamma \setminus G} f_1(xg) f_2(x) dx$.

- (1) As $g \to \infty$ is there a limit for the correlation function?
- (2) Is there a limit with exponential rate of convergence?
- (3) is there a limit with *uniform* exponential rate of convergence for a given family $\{\Gamma_i < \Gamma\}$ of finite index subgroups?

Definition 1. A unitary representation of G is a group homomorphism $G \to U(\mathcal{H})$, where \mathcal{H} is a separable Hilbert space, such that the map $G \times \mathcal{H} \to \mathcal{H}$, where $(g, v) \mapsto gv$, is continuous.

Definition 2. For $v, w \in \mathcal{H}$, the function $G \to \mathbb{C}$, $g \mapsto \langle gv, w \rangle$ is called the *matrix coefficient* with respect to v and w.

Consider $L^2(\Gamma \setminus G, dx)$, here the inner product is given by $\langle f_1, f_2 \rangle := \int_{x \in \Gamma \setminus G} f_1(x) \overline{f_2(x)} dx$. This is Hilbert space and G acts on this space by right translation, $(g \cdot f)(x) = f(xg)$ and it preserves the inner product

$$\langle gf_1, gf_2 \rangle = \int_{\Gamma \setminus G} f_1(xg) \overline{f_2(xg)} \, \mathrm{d}x = \langle f_1, f_2 \rangle$$

so this gives us a unitary action of G. The matrix coefficient gives us exactly our correlation function. Thus any properties of a unitary representation and any statements about the matrix coefficient will also apply to the correlation function.

2. Limit of the correlation function

Theorem 1 (Howe-Moore '79). If ρ is a unitary representation of G with no G-invariant vector, then for all $v, w \in \rho$ (i.e. v, w are in the Hilbert space associated to ρ),

$$\lim_{g \to \infty} \langle \rho(g) v, w \rangle = 0$$

Corollary 1. Let $f_1, f_2 \in L^2(\Gamma \backslash G)$, then

$$\lim_{g \to \infty} \int_{\Gamma \setminus G} f_1(xg) f_2(x) \, \mathrm{d}x = \begin{cases} \frac{1}{\operatorname{vol}(\Gamma \setminus G)} \int f_1 \, \mathrm{d}x \int f_2 \, \mathrm{d}x & \text{if } \Gamma < G \text{ is a lattice} \\ 0 & \text{otherwise} \end{cases}$$

Proof. $L^2(\Gamma \setminus G)$ has no *G*-invariant vector if $vol(\Gamma \setminus G) = \infty$. If $\Gamma < G$ is a lattice, then we can decompose $L^2(\Gamma \setminus G) = \mathbb{C} \oplus L^2_o(\Gamma \setminus G)$.

Date: February 02, 2015.

3. EXPONENTIAL RATE

Fix the Cartan decomposition $G = KA^+K$ where K is a maximal compact subgroup of G and A a maximal real-diagonalizable subgroup of G, A^+ is the positive Weyl chamber of this subgroup. A^+ is uniquely determined and can be written as $A^+ = \{\exp X \mid X \in \mathfrak{a}^+\}$.

Example 1. If $G = SL(n, \mathbb{R})$, then K = SO(n), $A = \{ diag(e^{t_1}, \ldots, e^{t_n}) \mid \sum t_i = 0 \}$ and $A^+ = \{ diag(e^{t_1}, \ldots, e^{t_n}) \mid t_1 \ge t_2 \ge \cdots \ge t_n, \sum t_i = 0 \}.$

We define \mathbb{R} -rank $(G) = \dim A$. Then we consider the following cases, \mathbb{R} -rank $(G) \ge 2$, and \mathbb{R} -rank(G) = 1, which further breaks into $\operatorname{Sp}(n, 1)$ and F_4^{-20} , and $\operatorname{SO}(n, 1)$ and $\operatorname{SU}(n, 1)$.

Definition 3. A non-compact subgroup H < G is L^1 -tempered if for every unitary representation of G, ρ with no invariant vector, and every K-fixed vectors v, w the matrix coefficient of v, w is in $L^1(H)$.

