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1. Introduction

Definition 1. If �  GL(n,Z) and G the Zariski closure of � in GL(n,C), we call � thin if [G \GL(n,Z) :
�] = 1.

1.1. Apollonian circle packings. Given 3 tangent circles, there exists a unique fourth target to all 3.r Let a, b, c, d be the curvatures of four pairwise tangent circles. If a, b, c, d 2 Z, then all the curvatures
in the packing will be integers.r There exists infinitely many primitive integral Apollonian circle packings.

Theorem 1 (Descartes). If x1, x2, x3, x4 are the curvatures of four pairwise tangent circles, then
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a quadratic form of signature (3, 1).

Where do thin groups come in? Consider quadruples of curvature of pairwise tangent circles. This

corresponds to A
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775 in a packing containing (a, b, c, d). A  OQ(Z) is called an Apollonian group and is

thin.

Let � ⇠ 1.3056... be the Hausdor↵ dimension of the limit set of the packing.

Theorem 2 (Kontorovich-Oh). Let P be an Apollonian circle packing (ACP), then

#{circles in a given bounded ACP of curvature  X} ⇠ cPX
�

Theorem 3 (Bourgain-Fuchs).

#{integers < X which are curvatures in a given ACP} � X

Conjecture 1 (Fuchs-Sanden, Graham-Lagarias-Mallows-Wilkes-Yan). Given a primitive integral ACP P ,

let P24 denote the residues mod 24 represented in P . Then there exists XP 2 R such that if x 2 Z, x > XP

and x 2 P24, then x is the curvature of some circle in P .

Theorem 4 (Bourgain-Kontorovich). This conjecture holds if one excludes a 0-density subset of Z.
Conjecture 2 (Fuchs-Sanden).

#{circles of prime curvature < X} ⇠ cX�

logX

c = 0.91...

Theorem 5. For a given primitive ACP P , let O(P ) denote the corresponding orbit of A. Then
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775 2 O(P ) | abcd has at most 31 prime factors
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CCA = Zcl(O(P ))
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2. The affine sieve

Problem 1. Given � ⇢ GL(n,Z), finitely generated, � = hsi, 0 6= v 2 Zn and f(x) 2 Z[x1, . . . , xn]. We
want to count points of O(f, r) = {w 2 �v | f(w) has at most r prime factors}
Theorem 6 (Bourgain-Gamburd-Sarnak, Salehi-Golsefidy-Sarnak). if � is “nice” then there exists r 2 Z
such that Zcl(O(f, r)) = Zcl(�v).

What is this “niceness” property?

To each � we associate an infinite family of graphs {Xd}d>1 ! Xd := Cay(�/d, S). Xd is a finite connected
graph and we can assume it is R-regular. We say � is “nice” if {Xd}d>0 is an expander family.

Definition 2. Let {Xi}i�1 be an infinite family of finite, connected, R-regular graphs. Let MI be the
adjacency matrix of Xi. Denote the eigenvalues of Mi as R = �0 > �1 � · · · � �r. {Xi}i�1 is an expander

family if lim supn!1 �1(Mn) < R.

Remark 1. This means that there is a spectral gap, the bigger the spectral gap, the nicer your group is.
Unfortunately in the case of most thin groups, using the a�ne sieve does not give us bounds for the spectral
gap. Contrast this to non thin groups, where if � is a congruence subgroup of SL(2,Z), then Selberg’s 3

16
theorem gives a lower bound on the spectral gap for �.

Question 1. Given a finitely generated subgroup of GL(n,Z), can you tell if it is thin?

The definition of thinness has something to do with the index inside the Zariski closure. Generally finding
the Zariski closure is not the di�cult part, but determining its index is hard:

Fact 1. Given a finitely generated subgroup of GL(n,Z), the question of whether or not it has finite or

infinite index is undecidable.

2.1. Fuchs-Meiri-Sarnak. Taking the setup from Beukers-Heckman, ’89:

Assume ↵i,�i 2 Q,2 [0, 1] with ↵i 6= �i. Let ⇥ = z d
dz

D(↵,�) = D(↵1, . . . ,↵n,�1, . . . ,�n) =
nY

i=1

(⇥+ �i � 1)� z
nY

i=1

(⇥+ ↵i)

The equation Du = 0 is regular outside of {0, 1,1} in P1(C). D(↵,�) gives rise to a monodromy
representation of ⇡1(P1(C) \ {0, 1,1}, z0) in GL(n,C). We denote the monodromy group by H(↵,�) =
hA,Bi.

P1(C)

A 2 GL(n,C) B�1A

B
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Figure 1. The generators of the monodromy group
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Theorem 7 (Levelt). Let

Qn
j=1(x � e2⇡i↵j ) = anxn + · · · + a0),

Qn
j=1(x � e2⇡i�j = bnxn + · · · + b0, then

H(↵,�) = hA,Bi where
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Fact 2 (Beukers-Heckman). H(↵,�)  GL(n,Z) if an only if the characteristic polynomials of A,B are

products of cyclotomes.

We consider the case where H(↵,�)  Of (Z) where f has signature (n� 1, 1).

Theorem 8 (Fuchs-Meiri-Sarnak). There are 7 infinite families of thin hyperbolic hypergeometric mon-

odromy groups.

Consider C = B�1A. Then C2 = I and C has eigenvalue �1 with multiplicity 1, 1 with multiplicity n�1.
Consider

Hr = hBiCB�i | i 2 Zi
if Hr, is thin then so is H(↵,�). C looks like it is a reflection in a hyperplane, due to the eigenvalues, so a
theorem of Vindberg says that a group generated by those cannot be arithmetic (so must be thin). However,
C is not a reflection and in fact, does not act isometrically on hyperbolic space. So instead take �C, the is
a Cartan involution, and can then tie Hr to a group generated by reflections.

Question 2. Can we come up with other methods, perhaps geometric, outside of hyperbolic geometry, to
do the same thing?

3


