SEMIGROUPS IN SEMISIMPLE GROUPS

YVES BENOIST

1. DISTRIBUTION OF EIGENVALUES

1.1. Semisimple groups. Let V = R?, G = SL(V) = {g € End (V) | detg = 1} and define the Cartan
subspace a = {x = (z1,...,24) | 1 + - -+ + 4 = 0}, inside we have the Weyl chamber a; = {x € a | 21 >
e Z xd}.

Definition 1. Let £ : G — ay be the Cartan projection, satisfying k(g) = (logk1(g),...,logkq(g)) where
#1(9) = llgll = sup,e (o} % and k;(g) = (i" eigenvalue of g7 g)'/2.
Exercise 1.

e Set K = SO(d) then we have the Polar decomposition G = Ke% K. Show that x(g) is the unique
element of a such that g € Ke*WK.

s I\ gll = r1(g) - Kilg).
Compare this to the Jordan projection we studied yesterday:

Definition 2. Let A : G — ay be the Jordan projection, satistying A(g) = (logA1(g),. .., Aa(g)) where
Ai(g) = modulus of the i*® eigenvalue of g.

Exercise 2.
. )\(g) : hmnﬁoo %H(g”)
* XA 9) = Xilg) - Ailg)-
Define F' = {n = (m1,...,n4) | n: = i-dimensional vector space,n; C --- Cn; C --- C V}, a flag variety.

Definition 3. The Iwasawa cocycle is a map o : G X F — a where o(g,n) = (logo;(g,n),...,logoa(g,n))

and o1(g,n) = w, n1 = Rv; and

H/\ig(vl/\"'mi)
o1(ga) - ol9:m) = T
i [

b

s :va@@Rﬂl
Exercise 3. Show that o is a cocyle, i.e. o(g192,1) = o(g1, g2n) + (g2, 7).

1.2. Random walks on G. Fix p a probability measure on G, e.g. p = %(5,1 + 0p). Let S = supp i, and
assume S is compact. Define I' to be the semigroup spanned by .S, and assume I" is Zariski-dense. We want
to study the behavior of u*" = u*--- % u, e.g.

w = w(a, b)
l(w)=n
Specifically, we want to understand k., (u*™).
We will now state the probabilistic statements of the main theorems

Let C' C a be a bounded convex subset. Fix n € F.
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Theorem 1 (Law of Large Numbers). The limit

Ay = lim — /G x(g) dpn™"(g)

n—o00 N

. [e] . [e]
exists and A, € at. Moreover, if we assume 0 € C, then

" ({g€G|k(g) €nry+nC}) —— 1

n—oQ

Theorem 2 (Central Limit Theorem). The limit

, — lim f/(ﬁ(g) —nA)®2 dut(g) € Sa
exists and is non-degenerate. Let N, be the ceGntered Gaussian law whose covariance 2-tensor is ®,. Then
1" ({g € G| k(g) € nA, +v/nC}) —— Nu(C)
Theorem 3 (Local Limit Theorem). We have
Vit ({g € G| Klg) € nA, + C}) —— Leb,(C)

where Leb,,(C) = limy,_,00 p? 1N, (Q)

p

If you also fix n € F these three theorems are also true for x(g) replaced by o(g,n) and A(g).
Remark 1.

o LLT = Tox # 0 (Thm 1 from yesterday)
e CLT = Lr has nonempty interior (Thm 2 from yesterday)
e LLT = Ar = a (Thm 3 from yesterday)

We will now look at how Thm 3 proves LLT.

1.3. The transfer operator. Fix a small v > 0. Let
- ’
24— {<p e COF) | sup 120D 9/0(17 )| OO}
nayer  d(m,n')7

and for every ¢ € C°(F) we define the transfer operator
(Po)n) = | olon) duta)

Then we have the following facts:
Fact 1.

e There is a unique stationary probability a measure v on F, i.e. for all p € C°(F) we have v(p) =

v(Pep).
o Write HY = C1® M where H} = kerv. Then we get that spectral radius of P in H{ is less than 1.

Fix 6 € a*, we introduce the complex transfer operator, the analog of the Fourier transform,
(Pop)(n) = / 79 (gn) dpu(g)
G
Exercise 4. Show that the cocycle property gives

(Bpe)(n) = /G 0@ (gy) dp(g)

Note that || Pyllec < 1.

Fact 2. For 0 # 0 the spectral radius of Py in H" is less than 1. Near 0 = 0, we have a Py-invariant
decomposition HY = Cpg @ H,. Here Pypg = Ngpg for g € C. This is analytic in 6.
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Proof of Fact 2. The key point is the Py has no eigenvalue of modulus 1.
Assume 0 # 0 and Py = pp, for p € HY C C°(F). Hence |¢| < P(|¢|) and v(|¢|) = v(P(|¢])). So ¢ has

constant modulus on the support of v. So, for all g € S, and all € supp v we get

up(n) = Ty (gn).
It then follows that for all g € S™ and all € supp v

up(n) = 7@MD p(gn).
In particular, if g € S™ is loxodromic, and 17; its attractive fixed point, then we have o(g, n;r) = A(g) and so

u” = WA 9)
Next, choose g, h, gh € T'jox, then
O (gh)=A(g9)=A(R)) — 1

implies that (Ar) C 27Z. which contradicts Theorem 3. O

Proof of LLT. Define a quantity

(*) = pn,n(C +nAy),
where (i, , is the image of ©*" by g — o(g,m). We want to know if (x) ~
1 = 1¢, then

Leb(C)
Nt

We consider the function

()= [ fna®)0(8)c "0 a9

by the Fourier Planchard formula. Write

fnal0) = [ 0 a7 (g)

We get that
finy (0) = (Pg'1)(n).
Now write 1 = agpg + £ where a € C and &y € ’Hg. Then

(+) ~ / a0 s (MAGD(0)e= IO do.

Take an asymptotic expansion of Ag = ¢??)=224(®) L O(||0||*). To remove the error term, we need to use
the same techniques as in the Abelian case. To finish we get

(%) = / agpo(n)e ?+ O (0) do.

Taking # = 0 gives the conclusion. O



