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Recall: Ratner’s Theorems were motivated by Raghunathan’s Conjecture which is connected to Oppen-
heim Conjecture which states that every bounded orbit is close.

1. Actions of 1-parameter subgroups on G/�

Let G = SL(3,R) and � = SL(3,Z).

Theorem 1 (Ratner). If U = {u
x

} ⇢ G is a unipotent subgroup then Ux is algebraic, Ux = Lx, and, ifx =
g�,g�1�g [ L is a lattice in L. If L 6= G, this happens rarely.
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A ⇢ G, then F+ = {g
t

| t � 0}.

For ↵,� 2 R we define u
↵,�

=

0

@
1 ↵

1 �
1

1
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Definition 1. (↵,�) called badly approximable, (↵,�) 2 BA, if there exists c > 0 such that max(|q↵ �
p|, |q� � r|) > c

q

1/2 , for all p, r, q 2 Z, q 6= 0.

Theorem 2 (Dani, 1985). F
t

u
↵,�

� is bounded if and only if (↵,�) 2 BA

Fact 1 (W. Schmidt, ’66). T The set of badly approximable vectors is a set of measure 0 and Hausdor↵
dimension 2.

Corollary 1 (Dani). dim ({x 2 G/� | F+x is bounded}) = dim(G/�)

This is big, in contrast to the unipotent case where it is small.

Remark 1. H = {u
↵,�

} is the unstable horosphere with respect to F+. Thus to study bounded orbits, it is
enough to study this group, H.

Theorem 3 (Dani, ’86). If the R-rank(G) = 1, then the set of bounded orbits has full dimension.

Conjecture 1 (Margulis, ’90). if F is “not unipotent” then dim({x 2 G/� | Fx is bounded}) = dim(G/�),
vol(G/�) < 1.

Theorem 4. Proved by Kleinbock-Margulis in ’96 using exponential mixing.

Proof. Given a surface that stretches to infinity we would like to construct a bounded orbit. We start with
a point in the unstable foliation, apply g

t

with t large, then the image of the piece of the horocycle will
equidistribute. Fix a compact set, then most of the image will lie inside the compact set. Chop the image
into pieces similar to the one you started with, repeat the process inside this new piece, and after iterating
you have constructed a Cantor set of bounded orbits. If you move the boundary of this compact set towards
infinity you get a bigger Cantor set and the dimension will go to the full dimension. ⇤
Question 1. Is there a way to connect this picture with number theory?
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Example 1. Take G = SL(3,R), � = SL(3,Z) , F�,µ =

8
<

:

0

@
e�t

eµt

e�t

1

A

9
=

; where � + µ = 1. Here the

unstable horosphere is given by

8
<

:

0

@
1 � ↵

1 �
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A

9
=

;, which means the theorem cannot be applied in this case.

Proposition 1. F�,µ

+ u
↵,�

� is bounded if and only if (↵,�) 2 BA
�,µ

, that is, there exists a c > 0 such that

for all p, q, r 2 Z, q 6= 0, we have max(q��|q↵� p|, qµ|q� � r|) > c.

Schmidt’s result gives a winning property of BA.

Conjecture 2 (Schmidt). BA1/3,2/3 \BA2/3,1/3 6= ;

Remark 2. If (↵,�) 6= BA
�,µ

then for all c there exist solutions to q|q↵� p||q� � r| < c2

Theorem 5. The conjecture was proven by Badziahin-Pollington-Velani in 2011.

Theorem 6 (An). BA
�,µ

is ↵0-winning for all �, µ.

2. A tutorial on Schmidt games

A Schmidt game is played with two players, Alice and Bob and each are assigned a real number ↵ and
� respectively. We play on a metric space X with a target set S. Bob goes first a chooses a ball B1 with
radius r, Alice then chooses a ball, A1, with radius ↵r, Bob then chooses a ball, B2, inside A1 with radius
�↵r, play continues in this manner. Alice wins if

T
B

i

2 S, if this happens S is called (↵,�)-winning.

B1

B2

A1
r

↵r

�↵r

Figure 1. The first three steps in a Schmidt game

Definition 2. S is ↵-winning if and only if S is (↵,�)-winning for all � > 0.

Schmidt proved several properties of these games:r ↵-winning implies full Hausdor↵ dimensionr If each S
i

is ↵-winning then so is
T1

i=1 Si

Corollary 2.
T1

i=1 BA
�i,µi has dimension 2 for all (�

i

, µ
i

).

We would like to have a dynamical understanding of this.

This corollary implies that {x 2 G/� | F+
i

x is bounded 8i} 6= ;.
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3. Recent Developments

Define E(F ) = {x 2 G/� | Fx is bounded}.
Theorem 7 (An-Guan-Kleinbock, ’15). If G = SL(3,R), � = SL(3,Z), then for all diagonalizable {F+

i

} ⇢
G,

dim

 1\

i=1

E
�
F+
i

�
!

= dim(G/�)

As a consequence of Thm. 7, we get

Theorem 8. E(F+) is a winning set of a Hyperblane Absolute Game.

4. A tutorial on Hyperbolic Aboslute Games

We again have two players, Alice and Bob, and Bob is assigned a real number �. We play on a homogeneous
space. We set "  �, � � � and � < 1

3 . Bob again starts by choosing a ball B1 of radius r, Alice then chooses
a hyperplane L1 and cuts out an "r-neighborhood around it, Bob next chooses a ball B2 of radius �r, play
continues in this manner. Alice wins if

T
B

i

2 S, and S is called �-hyperplane absolute winning (HAW).

B1

B2

L1

r

"r-neighborhood

�r

Figure 2. The first three steps in a hyperbolic absolute game

Definition 3. S is HAW if and only if S is �-winning for all � > 0.

Schmidt proved several properties of these games:r HAW implies full Hausdor↵ dimensionr If each S
i

is HAW then so is
T1

i=1 Sir HAW is invariant under C1 maps

The last property means that Alice does not have to cut hyperplanes, but she can also remove hypersur-
faces, and also if M is your smooth manifold, you can define charts and play the game inside any of these
charts.

Theorem 9 (BFKRW). BA is HAW

Theorem 10 (Nesharim-Simmons). BA
�,µ

is HAW

Theorem 11 (AGK). E(F+
�,µ

) \
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;� is HAW
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Conjecture 3. E(F+) is HAW if F+ is diagonalizable.
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