SEMIGROUPS IN SEMISIMPLE GROUPS

YVES BENOIST

1. DISTRIBUTION OF EIGENVALUES

1.1. Semisimple groups. Let $V = \mathbb{R}^d$, $G = SL(V) = \{g \in End(V) \mid \det g = 1\}$ and define the Cartan subspace $\mathfrak{a} = \{x = (x_1, \ldots, x_d) \mid x_1 + \cdots + x_d = 0\}$, inside we have the Weyl chamber $\mathfrak{a}_+ = \{x \in \mathfrak{a} \mid x_1 \geq \cdots \geq x_d\}$.

Definition 1. Let $\kappa : G \to \mathfrak{a}_+$ be the *Cartan projection*, satisfying $\kappa(g) = (\log \kappa_1(g), \ldots, \log \kappa_d(g))$ where $\kappa_1(g) = ||g|| = \sup_{r \in V \setminus \{0\}} \frac{||gv||}{||v||}$ and $\kappa_i(g) = (i^{\text{th}} \text{ eigenvalue of } g^T g)^{1/2}$.

Exercise 1.

- Set K = SO(d) then we have the Polar decomposition $G = Ke^{\mathfrak{a}_+}K$. Show that $\kappa(g)$ is the unique element of \mathfrak{a}_+ such that $g \in Ke^{\kappa(g)}K$.
- $\|\bigwedge^i g\| = \kappa_1(g) \cdots \kappa_i(g).$

Compare this to the Jordan projection we studied yesterday:

Definition 2. Let $\lambda : G \to \mathfrak{a}_+$ be the Jordan projection, satisfying $\lambda(g) = (\log \lambda_1(g), \ldots, \lambda_d(g))$ where $\lambda_i(g) =$ modulus of the *i*th eigenvalue of g.

Exercise 2.

• $\lambda(g) = \lim_{n \to \infty} \frac{1}{n} \kappa(g^n)$ • $\lambda_i(\bigwedge^i g) = \lambda_1(g) \cdots \lambda_i(g).$

Define $F = \{\eta = (\eta_1, \dots, \eta_d) \mid \eta_i = i$ -dimensional vector space, $\eta_1 \subset \dots \subset \eta_i \subset \dots \subset V\}$, a flag variety.

Definition 3. The *Iwasawa cocycle* is a map $\sigma : G \times F \to \mathfrak{a}$ where $\sigma(g, \eta) = (\log \sigma_i(g, \eta), \dots, \log \sigma_d(g, \eta))$ and $\sigma_1(g, \eta) = \frac{\|gv_1\|}{\|v_1\|}, \eta_1 = \mathbb{R}v_1$ and

$$\sigma_1(g_\eta)\cdots\sigma_i(g,\eta) = \frac{\left\|\bigwedge^i g(v_1\wedge\cdots\wedge v_i)\right\|}{\left\|v_i\wedge\cdots\wedge v_i\right\|},$$

 $\eta_i = \mathbb{R}v_1 \oplus \cdots \oplus \mathbb{R}v_i.$

Exercise 3. Show that σ is a cocyle, i.e. $\sigma(g_1g_2,\eta) = \sigma(g_1,g_2\eta) + \sigma(g_2,\eta)$.

1.2. Random walks on G. Fix μ a probability measure on G, e.g. $\mu = \frac{1}{2}(\delta_a + \delta_b)$. Let $S = \operatorname{supp} \mu$, and assume S is compact. Define Γ to be the semigroup spanned by S, and assume Γ is Zariski-dense. We want to study the behavior of $\mu^{*n} = \mu * \cdots * \mu$, e.g.

$$\mu^{*n} = \frac{1}{2^n} \sum_{\substack{w = w(a,b)\\\ell(w) = n}} \delta_w.$$

Specifically, we want to understand $\kappa_*(\mu^{*n})$.

We will now state the probabilistic statements of the main theorems

Let $C \subset \mathfrak{a}$ be a bounded convex subset. Fix $\eta \in F$.

Date: February 05, 2015.