Theorem 2 (Margulis '97). Let H < G be a closed and non-compact subgroup. Suppose H is an L^1 -tempered subgroup, then G/H does not admit any compact quotient, that is, there is no discrete subgroup $\Gamma < G$ such that Γ acts properly discontinuously on G/H and $\Gamma \setminus H$ is compact.

Remark 1. For this, it is not enough to show that there exists exponential decay we really want to prove very sharp exponential decay.

We define the function η_G , a bi-K-invariant function, such that $\eta_G(\exp x) = \frac{1}{2} \sum_{\alpha \in S} \alpha(x)$ for $x \in \mathfrak{a}^+$, where S is a maximal strongly orthogonal system of $\Phi_+(G, A)$, the positive root system. We call S strongly orthogonal if for distinct $\alpha, \beta \in S$, then $\alpha \pm \beta \notin \Phi$.

Theorem 3 (Oh, 2002). Assume \mathbb{R} -rank $(G) \geq 2$. For all $\varepsilon > 0$, there exists a constant $C_{\varepsilon} > 0$ such that for any unitary representation ρ of G with no invariant vectors, and any v, w, K-finite unit vectors of ρ , then

$$\langle \rho(g)v, w \rangle | \leq C_{\varepsilon} \sqrt{\dim \langle Kv \rangle \dim \langle Kw \rangle} e^{-(1-\varepsilon)\eta_G(g)}$$

Example 2. If $G = SL(n, \mathbb{R})$, we have, for a as in the previous example, $\Phi_+ = \{\alpha_{ij}(a) = t_i - t_j \mid i < j\}$. Then $S = \{\alpha_{i,n+1-i} \mid 1 \le i \le \lfloor \frac{n}{2} \rfloor\}$ is a maximal strongly orthogonal system, and

$$\eta_G = \frac{1}{2} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (t_i - t_{n+1-i})$$

In particular, if n = 3, we have

$$|\langle \rho(g)v, w \rangle| \le C_{\varepsilon} (\dim \langle Kv \rangle \dim \langle Kw \rangle)^{1/2} e^{-(t_1 + \frac{t_2}{2})(1-\varepsilon)}$$

Since $S = \{t_1 - t_3\}$, and we can replace this with $2t_1 + t_2$.

Theorem 4 (Oh, 2002). If $G = SL(n, \mathbb{R})$, $n \geq 3$, or $Sp(2n, \mathbb{R})$, then this bound is optimal in "every" direction of g. That is, there exists an irreducible unitary representation ρ_0 of G and a K-fixed vector v_0 such that $C \cdot e^{-\eta_G(g)} \leq |\langle \rho_0(g)v, v \rangle|$ for all $g \in G$.

3.1. Where do we get the strongly orthogonal system. To any $\alpha \in \phi$, we can associate a Lie group H_{α} , locally isomorphic to $SL(2,\mathbb{R})$, and generated by . In general the root space is not one dimensional, but we can generate a one dimensional subgroup from $\pm \alpha$. Look at the group

$$G_S := \langle H_\alpha, A \mid \alpha \in S \rangle$$

where S is strongly orthogonal. This group is reductive.

Proposition 1 (Main proposition). For any representation ρ with no *G*-invariant vector, if we consider $\rho|_{G_S}$ is a tempered, as defined by Harish-Chandra, representation of G_S .

Proof of Thm 3. If we have a tempered representation, we understand its matrix coefficients completely, they are bounded by the Harish-Chandra function of S.

Remark 2. Theorem 3 also holds for G = Sp(n, 1) and F_4^{-20} as follows from the classification of the spherical unitary dual (Kostant '69), but the bound we get is not optimal

Corollary 2. Suppose \mathbb{R} -rank of $G \geq 2$, or $G = \operatorname{Sp}(n, 1)$ or F_4^{-20} . Let $f_1, f_2 \in C_c^{\infty}(\Gamma \setminus G)$, then

$$\langle gf_1, f_2 \rangle = \begin{cases} \frac{1}{\operatorname{vol}(\Gamma \setminus G)} \int f_1 \cdot \int f_2 + O(\|f_1\|_{\operatorname{sob}} \|f_2\|_{\operatorname{sob}} \rho^{-(1-\varepsilon)\eta_G(g)}) & \text{if } \Gamma < G \text{ is a lattice} \\ O(\|f_1\|_{\operatorname{sob}} \|f_2\|_{\operatorname{sob}} \rho^{-(1-\varepsilon)\eta_G(g)}) & \text{otherwise} \end{cases}$$

Remark 3. We have uniform exponential decay for any Γ .

