
SEMIGROUPS IN SEMISIMPLE GROUPS

YVES BENOIST

1. Distribution of Eigenvalues

1.1. Semisimple groups. Let V = Rd, G = SL(V ) = {g 2 End (V ) | det g = 1} and define the Cartan
subspace a = {x = (x

1

, . . . , xd) | x1

+ · · · + xd = 0}, inside we have the Weyl chamber a
+

= {x 2 a | x
1

�
· · · � xd}.
Definition 1. Let  : G ! a

+

be the Cartan projection, satisfying (g) = (log 
1

(g), . . . , log d(g)) where


1

(g) = kgk = supr2V \{0}
kgvk
kvk and i(g) = (ith eigenvalue of gT g)1/2.

Exercise 1.r Set K = SO(d) then we have the Polar decomposition G = Kea+K. Show that (g) is the unique
element of a

+

such that g 2 Ke(g)K.r kVi
gk = 

1

(g) · · ·i(g).
Compare this to the Jordan projection we studied yesterday:

Definition 2. Let � : G ! a
+

be the Jordan projection, satisfying �(g) = (log �
1

(g), . . . ,�d(g)) where
�i(g) = modulus of the ith eigenvalue of g.

Exercise 2.r �(g) = limn!1
1

n(g
n)r �i(Vi

g) = �
1

(g) · · ·�i(g).
Define F = {⌘ = (⌘

1

, . . . , ⌘d) | ⌘i = i-dimensional vector space, ⌘
1

⇢ · · · ⇢ ⌘i ⇢ · · · ⇢ V }, a flag variety.

Definition 3. The Iwasawa cocycle is a map � : G ⇥ F ! a where �(g, ⌘) = (log �i(g, ⌘), . . . , log �d(g, ⌘))

and �
1

(g, ⌘) = kgv1k
kv1k , ⌘

1

= Rv
1

and

�
1

(g⌘) · · ·�i(g, ⌘) =

���
Vi

g(v
1

^ · · · ^ vi)
���

kvi ^ · · · ^ vik ,

⌘i = Rv
1

� · · ·� Rvi.

Exercise 3. Show that � is a cocyle, i.e. �(g
1

g
2

, ⌘) = �(g
1

, g
2

⌘) + �(g
2

, ⌘).

1.2. Random walks on G. Fix µ a probability measure on G, e.g. µ = 1

2

(�a + �b). Let S = suppµ, and
assume S is compact. Define � to be the semigroup spanned by S, and assume � is Zariski-dense. We want
to study the behavior of µ⇤n = µ ⇤ · · · ⇤ µ, e.g.

µ⇤n =
1

2n

X

w = w(a, b)
`(w) = n

�w.

Specifically, we want to understand ⇤(µ⇤n).

We will now state the probabilistic statements of the main theorems

Let C ⇢ a be a bounded convex subset. Fix ⌘ 2 F .
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Theorem 1 (Law of Large Numbers). The limit

�µ = lim
n!1

1

n

Z

G
(g) dµ⇤n(g)

exists and �µ 2 �
a
+

. Moreover, if we assume 0 2
�
C, then

µ⇤n ({g 2 G | (g) 2 n�µ + nC}) ����!
n!1

1

Theorem 2 (Central Limit Theorem). The limit

�µ = lim
n!1

1

n

Z

G
((g)� n�µ)

⌦2 dµ⇤n(g) 2 S2a

exists and is non-degenerate. Let N⌫ be the centered Gaussian law whose covariance 2-tensor is �µ. Then

µ⇤n �{g 2 G | (g) 2 n�µ +
p
nC}� ����!

n!1
Nµ(C)

Theorem 3 (Local Limit Theorem). We have
p
n
d�1

µ⇤n ({g 2 G | (g) 2 n�µ + C}) ����!
n!1

Lebµ(C)

where Lebµ(C) = limp!1 pd�1Nµ

⇣
C
p

⌘
.

If you also fix ⌘ 2 F these three theorems are also true for (g) replaced by �(g, ⌘) and �(g).

