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1. THE HEAT KERNEL

Consider X , a Riemannian manifold, open, connected and complete.

Definition 1. We call the function p(t , x, y) the heat kernel if it satisfies the following properties:r it is the fundamental solution to the heat equation, i.e.

@

@t

p(t , x, y) =¢
x

p(t , x, y)r and, given an initial condition,

u(x, t ) =
Z

p(t , x, y)u(y)dy

t!0°°°! u(x)

Let °∏0 be the maximal eigenvalue in L

2(X ), where ∏0 is the bottom of Sp(°¢). Assume for the moment that we
have discrete spectrum, that is we can write p(t , x, y, ) =P

e

°∏
i

t¡
i

(x)¡
i

(y), where ¡
i

are the °∏
i

eigenfunctions of
the Laplacian. In this case, we do not have discrete spectrum, but we are still able to view, by the spectral theorem,

°∏0 = lim
t!1

1
t

log p(t , x, y)

which says that °∏0 is the exponential growth rate of the heat kernel.

Theorem 1 (Ledrappier-Lim). If X = f

M, M a compact manifold CAT(°1), then as t !1.

p(t , x, y) ª e

°∏0t

t

°3/2
C (x, y)

where C (x, y) > 0. More precisely,

lim
t!1

e

∏0t

t

3/2
p(t , x, y) =C (x, y)

Examples.

(1) Rd :

p(t , x, y) = ct

°d/2
e

°(d(x,y))2

4t ª t

°d 2

(2) H3:

p(t , x, y) ª e

°t

t

°3/2 d(x, y)
sinhd(x, y)

(3) (Bougerol, 81) G/K a symmetric space:

p(t , x, y) ª e

°∏0t

t

° rkG+#roots
2 ©(x, y)

where©(x, y) is the Harish-Chandra function (K

x

-invariant).

We have more information than just Theorem 1,

Theorem 2 (Anker-Bougerol-Jeulin, 2002). If lim
t!1

p(t , x, y)
p(t , x, x)

exists, then C (x, y) is a (°∏0)-eigenfunction.
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Conjecture 1 (Davies, ’97). lim
t!1

p(t , x, y)
p(t , x, x)

always exists.

Corollary 1 (Ledrappier-Lim). Davies’ conjecture holds for

f

M.

Proof of asymptotic in Thm 1. It is enough to show
Z1

0
e

°st

te

∏0t

p(t , x, y)dt ª s

°1/2
C (x, y),

since by using the Tauberian theorem the statement is equivalent to showing
Z

T

0
t

∏0t

p(t , x, y)dt ª T

°1/2
C (x, y).

It is an exercise to prove that the statement we want, e

°∏0t

p(t , x, y) ª t

°3/2
C (x, y) then follows. Define the ∏-Green

function, G∏(x, y) =
R1

0 e

∏t

p(t , x, y)dt , then
Z1

0
e

°st

te

∏0t

p(t , x, y) = @

@∏
G∏(x, y)

Ø

Ø

Ø

Ø

∏=∏0°s

.

We want to understand the behavior of this derivative. ⇤

2. COUNTING GEODESICS

[Margulis, Ledrappier, Hamenstadt, Roblin, Parry-Pollicot, Paulin-Pollicot-Schapira]

Let M be a compact, negatively curved manifold. Fix two points x, y , we would like to count

#
©

geodesics ÿx y of length 2 [t , t +±]
™

=
X

∞2°
t∑d(x,y)∑t+±

1 =
X

AΩT

1
x

M

BΩT

1
y

M

#

√

B \
[

t∑s∑t+±
g

s

A

!

Thicken A,B to Ã, B̃ so that #
°

B \S

t∑s∑t+± g

s

A

¢

= #
°

B̃ \ g

t

Ã

¢

. Then

µ(B̃ \ g

t

Ã) = u

B

e

°ht

s

A

±
A

#(B̃ \ g

t

Ã)

Since geodesic flow is mixing with respect to µ,

µ(B̃ \ g

t

Ã) !µ(B̃)µ(Ã) = u

B

u

A

s

B

s

A

±
B

±
A

.

Thus #(B̃ \ g

t

Ã) ! e

ht±u

A

s

B

and so
X

∞2°
t∑d(x,y)∑t+±

1 ! ±e

htkµ
x

kkµ
y

k

Remark 1. µ= m

BMS and attains sup
µ,g t°inv

{hµ}

2.1. Counting geodesics with weights. Let F : T

1
M !R, a Holder continuous function, be the potential. Our sum

is now
P

∞2° e

R

y

x

F . We divide into pieces so that the weight, e

R

y

x

F is almost constant on each A and B . Then thicken
to Ã, B̃ and we get the same asymptotic, with different rate of growth, ht becomes P (F )t .

Remark 2. If F 6= 0, µ=µ
F

attains sup
µ,g t°inv

Ω

hµ+
Z

F dµ
æ

3. UNDERSTANDING THE ∏-GREEN FUNCTION

For each ∏<∏0, choose F∏ so that

e

R

y

x

F̃ = k

2∏(x, y,ª) =
µ

lim
z!ª

G∏(y, z)
G∏(x, z)

∂2

,

the fact that this limit exists is due to Ancona.

Proposition 1 (Ledrappier-Lim). g

t

is rapid mixing with respect to µ∏ uniformly in ∏.
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Idea of proof. We know that g

t

is exponentially mixing with respect to Liouville measure, by work of Liverani. This
would imply that g

t

is topological power mixing, that is there exists t0,Æ> 0 such that for all t > t0, 1
r

Æ ,
°

g

t

(B(x,r )
¢

\
B(y,r ) 6=;. We need to prove that a uniform version of Dolgopyat’s rapid mixing holds with respect to µ∏, that is
there exists c0,c1 independent of ∏ such that

Ø

Ø

Ø

Ø

Z

f hg

t

µ∏°
Z

f h

Ø

Ø

Ø

Ø

∑ c1k f kÆkhk)Æ(1+ t )°c0

⇤

We want to show that
@

@∏
G∏(x, y) =

Z

f

M

G∏(x, z)G∏(z, y)dz

=
Z1

0
e

RP (∏)
Z

S(x,R)

G∏(z, y)
G∏(z, x)

e

°RP (∏)
G

2
∏(x, z)dz dR

Recall that as ∏!∏0,
G∏(z, y)
G∏(z, x)

! k∏(x, y,ª).

so,
Z1

0
e

RP (∏)
Z

S(x,R)

G∏(z, y)
G∏(z, x)

e

°RP (∏)
G

2
∏(x, z)dz dR =

Z1

0
e

RP (∏)
Z

@f

M

k∏(x, y,ª)dµ∏0
x

(ª)

Theorem 3 (Ledrappier-Lim). C (x, y) =
R

@f

M

k∏0 (x, y,ª)dµ∏0
x

(ª)

Remark 3.
n

µ∏0
x

o

minimizes the Mohsen-Rayleigh quotient.
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