Anish Ghosh

Tata Institute of Fundamental Research

joint work with Alexander Gorodnik and Amos Nevo

• Dirichlet's theorem, badly approximable numbers

- Dirichlet's theorem, badly approximable numbers
- Khintchine's theorem

DIOPHANTINE APPROXIMATION

- Dirichlet's theorem, badly approximable numbers
- Khintchine's theorem
- ψ a non-increasing function

 $W(\psi) = \{x \in [0,1] : |\langle qx \rangle| < \psi(q) \text{ has infinitely many solutions} \}$

- Dirichlet's theorem, badly approximable numbers
- Khintchine's theorem
- ψ a non-increasing function

 $W(\psi) = \{x \in [0,1] : |\langle qx \rangle| < \psi(q) \text{ has infinitely many solutions} \}$

• Leb $(W(\psi)) = 0$ if $\sum_{i=1}^{\infty} \psi(i) < \infty$

- Dirichlet's theorem, badly approximable numbers
- Khintchine's theorem
- ψ a non-increasing function

 $W(\psi) = \{x \in [0,1] \ : \ |\langle qx
angle| < \psi(q) \text{ has infinitely many solutions} \}$

- Leb $(W(\psi)) = 0$ if $\sum_{i=1}^{\infty} \psi(i) < \infty$
- Leb $(W(\psi)) = 1$ if $\sum_{i=1}^{\infty} \psi(i) = \infty$

• Pollington-Vaughan: Higher dimensional version does not need monotonicity

- Pollington-Vaughan: Higher dimensional version does not need monotonicity
- Duffin-Schaeffer conjecture: In one dimension, monotonicity can be relaxed

- Pollington-Vaughan: Higher dimensional version does not need monotonicity
- Duffin-Schaeffer conjecture: In one dimension, monotonicity can be relaxed
- Can ask for more refined information

 $N(x,\psi,T) = \#\{1 \leq q \leq T : |\langle qx \rangle| < \psi(q)\}$

- Pollington-Vaughan: Higher dimensional version does not need monotonicity
- Duffin-Schaeffer conjecture: In one dimension, monotonicity can be relaxed
- Can ask for more refined information

$$N(x,\psi,T) = \#\{1 \leq q \leq T : |\langle qx \rangle| < \psi(q)\}$$

• W. M. Schmidt: For a.e. x, for every $\epsilon > 0$

$$N(x,\psi,T) = \sum_{i=1}^{T} \psi(i) + O\left(\left(\sum_{i=1}^{T} \psi(i)\right)^{1/2+\epsilon}\right)$$

• (X, \mathcal{B}, μ) probability space, $A_n \subset X$

Borel Cantelli Lemma

- (X, \mathcal{B}, μ) probability space, $A_n \subset X$
- If $\sum_{n=1}^{\infty} \mu(A_n) < \infty$ then $\mu(\limsup(A_n)) = 0$

- (X, \mathcal{B}, μ) probability space, $A_n \subset X$
- If $\sum_{n=1}^{\infty} \mu(A_n) < \infty$ then $\mu(\limsup(A_n)) = 0$
- W. M. Schmidt: Conversely, suppose there exists C > 0 such that for every $N > M \ge 1$

$$\sum_{m,n=N}^{M} \left(\int_{X} h_{m} h_{n} d\mu - \int_{X} h_{m} d\mu \int_{X} h_{n} d\mu \right) \leq C \sum_{n=M}^{N} \int_{X} h_{n} d\mu$$

- (X, \mathcal{B}, μ) probability space, $A_n \subset X$
- If $\sum_{n=1}^{\infty} \mu(A_n) < \infty$ then $\mu(\limsup(A_n)) = 0$
- W. M. Schmidt: Conversely, suppose there exists C > 0 such that for every $N > M \ge 1$

$$\sum_{m,n=N}^{M} \left(\int_{X} h_{m} h_{n} d\mu - \int_{X} h_{m} d\mu \int_{X} h_{n} d\mu \right) \leq C \sum_{n=M}^{N} \int_{X} h_{n} d\mu$$

• Then for a.e. x, for every $\epsilon > 0$

 $S_N(x) = E_N + O(E_N^{1/2} \log^{3/2 + \epsilon} E_n)$

- (X, \mathcal{B}, μ) probability space, $A_n \subset X$
- If $\sum_{n=1}^{\infty} \mu(A_n) < \infty$ then $\mu(\limsup(A_n)) = 0$
- W. M. Schmidt: Conversely, suppose there exists C > 0 such that for every $N > M \ge 1$

$$\sum_{m,n=N}^{M} \left(\int_{X} h_{m} h_{n} d\mu - \int_{X} h_{m} d\mu \int_{X} h_{n} d\mu \right) \leq C \sum_{n=M}^{N} \int_{X} h_{n} d\mu$$