Theorem 1 (Law of Large Numbers). The limit

$$\lambda_{\mu} = \lim_{n \to \infty} \frac{1}{n} \int_{G} \kappa(g) \, d\mu^{*n}(g)$$

exists and $\lambda_{\mu} \in \overset{\circ}{\mathfrak{a}}_{+}$. Moreover, if we assume $0 \in \overset{\circ}{C}$, then $\mu^{*n} \left(\{ g \in G \mid \kappa(g) \in n\lambda_{\mu} + nC \} \right) \xrightarrow[n \to \infty]{} 1$

Theorem 2 (Central Limit Theorem). The limit

$$\Phi_{\mu} = \lim_{n \to \infty} \frac{1}{n} \int_{G} (\kappa(g) - n\lambda_{\mu})^{\otimes 2} d\mu^{*n}(g) \in S^{2}\mathfrak{a}$$

exists and is non-degenerate. Let N_{ν} be the centered Gaussian law whose covariance 2-tensor is Φ_{μ} . Then

$$\mu^{*n}\left(\{g \in G \mid \kappa(g) \in n\lambda_{\mu} + \sqrt{nC}\}\right) \xrightarrow[n \to \infty]{} N_{\mu}(C)$$

Theorem 3 (Local Limit Theorem). We have

$$\sqrt{n}^{d-1}\mu^{*n}\left(\{g\in G\mid \kappa(g)\in n\lambda_{\mu}+C\}\right)\xrightarrow[n\to\infty]{} Leb_{\mu}(C)$$

where $Leb_{\mu}(C) = \lim_{p \to \infty} p^{d-1} N_{\mu}\left(\frac{C}{p}\right).$

If you also fix $\eta \in F$ these three theorems are also true for $\kappa(g)$ replaced by $\sigma(g,\eta)$ and $\lambda(g)$.

Remark 1.

- LLT $\Rightarrow \Gamma_{\text{lox}} \neq \emptyset$ (Thm 1 from yesterday)
- CLT $\Rightarrow L_{\Gamma}$ has nonempty interior (Thm 2 from yesterday)
- LLT $\Rightarrow \Delta_{\Gamma} = \mathfrak{a}$ (Thm 3 from yesterday)

We will now look at how Thm 3 proves LLT.

1.3. The transfer operator. Fix a small $\gamma > 0$. Let

$$\mathcal{H}^{\gamma} = \left\{ \varphi \in C^{0}(F) \mid \sup_{\eta, \eta' \in F} \frac{|\varphi(\eta) - \varphi(\eta')|}{d(\eta, \eta')^{\gamma}} < \infty \right\}$$

and for every $\varphi \in C^0(F)$ we define the transfer operator

$$(P\varphi)(n) = \int_{G} \varphi(g\eta) \,\mathrm{d}\mu(g)$$

Then we have the following facts:

Fact 1.

- There is a unique stationary probability a measure ν on F, i.e. for all $\varphi \in C^0(F)$ we have $\nu(\varphi) = \nu(P\varphi)$.
- Write $\mathcal{H}^{\gamma} = \mathbb{C}1 \oplus \mathcal{H}_0^{\gamma}$ where $\mathcal{H}_0^{\gamma} = \ker \nu$. Then we get that spectral radius of P in \mathcal{H}_0^{γ} is less than 1.

Fix $\theta \in \mathfrak{a}^*$, we introduce the *complex transfer operator*, the analog of the Fourier transform,

$$(P_{\theta}\varphi)(\eta) = \int_{G} e^{i\theta(\sigma(g,\eta))}\varphi(g\eta) \,\mathrm{d}\mu(g)$$

Exercise 4. Show that the cocycle property gives

$$(P^n_{\theta}\varphi)(\eta) = \int_G e^{i\theta(\sigma(g,\eta))}\varphi(g\eta) \,\mathrm{d}\mu^{*n}(g)$$

Note that $||P_{\theta}||_{\infty} \leq 1$.