3.2. Rank 1. If $G = SO(n, 1) = Isom(\mathbb{H}^n_{\mathbb{R}})$ or $G = SU(n, 1) = Isom(\mathbb{H}^n_{\mathbb{C}})$, theorem 3 is not true. However, we can prove something for a very specific representation. Define

$$\rho_0 = \begin{cases} n-1 & \text{if } G = \mathrm{SO}(n,1) \\ 2n & \text{if } G = \mathrm{SU}(n,1) \end{cases}$$

let Δ denote the Laplacian on \mathbb{H}^n .

Theorem 5 (Lax-Phillips, Hamenstädt). Consider $L^2(\Gamma \setminus \mathbb{H}^n)$, Γ a lattice. Then there exists only finitely many eigenvalues of $-\Delta$ on $L^2(\Gamma \setminus \mathbb{H}^n)$ in $[0, \rho_0^2/4)$. In particular, there is a spectral gap.

We have

$$0 = \lambda_0 < \lambda_1(\Gamma) \le \lambda_2(\Gamma) \le \dots \le \lambda_m(\Gamma) < \frac{\rho_0^2}{4}$$

and we can write each eigenvalue as $\lambda_i(\Gamma) = s_i(\Gamma)(\rho_0 - s_i(\Gamma))$, where $\frac{\rho_0}{2} < S_i(\Gamma) \le \rho_0$.

Corollary 3 (Shalom 2000). Let $\Gamma < G$ be a lattice, then if $f_1, f_2 \in C_c^{\infty}(\Gamma \setminus G)$, we have

$$\int_{X\in\gamma\backslash G} f_1(xa_t)f_2(x)\,\mathrm{d}x = \frac{\int f_1 \int f_2}{\mathrm{vol}(\Gamma\backslash G)} + O(\|f_1\|_{\mathrm{sob}}\|f_2\|_{\mathrm{sob}}e^{-(1-\varepsilon)(\rho_0 - s_1(\Gamma))}$$

We cannot expect this uniform exponential error term for arbitrary finite index subgroups of Γ .

Example 3. Consider the case when $\Gamma \twoheadrightarrow \mathbb{Z}$, let $\Gamma_m = \ker(\Gamma \twoheadrightarrow \mathbb{Z}/m\mathbb{Z})$ and $\inf_m \lambda_1(\Gamma_m) = 0$

Definition 4. If there is a \mathbb{Q} -embedding $G \hookrightarrow SL(N)$ and $\Gamma = G \cap SL(N, \mathbb{Z})$, then Γ is called an *arithmetic lattice*.

Theorem 6 (Selberg, Burger-Sarnak, Clozel, Kelmer-Silberman¹). Let G = SO(n, 1) or SU(n, 1). Let Γ be an arithmetic lattice, then for all $q \in \mathbb{N}$, $\Gamma_1 = \{\gamma \in \Gamma | \gamma \equiv e \mod(q)\}$, then $\inf_q \lambda_1(\Gamma_q) > 0$.

Thus along these congruence subgroups we have uniform spectral gap and so Corollary 3 applies and we have uniform exponential mixing.

In the case when $G = SO(2, 1) = SL(2, \mathbb{R})$ and $\Gamma = SL(2, \mathbb{Z})$, Selberg's $\frac{3}{16}$ theorem tells us that $\inf \lambda_1(\Gamma_q) \ge \frac{3}{16}$, but Selberg's eigenvalue conjecture would show that $\inf \lambda_1(\Gamma_q) \ge \frac{1}{4}$.

 $^{^{1}}$ At the end of the second lecture it is noted that Kelmer-Silberman must be included in the credit if we would like to make a statement about arithmetic lattices.