• Then for a.e. x, for every $\epsilon > 0$

$$S_N(x) = E_N + O(E_N^{1/2} \log^{3/2 + \epsilon} E_n)$$

• $S_N(x) = \sum_{n=1}^N h_n(x)$ and $E_N = \sum_{n=1}^N \int_X h_n d\mu$

DYNAMICAL APPROACH TO KHINTCHINE'S THEOREM

 SL_{n+1}(ℝ)/SL_{n+1}(ℤ) can be identified with the space X_{n+1} of unimodular lattices in ℝⁿ⁺¹

DYNAMICAL APPROACH TO KHINTCHINE'S THEOREM

- SL_{n+1}(ℝ)/SL_{n+1}(ℤ) can be identified with the space X_{n+1} of unimodular lattices in ℝⁿ⁺¹
- Mahler's compactness criterion describes compact subsets of X_{n+1}

Dynamical approach to Khintchine's Theorem

- SL_{n+1}(ℝ)/SL_{n+1}(ℤ) can be identified with the space X_{n+1} of unimodular lattices in ℝⁿ⁺¹
- Mahler's compactness criterion describes compact subsets of X_{n+1}

• $x \leftrightarrow u_x := \begin{pmatrix} 1 & x \\ 0 & \text{Id} \end{pmatrix}$

Dynamical approach to Khintchine's theorem

- SL_{n+1}(ℝ)/SL_{n+1}(ℤ) can be identified with the space X_{n+1} of unimodular lattices in ℝⁿ⁺¹
- Mahler's compactness criterion describes compact subsets of X_{n+1}

•
$$x \iff u_x := \begin{pmatrix} 1 & x \\ 0 & \mathsf{Id} \end{pmatrix}$$

•
$$g_t := \operatorname{diag}(e^{nt}, e^{-t}, \dots, e^{-t})$$

Dynamical approach to Khintchine's Theorem

- SL_{n+1}(ℝ)/SL_{n+1}(ℤ) can be identified with the space X_{n+1} of unimodular lattices in ℝⁿ⁺¹
- Mahler's compactness criterion describes compact subsets of X_{n+1}

•
$$x \nleftrightarrow u_x := \begin{pmatrix} 1 & x \\ 0 & \mathsf{Id} \end{pmatrix}$$

•
$$g_t := diag(e^{nt}, e^{-t}, \dots, e^{-t})$$

• Read Diophantine properties of x from the g_t orbit of $u_x \mathbb{Z}^{n+1}$

Dynamical approach to Khintchine's Theorem

- SL_{n+1}(ℝ)/SL_{n+1}(ℤ) can be identified with the space X_{n+1} of unimodular lattices in ℝⁿ⁺¹
- Mahler's compactness criterion describes compact subsets of X_{n+1}

•
$$x \leftrightarrow u_x := \begin{pmatrix} 1 & x \\ 0 & \mathsf{Id} \end{pmatrix}$$

•
$$g_t := \operatorname{diag}(e^{nt}, e^{-t}, \dots, e^{-t})$$

- Read Diophantine properties of x from the g_t orbit of $u_x \mathbb{Z}^{n+1}$
- Dani: x is badly approximable if and only if the g_t orbit of $u_x \mathbb{Z}^{n+1}$ is bounded

MORE GENERALLY (KLEINBOCK-MARGULIS)

• There are infinitely many solutions to

 $|qx+p| < \psi(q)$

• There are infinitely many solutions to

 $|qx + p| < \psi(q)$

• if and only if there are infinitely many t > 0 such that

shortest vector $(g_t u_X \mathbb{Z}^{n+1}) \leq r(t)$

• r(t) defines the complement $X_{n+1}(t)$ of a compact set

- r(t) defines the complement $X_{n+1}(t)$ of a compact set
- $\bullet\,$ Shrinking neighbourhoods of $\infty\,$

- r(t) defines the complement $X_{n+1}(t)$ of a compact set
- $\, \bullet \,$ Shrinking neighbourhoods of $\infty \,$
- If $r(t) \rightarrow 0$ very fast we should expect few solutions

- r(t) defines the complement $X_{n+1}(t)$ of a compact set
- \bullet Shrinking neighbourhoods of ∞
- If $r(t) \rightarrow 0$ very fast we should expect few solutions
- The speed is governed by

$$\sum_{t=0}^{\infty} \operatorname{vol}(X_{n+1}(t))$$

• Now use exponential mixing for g_t action

- Now use exponential mixing for g_t action
- And quantitative Borel-Cantelli lemma

