UNIPOTENT FLOWS AND QUADRATIC FORMS (AFTER LINNIK)

AKSHAY VENKATESH

Suppose Q(x, y, z) is a positive definite quadratic form, e.g. $x^2 + 5y^2 + 10z^2$.

Question. Which values does Q take? I.e. $Q(\mathbb{Z}^3)$.

Answer (Duke, Schulze-Pillot). For N (square-free) and large enough we can solve Q(x, y, z) = N if and only if it is solvable modulo m for all integers m. This cuts out a finite number of congruence classes)

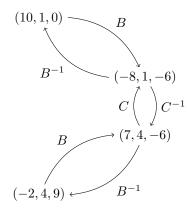
Linnik proved a slightly weaker statement where he imposed an auxiliary congruence condition on N. He also showed that as $N \to \infty$ the set of solutions to Q(x, y, z) = n becomes uniformly distributed, and similarly, as $N \to \infty$ the set of solutions to Q(x, y, z) becomes uniformly distributed when reduced modulo a fixed q (i.e. fix q, e.g. q = 7, then $\{(x, y, z) \in \mathbb{Z}^3 \mid Q = N\} \xrightarrow[\text{reduce mod } q]{} \{(x, y, z) \in (\mathbb{Z}/q\mathbb{Z})^3 \mid Q = N\}$).

We will show that for $Q = x^2 + y^2 + z^2$, $\{x^2 + y^2 + z^2 = N\} \xrightarrow[reduce \mod 7]{} \{x^2 + y^2 + z^2 = N \mod 7\}$ if (N, 6) = 1, and $N \equiv 1 \mod 5$ (this is Linnik's auxiliary prime condition, the 5 is arbitrary), then as $N \to \infty$ this become uniformly distributed.

1. Explicit proof following Linnik due to Ellenberg, Michel, Venkatesh

Let $A = \frac{1}{5} \begin{pmatrix} 5 & -4 & 3 \\ -3 & -4 \end{pmatrix} \in SO(3)$, and B, C be the same rotation about the y and the z axes respectively. Set $S(N) = \{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + y^2 + z^2 = N\}$

Fact 1. If $\underline{x} = (x, y, z) \in S(N)$, then exactly 2 of $A\underline{x}, A^{-1}\underline{x}, B\underline{x}, B^{-1}\underline{x}, C\underline{x}, C^{-1}\underline{x}$ belong to \mathbb{Z}^1 (i.e., to S(N)). Example 1. Let $N = 101, \underline{x} = (10, 1, 0)$). Then



So from each $\underline{\mathbf{x}} \in SN$ you get a string in A, B, C and their inverses, e.g $\xleftarrow{B} \xleftarrow{C} \underline{\mathbf{x}} \xrightarrow{A} \xrightarrow{B} \xrightarrow{A^{-1}}$.

Fact 2. $\underline{x}, \underline{x}' \in S(N)$ correspond to the same string of ℓ steps in either direction if and only if $\underline{x} \equiv \pm \underline{x}' \mod 5^{\ell}$.

Example 2. $\xleftarrow{C} \stackrel{A^{-1}}{\longleftrightarrow} \xrightarrow{B} \underline{x} \xrightarrow{A} \xrightarrow{B} \stackrel{C}{\longrightarrow} \text{ and } \xleftarrow{C} \stackrel{A^{-1}}{\longleftrightarrow} \xrightarrow{B} \underbrace{x'} \xrightarrow{A} \xrightarrow{B} \stackrel{C}{\longrightarrow} \text{ if an only if } \underline{x} \equiv \underline{x'} \mod 5^3.$

Date: February 05, 2015.

Fact 3 (Linnik's basic lemma). The number of pairs $\underline{x}, \underline{x}' \in S(N)^2$ where $\underline{x} \equiv \underline{x}' \mod M$ is "not much more than expected", precisely this means it is

$$\ll |S(N)| + (NM)^{\varepsilon} \left(1 + \frac{|S(N)|^2}{M^2}\right)$$

Recall that we are taking the set S(N) and reducing modulo M which leaves a set of size M^2 . Consider the setting where M = 7. Give the set of solutions the structure of a 6-valent graph, G(N), where \underline{x} is joined to $A\underline{x}, A^{-1}\underline{x}, B\underline{x}, B^{-1}\underline{x}, C\underline{x}, C^{-1}\underline{x}$. Each \underline{x} gives a path in the graph. Now, suppose that the reduction is not uniformly distributed. Then there exists a subset $X \subseteq G(N)$ such that most paths spend more than $\frac{|X|}{|G(N)|}$ time inside X.

