UNIPOTENT FLOWS ON INFINITE VOLUME MANIFOLDS

AMIR MOHAMMADI

1. INTRODUCTION

Recall the setting from yesterday: $G = \text{PSL}(2, \mathbb{C})$, and Γ is convex, cocompact, Zariski dense, torsion free, and not a lattice. Denote the *limit set* by $\Lambda(\Gamma)$, dim $\Lambda(\Gamma) = \delta < 2$, where δ is the *critical exponent*. We have the following subgroups

$$
U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}, N = \left\{ \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \mid z \in \mathbb{C} \right\}
$$

The tangent space, $T^1(\mathbb{H}^3)$ can be identified to $(\partial \mathbb{H}^3 \times \partial \mathbb{H}^3 \setminus \Delta \partial \mathbb{H}^3) \times \mathbb{R}$ by $x \mapsto (x^-, x^+, t)$. We would like to consider the *N* action on $PSL(2,\mathbb{C})/\Gamma$ and describe the *N*-invariant ergodic Radon measures.

Fact 1. If Γ is not a lattice, then the Haar measure is never ergodic.

Proof. If $\mathcal{H}(x)$ is a horosphere based at $x^- \notin \Lambda(\Gamma)$ then $\mathcal{H}(x) \to T^1(\mathbb{H}^3/\Gamma)$ escapes to infinity. Since $\delta > 2$, Haar almost every N orbit never returns, and hence is never ergodic. Haar almost every N orbit never returns, and hence is never ergodic.

Now the question becomes, is there any interesting measure that is actually ergodic? The answer is yes, there is a very natural geometrically constructed measure that is invariant and ergodic for the *N* action.

2. The BR measure

The BR measure is supported on the set $\{x \mid x^- \in \Lambda(\Gamma)\}$ and is N and Γ invariant. Take Patterson Sullivan measure on $\Lambda(\Gamma)$ (δ -dimensional Hausdorff measure), it is a family of Γ -conformal densities $\{\nu_x \mid x \in \mathbb{H}^3\}$ supported on $\partial \mathbb{H}^3$. This means that

$$
\frac{\mathrm{d}\nu_{\gamma x}}{\mathrm{d}\nu_x}(\xi) = e^{-\delta\beta_{\xi}(\gamma x, x)}
$$

for $\xi \in \partial \mathbb{H}^3$, $\gamma(t)$ a geodesic from 0 to ξ and $\beta_{\xi}(y, z) = \lim_{t \to \infty} d(y, \gamma(t)) - d(z, \gamma(t)).$

Similarly we have ${m_x \mid x \in \mathbb{H}^3}$, a rotation invariant measure. So we can try to use these two measures to induce a measure on $T^1(\mathbb{H}^3/\Gamma)$. We define the following:

$$
dm^{BR}(x) = e^{2\beta_{x} + (0,\pi x)} e^{\delta\beta_{x} - (0,\pi x)} d\nu_{0}(x^{-}) dm_{0}(x^{+}) dt
$$

\n
$$
dm^{BMS}(x) = e^{2\beta_{x} + (0,\pi x)} e^{\delta\beta_{x} - (0,\pi x)} d\nu_{0}(x^{-}) d\nu_{0}(x^{+}) dt
$$

\n
$$
dm^{Haar}(x) = e^{2\beta_{x} + (0,\pi x)} e^{\delta\beta_{x} - (0,\pi x)} dm_{0}(x^{-}) dm_{0}(x^{+})
$$

This measure is *N*-invariant, but is not invariant under the geodesic flow. So $a_t * m^{BR} = e^{(\delta - 2)t} m^{BR}$ on $T^1(\mathbb{H}^3/\Gamma)$. Thus this is an infinite measure whenever $\delta < 2$, in fact m^{BR} is finite if and only if Γ is a lattice.

Theorem 1 (Burger $n = 2$, Roblin in general). m^{BR} *is the only new measure.*

Even though m^{BR} is an infinite measure, the measure that governs the dynamics is actually m^{BMS} , which is a finite probability measure.

Theorem 2 (Mixing Theorem). Let $\psi_1, \psi_2 \in C_c(G/\Gamma)$, then

$$
e^{(2-\delta)t} \int \psi_1(a_t x) \psi_2(x) dm^{BR}(x) \to m^{BR}(\psi_1) m^{BMS}(\psi_2)
$$

Date: February 05, 2015.

Theorem 3 (Equidistribution Theorem). Let $\psi \in C_c(G/\Gamma)$, $x^- \in \Lambda(\Gamma)$, then

$$
\frac{1}{\mu_x^{PS}(B(T))} \int_{B(T)} \psi(n_z x) dz \to m^{BR}(\psi)
$$

and

$$
d\mu_{N_g}^{PS} = e^{\delta \beta_{(u_t g)^+}(0, \pi(u_t g))} d\nu_0 ((u_t g)^+)
$$

Proof. Let $t = \log T$,

$$
\frac{1}{\mu_x^{\text{PS}}(B(T))} \int_{B_N(T)} \psi(n_z x) dz = \frac{1}{\mu_x^{\text{PS}}(B(T))} \int_{B_N(1)} \psi(a_t n_z a_{-t} x) e^{2t} dz
$$

\n
$$
= \frac{e^{2t}}{e^{\delta t} \mu_{a_{-t}x}^{\text{PS}}(B(1))} \int_{B_N(1)} \psi(a_t n_z (a_{-t} x)) dz
$$

\n
$$
= \frac{e^{(2-\delta)t}}{\mu_{a_{-t}x}^{\text{PS}}(B_N(1))} \int_{B_N(1)} \psi(a_t n_z (a_{-t} x)) dz
$$

We need to consider what happens to $\partial B_N(1)$, taking what we've found here and doing some work will imply equidistribution. \Box

Return times of $\{u_z x \mid z \in B_U(T)\}\$ are comparable to

$$
c^{-1}T^{\delta} < \mu_x^{\text{PS}}(B_N(T)) < cT^{\delta}
$$

for some $c > 1$.

So the "window like" theorem holds for *N* orbits.

Let $\Omega = \{g \mid g^{\pm} \in \Lambda(\Gamma)\}\$. Then the return of *U* orbits to Ω is the same as asking for $\{(u_t x)^+ \in \Lambda(\Gamma)\}\$

Consider the *U* action with respect to BR measure, m^{BR} is ergodic for *U* if and only if $\delta > 1$. $(m^{BR}$ is ergodic for *N* action on G/Γ : Winter).

Question 1. Are there any other interesting *U* ergodic measures with Zariski dense support?

If Γ is convex cocompact, there exists and infinite countable collection of round (open) disks $\{B_i\}$ and $\Lambda(\Gamma) = S^2 \setminus \bigcup_{i=1}^{\infty} B_i$

Lemma 1. *There exists* k *,* T_x *such that* $\{u_t | t \in [-T, T] \setminus [-kT, kT] \} \cap \Omega \neq \emptyset$ for $T > T_x$ *.*

Proof. Let $g^- \in \Lambda(\Gamma) \setminus \Box \partial B_i$, $L > 1$ we want to show that

$$
B(g^-, Lr) \setminus B(x^-, r) \cap \Lambda(\Gamma) \neq \emptyset
$$

if not, $B(g^-, Lr) \setminus B(g^-, r) \in \Box B_i$. Claim: This is not possible. There exists a unique *i* such that $B(g^-, Lr) \setminus$ $B(g^-, r) \in B_i$. Suppose not, then dist(hull(*D*₁), hull(*D*₂)) \rightarrow 0, and this is a contradiction.