- Now use exponential mixing for g_t action
- And quantitative Borel-Cantelli lemma
- This also gives "logarithm laws"

- Now use exponential mixing for g_t action
- And quantitative Borel-Cantelli lemma
- This also gives "logarithm laws"
- For geodesic flows on locally symmetric spaces

• X - affine variety over K, X(K) dense in $X(K_v)$

- X affine variety over K, X(K) dense in $X(K_v)$
- Lang: Is it possible to prove analogues of

- X affine variety over K, X(K) dense in $X(K_v)$
- Lang: Is it possible to prove analogues of
- Dirichlet's theorem, Khintchine's theorem etc?

- X affine variety over K, X(K) dense in $X(K_v)$
- Lang: Is it possible to prove analogues of
- Dirichlet's theorem, Khintchine's theorem etc?
- Ghosh-Gorodnik-Nevo (2010, 2012):

- X affine variety over K, X(K) dense in $X(K_v)$
- Lang: Is it possible to prove analogues of
- Dirichlet's theorem, Khintchine's theorem etc?
- Ghosh-Gorodnik-Nevo (2010, 2012):
- Diophantine exponents, Khintchine's theorem
DIOPHANTINE APPROXIMATION ON VARIETIES

- X affine variety over K, X(K) dense in $X(K_v)$
- Lang: Is it possible to prove analogues of
- Dirichlet's theorem, Khintchine's theorem etc?
- Ghosh-Gorodnik-Nevo (2010, 2012):
- Diophantine exponents, Khintchine's theorem
- For homogeneous varieties of semisimple groups

DIOPHANTINE APPROXIMATION ON VARIETIES

- X affine variety over K, X(K) dense in $X(K_v)$
- Lang: Is it possible to prove analogues of
- Dirichlet's theorem, Khintchine's theorem etc?
- Ghosh-Gorodnik-Nevo (2010, 2012):
- Diophantine exponents, Khintchine's theorem
- For homogeneous varieties of semisimple groups
- Ghosh-Gorodnik-Nevo (2015): Analogue of Schmidt's theorem for group varieties

• Example: $X = \{Q(x) = a\}$ rational 2 dim ellipsoid

- Example: $X = \{Q(x) = a\}$ rational 2 dim ellipsoid
- For a.e. $x \in X(\mathbb{R})$, $||x z|| < \psi(\text{height}(z))$ for infinitely many $z \in X(\mathbb{Z}[1/p])$

- Example: $X = \{Q(x) = a\}$ rational 2 dim ellipsoid
- For a.e. $x \in X(\mathbb{R})$, $||x z|| < \psi(\text{height}(z))$ for infinitely many $z \in X(\mathbb{Z}[1/p])$
- Provided

$$\sum_{z \in X(\mathbb{Z}[1/p])} \psi(\mathsf{height}(z))^{2+\epsilon} = \infty$$

- Example: $X = \{Q(x) = a\}$ rational 2 dim ellipsoid
- For a.e. $x \in X(\mathbb{R})$, $||x z|| < \psi(\text{height}(z))$ for infinitely many $z \in X(\mathbb{Z}[1/p])$
- Provided

$$\sum_{z \in X(\mathbb{Z}[1/p])} \psi(\mathsf{height}(z))^{2+\epsilon} = \infty$$

• Kleinbock-Merrill: rational approximation on spheres

- Example: $X = \{Q(x) = a\}$ rational 2 dim ellipsoid
- For a.e. $x \in X(\mathbb{R})$, $||x z|| < \psi(\text{height}(z))$ for infinitely many $z \in X(\mathbb{Z}[1/p])$
- Provided $\sum_{z \in X(\mathbb{Z}[1/\rho])} \psi(\mathsf{height}(z))^{2+\epsilon} = \infty$
- Kleinbock-Merrill: rational approximation on spheres
- Fishman-Kleinbock-Merrill-Simmons: rational approximation on quadratic surfaces

- $G(\mathbb{Q}_p)$ acting on $Y := G(\mathbb{R}) \times G(\mathbb{Q}_p)/G(\mathbb{Z}[1/p])$
- $x \in G(\mathbb{R}) \iff \widetilde{x} := (x, e)G(\mathbb{Z}[1/p])$

•
$$x \in G(\mathbb{R}) \iff \widetilde{x} := (x, e)G(\mathbb{Z}[1/p])$$

• $B_t \widetilde{x} \cap \mathcal{O}_{r(t)}$

•
$$x \in G(\mathbb{R}) \iff \widetilde{x} := (x, e)G(\mathbb{Z}[1/p])$$

- $B_t \widetilde{x} \cap \mathcal{O}_{r(t)}$
- Shrinking neighbourhoods of identity coset

