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DIOPHANTINE APPROXIMATION

Dirichlet's theorem, badly approximable numbers

Khintchine's theorem

1 a non-increasing function

W(y) = {x €[0,1] : |(gx)| < ¥(q) has infinitely many solutions}
o Leb(W(1)) = 0 if 52, (i) < o0

o Leb(W(4)) = 1 if Y-, (i) = o
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Pollington-Vaughan: Higher dimensional version does not
need monotonicity

Duffin-Schaeffer conjecture: In one dimension, monotonicity
can be relaxed

Can ask for more refined information

Nx, o, T)=#{1<q< T : [{gx)| <¥(q)}

W. M. Schmidt: For a.e. x, for every ¢ > 0

T T 1/2+e
N(x, 4, T) =Y (i) + O (Z w))

i=1
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BOREL CANTELLI LEMMA

e (X, B, ) probability space, A, C X
o If Y°0°, p(An) < oo then p(limsup(A,)) =0

o W. M. Schmidt: Conversely, suppose there exists C > 0 such
that for every N > M > 1

M N
> </ hmh,,du—/ hmdu/ hnd,u,) < CZ/hnd,u
m,n=N X X X n=M X

@ Then for a.e. x, for every € > 0

Sn(x) = En + O(Ey/? log®/?+< E,)
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BOREL CANTELLI LEMMA

e (X, B, ) probability space, A, C X

If Y00, u(An) < oo then p(limsup(A,)) =0

o W. M. Schmidt: Conversely, suppose there exists C > 0 such
that for every N > M > 1

M N
> </ hmh,,du—/ hmdu/ hnd,u,) < CZ/hnd,u
m,n=N X X X n=M X

(]

Then for a.e. x, for every e > 0

Sn(x) = En + O(Ey/? log®/?+< E,)

Sn(x) = SN 1 ha(x) and Ey = SN 1 [y hndp
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DYNAMICAL APPROACH TO KHINTCHINE’S THEOREM

@ SL,1+1(R)/SLp+1(Z) can be identified with the space X, of
unimodular lattices in R"t1
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DYNAMICAL APPROACH TO KHINTCHINE’S THEOREM

@ SLy+1(R)/SLp+1(Z) can be identified with the space Xj11 of
unimodular lattices in R"+1

(]

Mahler’s compactness criterion describes compact subsets of
Xn+1

(1 x
0 X e Uy 1= 0 Id

gt :=diag(e™, et ... e )

Read Diophantine properties of x from the g; orbit of u,Z"™!

e Dani: x is badly approximable if and only if the g orbit of
uZ"t1 is bounded
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MORE GENERALLY (KLEINBOCK-MARGULIS)

@ There are infinitely many solutions to

lax + p| < ¥(q)
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MORE GENERALLY (KLEINBOCK-MARGULIS)

@ There are infinitely many solutions to
lax + pl < ¥(q)
o if and only if there are infinitely many t > 0 such that

shortest vector(g;u,Z™1) < r(t)
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r(t) defines the complement X, 11(t) of a compact set
Shrinking neighbourhoods of co

If r(t) — 0 very fast we should expect few solutions
The speed is governed by

S vol (X1 (1)

t=0
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Now use exponential mixing for g; action

And quantitative Borel-Cantelli lemma

This also gives “logarithm laws”

For geodesic flows on locally symmetric spaces
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e X - affine variety over K, X(K) dense in X(K,)
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DIOPHANTINE APPROXIMATION ON VARIETIES

e X - affine variety over K, X(K) dense in X(K,)

Lang: Is it possible to prove analogues of

Dirichlet's theorem, Khintchine's theorem etc?

Ghosh-Gorodnik-Nevo (2010, 2012):

Diophantine exponents, Khintchine's theorem

For homogeneous varieties of semisimple groups

Ghosh-Gorodnik-Nevo (2015): Analogue of Schmidt’s theorem
for group varieties
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o Example: X = {Q(x) = a} rational 2 dim ellipsoid

e Fora.e. x € X(R), ||[x — z|| < v (height(z)) for infinitely many
2 € X(Z[1/p))

@ Provided
Z ¥ (height(2))?T = oo

zeX(Z[1/P])
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Example: X = {Q(x) = a} rational 2 dim ellipsoid

For a.e. x € X(R), |[x — z|| < ¥ (height(z)) for infinitely many
2 € X(Z[1/p))

Provided
Z Y (height(2))*T = 0o
zeX(Z[1/p])
Kleinbock-Merrill: rational approximation on spheres

Fishman-Kleinbock-Merrill-Simmons: rational approximation
on quadratic surfaces
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o G(Qp) acting on ¥ = G(R) x G(Qy)/G(Z[1/p])
o x € G(R) &~ X :=(x,e)G(Z[1/p])
e BixnN Or(t)

@ Shrinking neighbourhoods of identity coset
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G(Qp) acting on ¥ := G(R) x G(Q,)/G(ZI1/p])
x € G(R) e X := (x,€)G(Z[1/p])

Bix N O,y

Shrinking neighbourhoods of identity coset

Duality principle



QUANTITATIVE MEAN ERGODIC THEOREM

o Consider the bounded operator 7y (3;) on L2(Y)
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@ given by

Ty (Be)F(y) = / Fyh)dBe(h).y € Y

mp(Bt) Jg,
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o Consider the bounded operator 7y () on L2(Y)

e given by

Ty (Be)F(y) = ﬁ /B Fyh)dBe(h).y € Y

@ There exists 6 > 0 such that for every n > 0
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QUANTITATIVE MEAN ERGODIC THEOREM

o Consider the bounded operator 7y () on L2(Y)
e given by

Ty (Be)F(y) = ﬁ /B Fyh)dBe(h).y € Y

@ There exists 6 > 0 such that for every n > 0
[y (Be)f — /Y fdpll 20vy < mu(He) "I F [l 2y

o 0 is the “spectral gap”, given by the integrability of matrix
coefficients
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THEOREM 1 GGN (2015)

For a.e.x € G(R)

#{y €T, l[x — 7| < 9,height(y) < T}

o = moo(Bs(x))mp(BT) + O((meo(Bs(x))mp(B7)) ")

This theorem holds more generally for S-integer and rational
points
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THEOREM 2 GGN (2015)

@ Suppose #{y €T, ||[x — | < d, height(y) < T}
° = mu(Bs(x))mp(BT) + ET 5(x)
o where [|[E7 5l 12(q) < C(Q)(Moo(Bs(x))mp(B1)) 7

@ Then the unitary representation of G(Q,) on L2(Y) has
spectral gap at least 7, i.e.
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@ Suppose #{y €T, ||[x — | < d, height(y) < T}

° = mu(Bs(x))mp(BT) + ET 5(x)

where || E7 s]l12(q) < C(Q)(moo(Bs(x))mp(B7))* ™7

Then the unitary representation of G(Q,) on L?(Y) has
spectral gap at least 7, i.e.

(]

Iy (Be)ll vy < mp(BT)) ™"
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THEOREM 2 GGN (2015)

@ Suppose #{y €T, ||[x — | < d, height(y) < T}

° = mu(Bs(x))mp(BT) + ET 5(x)

where || E7 s]l12(q) < C(Q)(moo(Bs(x))mp(B7))* ™7

Then the unitary representation of G(Q,) on L?(Y) has
spectral gap at least 7, i.e.

(]

Iy (Be)ll vy < mp(BT)) ™"

@ Provided G is a product of split rank 1 groups and T is
cocompact
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