Fact 2. For $\theta \neq 0$ the spectral radius of P_{θ} in \mathcal{H}^{γ} is less than 1. Near $\theta = 0$, we have a P_{θ} -invariant decomposition $\mathcal{H}^{\gamma} = \mathbb{C}\varphi_{\theta} \oplus \mathcal{H}_{\theta}^{\gamma}$. Here $P_{\theta}\varphi_{\theta} = \lambda_{\theta}\varphi_{\theta}$ for $\lambda_{\theta} \in \mathbb{C}$. This is analytic in θ .

Proof of Fact 2. The key point is the P_{θ} has no eigenvalue of modulus 1.

Assume $\theta \neq 0$ and $P_{\theta}\varphi = \mu\varphi$, for $\varphi \in \mathcal{H}^{\gamma} \subset C^{0}(F)$. Hence $|\varphi| \leq P(|\varphi|)$ and $\nu(|\varphi|) = \nu(P(|\varphi|))$. So φ has constant modulus on the support of ν . So, for all $g \in S$, and all $\eta \in \operatorname{supp} \nu$ we get

$$u\varphi(\eta) = e^{i\theta(\sigma(g,\eta))}\varphi(g\eta)$$

It then follows that for all $g \in S^n$ and all $\eta \in \operatorname{supp} \nu$

$$u^n\varphi(\eta) = e^{i\theta(\sigma(g,\eta))}\varphi(g\eta).$$

In particular, if $g \in S^n$ is loxodromic, and η_g^+ its attractive fixed point, then we have $\sigma(g, \eta_g^+) = \lambda(g)$ and so

$$u^n = e^{i\theta(\lambda(g))}$$

 $e^{i\theta(\lambda(gh) - \lambda(g) - \lambda(h))} = 1$

Next, choose $g, h, gh \in \Gamma_{\text{lox}}$, then

implies that $\theta(\Delta_{\Gamma}) \subset 2\pi\mathbb{Z}$. which contradicts Theorem 3.

Proof of LLT. Define a quantity

$$(*) = \mu_{n,\eta}(C + n\lambda_{\mu}),$$

where $\mu_{n,\eta}$ is the image of μ^{*n} by $g \mapsto \sigma(g,\eta)$. We want to know if $(*) \approx \frac{\operatorname{Leb}(C)}{\sqrt{n^{d-1}}}$. We consider the function $\psi = \mathbb{1}_C$, then

$$(*) = \int_{\mathfrak{a}^*} \hat{\mu}_{n,\eta}(\theta) \hat{\psi}(\theta) e^{-in\theta(\lambda_{\mu})} \,\mathrm{d}\theta$$

by the Fourier Planchard formula. Write

$$\hat{\mu}_{n,\eta}(\theta) = \int_{G} e^{i\theta(\sigma(g,\eta))} \,\mathrm{d}\mu^{*n}(g)$$

We get that

$$\hat{\mu}_{n,\eta}(\theta) = (P_{\theta}^n 1)(\eta).$$

Now write $1 = a_{\theta}\varphi_{\theta} + \xi_{\theta}$ where $a \in \mathbb{C}$ and $\xi_{\theta} \in \mathcal{H}_{\theta}^{\gamma}$. Then

$$(*) \approx \int_{\mathfrak{a}^*} a_{\theta} \varphi_{\theta}(\eta) \lambda_{\theta}^n \hat{\psi}(\theta) e^{-in\theta(\lambda_{\mu})} \,\mathrm{d}\theta.$$

Take an asymptotic expansion of $\lambda_{\theta} = e^{i\theta(\lambda_{\mu}) - \frac{1}{2}\varphi_{\mu}(\theta)} + O(\|\theta\|^3)$. To remove the error term, we need to use the same techniques as in the Abelian case. To finish we get

$$(*) \approx \int_{\mathfrak{a}^*} a_{\theta} \varphi_{\theta}(\eta) e^{\frac{n}{2}\varphi_{\mu}(\theta)} \hat{\psi}(\theta) \,\mathrm{d}\theta$$

Taking $\theta = 0$ gives the conclusion.