Remark 1.r LLT ) �
lox

6= ; (Thm 1 from yesterday)r CLT ) L
�

has nonempty interior (Thm 2 from yesterday)r LLT ) �
�

= a (Thm 3 from yesterday)

We will now look at how Thm 3 proves LLT.

1.3. The transfer operator. Fix a small � > 0. Let

H� =

⇢
' 2 C0(F ) | sup

⌘,⌘02F

|'(⌘)� '(⌘0)|
d(⌘, ⌘0)�

< 1
�

and for every ' 2 C0(F ) we define the transfer operator

(P')(n) =

Z

G
'(g⌘) dµ(g)

Then we have the following facts:

Fact 1.r There is a unique stationary probability a measure ⌫ on F , i.e. for all ' 2 C0(F ) we have ⌫(') =
⌫(P').r Write H� = C1�H�

0

where H�
0

= ker ⌫. Then we get that spectral radius of P in H�
0

is less than 1.

Fix ✓ 2 a⇤, we introduce the complex transfer operator, the analog of the Fourier transform,

(P✓')(⌘) =

Z

G
ei✓(�(g,⌘))'(g⌘) dµ(g)

Exercise 4. Show that the cocycle property gives

(Pn
✓ ')(⌘) =

Z

G
ei✓(�(g,⌘))'(g⌘) dµ⇤n(g)

Note that kP✓k1  1.

Fact 2. For ✓ 6= 0 the spectral radius of P✓ in H� is less than 1. Near ✓ = 0, we have a P✓-invariant
decomposition H� = C'✓ �H�

✓ . Here P✓'✓ = �✓'✓ for �✓ 2 C. This is analytic in ✓.
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Proof of Fact 2. The key point is the P✓ has no eigenvalue of modulus 1.

Assume ✓ 6= 0 and P✓' = µ', for ' 2 H� ⇢ C0(F ). Hence |'|  P (|'|) and ⌫(|'|) = ⌫(P (|'|)). So ' has
constant modulus on the support of ⌫. So, for all g 2 S, and all ⌘ 2 supp ⌫ we get

u'(⌘) = ei✓(�(g,⌘))'(g⌘).

It then follows that for all g 2 Sn and all ⌘ 2 supp ⌫

un'(⌘) = ei✓(�(g,⌘))'(g⌘).

In particular, if g 2 Sn is loxodromic, and ⌘+g its attractive fixed point, then we have �(g, ⌘+g ) = �(g) and so

un = ei✓(�(g)).

Next, choose g, h, gh 2 �
lox

, then
ei✓(�(gh)��(g)��(h)) = 1

implies that ✓(�
�

) ⇢ 2⇡Z. which contradicts Theorem 3. ⇤

Proof of LLT. Define a quantity
(⇤) = µn,⌘(C + n�µ),

where µn,⌘ is the image of µ⇤n by g 7! �(g, ⌘). We want to know if (⇤) ⇡ Leb(C)p
nd�1 . We consider the function

 = C , then

(⇤) =
Z

a⇤
µ̂n,⌘(✓) ̂(✓)e

�in✓(�µ) d✓

by the Fourier Planchard formula. Write

µ̂n,⌘(✓) =

Z

G
ei✓(�(g,⌘)) dµ⇤n(g)

We get that
µ̂n,⌘(✓) = (Pn

✓ 1)(⌘).

Now write 1 = a✓'✓ + ⇠✓ where a 2 C and ⇠✓ 2 H�
✓ . Then

(⇤) ⇡
Z

a⇤
a✓'✓(⌘)�

n
✓  ̂(✓)e

�in✓(�µ) d✓.

Take an asymptotic expansion of �✓ = ei✓(�µ)� 1
2'µ(✓) + O(k✓k3). To remove the error term, we need to use

the same techniques as in the Abelian case. To finish we get

(⇤) ⇡
Z

a⇤
a✓'✓(⌘)e

n
2 'µ(✓) ̂(✓) d✓.

Taking ✓ = 0 gives the conclusion. ⇤
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