But, in a fixed finite regular graph G, the fraction of paths of length ℓ that spend more than $\frac{|X|}{|G(N)|} + \delta$ time inside X is at most $e^{-c\ell}$, where c is a function of G, X, δ . Therefore, there must be "unusually many" pairs $(\underline{\mathbf{x}}, \underline{\mathbf{x}}')$ giving rise to some path of length ℓ on G(N). By Fact 2, we get that $\underline{\mathbf{x}} \equiv \pm \underline{\mathbf{x}}' \mod 5^{\ell}$, which contradicts Fact 3.

2. Reinterpretation

We can instead examine what happens if we fix a vector and move the lattice instead. Take the set of lattices in \mathbb{Q}^3 and consider the action of $\operatorname{GL}(3, \mathbb{Q}^3)$. Given a lattice L and $g \in \operatorname{GL}(3, \mathbb{Q}^3)$, we have that gL and L differ only at p. Let L_p be the closure of L in \mathbb{Q}_p^3 , then $(gL)_p = g(L_p)$. Therefore, $\operatorname{GL}(3, \mathbb{A})f$), where $\mathbb{A}_f = \prod_p \mathbb{Q}_p$ is the finite adeles, acts on the set of lattices in \mathbb{Q}^3 . Let \mathcal{G} denote the orbit of \mathbb{Z}^3 under $\operatorname{SO}(3, \mathbb{A}_f)$.

$$\{(x, y, z) \in \mathbb{Z}^3 \mid x^2 + y^2 + z^2 = N\}/\mathrm{SO}(3, \mathbb{S}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{(x, y, x) \in \mathbb{Z}/7\mathbb{Z} \mid x^2 + y^2 + z^2 = N \mod 7\}/\mathrm{SO}(3, \mathbb{Z}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \xrightarrow{} \{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \in L/7$$

Fact. Both horizontal maps are bijections

Let U be an open compact subgroup of SO(3, \mathbb{A}_f). Then there is a left action of SO(3, \mathbb{A}_f)/U on the space $\{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/SO(3, \mathbb{Q})$ so that

$$\{L \in \mathcal{G}, \underline{\mathbf{x}} \in L/7L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N \mod 7\}/\mathrm{SO}(3, \mathbb{Q}) \simeq \mathrm{SO}(3, \mathbb{Q}) \setminus \mathrm{SO}(3, \mathbb{A}_f)/U$$

Note that any two solutions $\underline{\mathbf{x}}, \underline{\mathbf{x}}' \in \mathbb{Q}^3$ to $\underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = \underline{\mathbf{x}}' \cdot \underline{\mathbf{x}}' = N$ are in the same SO(3, \mathbb{Q} orbit. So fix an $\underline{\mathbf{x}}_0 \in \mathbb{Q}^3$ with $\underline{\mathbf{x}}_0 \cdot \underline{\mathbf{x}}_0 = N$, then

$$\{L \in \mathcal{G}, \underline{\mathbf{x}} \in L \mid \underline{\mathbf{x}} \cdot \underline{\mathbf{x}} = N\} / \mathrm{SO}(3, \mathbb{Q}) = \{L \in \mathcal{G}, \underline{\mathbf{x}}_0 \in L \mid \underline{\mathbf{x}}_0 \cdot \underline{\mathbf{x}}_0 = N\} / \mathrm{Stab}_{\mathrm{SO}(3, \mathbb{Q})}(\underline{\mathbf{x}}_0)$$

But, the stabilizer is SO(2, \mathbb{Q}). Therefore we get an action of SO(2, \mathbb{A}_f) on the set $\{L \in \mathcal{G}, \underline{x}_0 \in L\}$ which in turn gives an action SO(2, \mathbb{A}_f) on $\{x^2 + y^2 + z^2 = N\}/SO(3, \mathbb{Z})$.