UNIPOTENT FLOWS ON INFINITE VOLUME MANIFOLDS

AMIR MOHAMMADI

1. INTRODUCTION

Recall the setting from yesterday: $G = PSL(2, \mathbb{C})$, and Γ is convex, cocompact, Zariski dense, torsion free, and not a lattice. Denote the *limit set* by $\Lambda(\Gamma)$, dim $\Lambda(\Gamma) = \delta < 2$, where δ is the *critical exponent*. We have the following subgroups

$$U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}, N = \left\{ \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \mid z \in \mathbb{C} \right\}$$

The tangent space, $T^1(\mathbb{H}^3)$ can be identified to $(\partial \mathbb{H}^3 \times \partial \mathbb{H}^3 \setminus \Delta \partial \mathbb{H}^3) \times \mathbb{R}$ by $x \mapsto (x^-, x^+, t)$. We would like to consider the N action on $PSL(2, \mathbb{C})/\Gamma$ and describe the N-invariant ergodic Radon measures.

Fact 1. If Γ is not a lattice, then the Haar measure is never ergodic.

Proof. If $\mathcal{H}(x)$ is a horosphere based at $x^- \notin \Lambda(\Gamma)$ then $\mathcal{H}(x) \to T^1(\mathbb{H}^3/\Gamma)$ escapes to infinity. Since $\delta > 2$, Haar almost every N orbit never returns, and hence is never ergodic.

Now the question becomes, is there any interesting measure that is actually ergodic? The answer is yes, there is a very natural geometrically constructed measure that is invariant and ergodic for the N action.

2. The BR measure

The BR measure is supported on the set $\{x \mid x^- \in \Lambda(\Gamma)\}$ and is N and Γ invariant. Take Patterson Sullivan measure on $\Lambda(\Gamma)$ (δ -dimensional Hausdorff measure), it is a family of Γ -conformal densities $\{\nu_x \mid x \in \mathbb{H}^3\}$ supported on $\partial \mathbb{H}^3$. This means that

$$\frac{\mathrm{d}\nu_{\gamma x}}{\mathrm{d}\nu_{x}}(\xi) = e^{-\delta\beta_{\xi}(\gamma x, x)}$$

for $\xi \in \partial \mathbb{H}^3$, $\gamma(t)$ a geodesic from 0 to ξ and $\beta_{\xi}(y, z) = \lim_{t \to \infty} d(y, \gamma(t)) - d(z, \gamma(t))$.

Similarly we have $\{m_x \mid x \in \mathbb{H}^3\}$, a rotation invariant measure. So we can try to use these two measures to induce a measure on $T^1(\mathbb{H}^3/\Gamma)$. We define the following:

$$dm^{BR}(x) = e^{2\beta_{x^+}(0,\pi x)} e^{\delta\beta_{x^-}(0,\pi x)} d\nu_0(x^-) dm_0(x^+) dt$$

$$dm^{BMS}(x) = e^{2\beta_{x^+}(0,\pi x)} e^{\delta\beta_{x^-}(0,\pi x)} d\nu_0(x^-) d\nu_0(x^+) dt$$

$$dm^{Haar}(x) = e^{2\beta_{x^+}(0,\pi x)} e^{\delta\beta_{x^-}(0,\pi x)} dm_0(x^-) dm_0(x^+)$$

This measure is N-invariant, but is not invariant under the geodesic flow. So $a_t * m^{\text{BR}} = e^{(\delta-2)t}m^{\text{BR}}$ on $T^1(\mathbb{H}^3/\Gamma)$. Thus this is an infinite measure whenever $\delta < 2$, in fact m^{BR} is finite if and only if Γ is a lattice.

Theorem 1 (Burger n = 2, Roblin in general). m^{BR} is the only new measure.

Even though m^{BR} is an infinite measure, the measure that governs the dynamics is actually m^{BMS} , which is a finite probability measure.

Theorem 2 (Mixing Theorem). Let $\psi_1, \psi_2 \in C_c(G/\Gamma)$, then $(2-\delta)t \int f(-f(-r)) f(-r) dr = BB(-r)$

$$e^{(2-\delta)t} \int \psi_1(a_t x)\psi_2(x) \, dm^{BR}(x) \to m^{BR}(\psi_1)m^{BMS}(\psi_2)$$

Date: February 05, 2015.

Theorem 3 (Equidistribution Theorem). Let $\psi \in C_c(G/\Gamma)$, $x^- \in \Lambda(\Gamma)$, then

$$\frac{1}{\mu_x^{PS}(B(T))} \int_{B(T)} \psi(n_z x) \, dz \to m^{BR}(\psi)$$

and

$$d\mu_{N_g}^{PS} = e^{\delta\beta_{(u_tg)^+}(0,\pi(u_tg))} \, d\nu_0 \left((u_tg)^+ \right)$$

Proof. Let $t = \log T$,

$$\frac{1}{\mu_x^{\text{PS}}(B(T))} \int_{B_N(T)} \psi(n_z x) \, \mathrm{d}z = \frac{1}{\mu_x^{\text{PS}}(B(T))} \int_{B_N(1))} \psi(a_t n_z a_{-t} x) e^{2t} \, \mathrm{d}z$$
$$= \frac{e^{2t}}{e^{\delta t} \mu_{a_{-t}x}^{\text{PS}}(B(1))} \int_{B_N(1)} \psi(a_t n_z(a_{-t} x)) \, \mathrm{d}z$$
$$= \frac{e^{(2-\delta)t}}{\mu_{a_{-t}x}^{\text{PS}}(B_N(1))} \int_{B_N(1)} \psi(a_t n_z(a_{-t} x)) \, \mathrm{d}z$$

We need to consider what happens to $\partial B_N(1)$, taking what we've found here and doing some work will imply equidistribution.

Return times of $\{u_z x \mid z \in B_U(T)\}$ are comparable to

$$c^{-1}T^{\delta} < \mu_x^{\mathrm{PS}}(B_N(T)) < cT^{\delta}$$

for some c > 1.

So the "window like" theorem holds for N orbits.

Let $\Omega = \{g \mid g^{\pm} \in \Lambda(\Gamma)\}$. Then the return of U orbits to Ω is the same as asking for $\{(u_t x)^+ \in \Lambda(\Gamma)\}$

Consider the U action with respect to BR measure, m^{BR} is ergodic for U if and only if $\delta > 1$. (m^{BR} is ergodic for N action on G/Γ : Winter).

Question 1. Are there any other interesting U ergodic measures with Zariski dense support?

If Γ is convex cocompact, there exists and infinite countable collection of round (open) disks $\{B_i\}$ and $\Lambda(\Gamma) = S^2 \setminus \bigsqcup_{i=1}^{\infty} B_i$

Lemma 1. There exists k, T_x such that $\{u_t \mid t \in [-T,T] \setminus [-kT,kT]\} \cap \Omega \neq \emptyset$ for $T > T_x$.

Proof. Let $g^- \in \Lambda(\Gamma) \setminus \sqcup \partial B_i$, L > 1 we want to show that

$$B(g^-, Lr) \setminus B(x^-, r) \cap \Lambda(\Gamma) \neq \emptyset$$

if not, $B(g^-, Lr) \setminus B(g^-, r) \in \Box B_i$. Claim: This is not possible. There exists a unique *i* such that $B(g^-, Lr) \setminus B(g^-, r) \in B_i$. Suppose not, then dist(hull(D_1), hull(D_2)) $\to 0$, and this is a contradiction.