•
$$x \in G(\mathbb{R}) \iff \widetilde{x} := (x, e)G(\mathbb{Z}[1/p])$$

- $B_t \widetilde{x} \cap \mathcal{O}_{r(t)}$
- Shrinking neighbourhoods of identity coset
- Duality principle

• Consider the bounded operator $\pi_Y(\beta_t)$ on $L^2(Y)$

- Consider the bounded operator $\pi_Y(\beta_t)$ on $L^2(Y)$
- given by

$$\pi_{Y}(\beta_{t})f(y) = \frac{1}{m_{p}(B_{t})}\int_{B_{t}}f(yh)d\beta_{t}(h), y \in Y$$

- Consider the bounded operator $\pi_Y(\beta_t)$ on $L^2(Y)$
- given by

$$\pi_{Y}(\beta_{t})f(y) = \frac{1}{m_{p}(B_{t})}\int_{B_{t}}f(yh)d\beta_{t}(h), y \in Y$$

• There exists $\theta > 0$ such that for every $\eta > 0$

$$\|\pi_{Y}(\beta_{t})f - \int_{Y} f d\mu\|_{L^{2}(Y)} \ll m_{H}(H_{t})^{-\theta+\eta} \|f\|_{L^{2}(Y)}$$

- Consider the bounded operator $\pi_Y(\beta_t)$ on $L^2(Y)$
- given by

$$\pi_{Y}(\beta_{t})f(y) = \frac{1}{m_{p}(B_{t})}\int_{B_{t}}f(yh)d\beta_{t}(h), y \in Y$$

• There exists $\theta > 0$ such that for every $\eta > 0$

$$\|\pi_{Y}(\beta_{t})f - \int_{Y} f d\mu\|_{L^{2}(Y)} \ll m_{H}(H_{t})^{-\theta+\eta} \|f\|_{L^{2}(Y)}$$

• θ is the "spectral gap", given by the integrability of matrix coefficients

• For $a.e.x \in G(\mathbb{R})$

- For $a.e.x \in G(\mathbb{R})$
- $\#\{\gamma \in \Gamma, \|x \gamma\| < \delta, \operatorname{height}(\gamma) < T\}$

- For $a.e.x \in G(\mathbb{R})$
- $\#\{\gamma \in \Gamma, \|x \gamma\| < \delta, \mathsf{height}(\gamma) < T\}$
- = $m_{\infty}(B_{\delta}(x))m_{\rho}(B_{T}) + O((m_{\infty}(B_{\delta}(x))m_{\rho}(B_{T}))^{-\theta})$

- For $a.e.x \in G(\mathbb{R})$
- $\#\{\gamma \in \Gamma, \|x \gamma\| < \delta, \mathsf{height}(\gamma) < T\}$
- = $m_{\infty}(B_{\delta}(x))m_{\rho}(B_T) + O((m_{\infty}(B_{\delta}(x))m_{\rho}(B_T))^{-\theta})$
- This theorem holds more generally for *S*-integer and rational points

• Suppose $\#\{\gamma \in \Gamma, \|x - \gamma\| < \delta, \operatorname{height}(\gamma) < T\}$

• Suppose $\#\{\gamma \in \Gamma, \|x - \gamma\| < \delta, \mathsf{height}(\gamma) < T\}$

• = $m_{\infty}(B_{\delta}(x))m_p(B_T) + E_{T,\delta}(x)$

• Suppose $\#\{\gamma \in \Gamma, \|x - \gamma\| < \delta, \mathsf{height}(\gamma) < T\}$

• =
$$m_{\infty}(B_{\delta}(x))m_{p}(B_{T}) + E_{T,\delta}(x)$$

• where $\|E_{\mathcal{T},\delta}\|_{L^2(Q)} \leq C(Q)(m_\infty(B_\delta(x))m_p(B_\mathcal{T}))^{1- au}$

• Suppose $\#\{\gamma \in \Gamma, \|x - \gamma\| < \delta, \mathsf{height}(\gamma) < T\}$

• =
$$m_{\infty}(B_{\delta}(x))m_p(B_T) + E_{T,\delta}(x)$$

- where $\|E_{\mathcal{T},\delta}\|_{L^2(Q)} \leq C(Q)(m_\infty(B_\delta(x))m_p(B_\mathcal{T}))^{1- au}$
- Then the unitary representation of $G(\mathbb{Q}_p)$ on $L^2(Y)$ has spectral gap at least τ , i.e.

• Suppose $\#\{\gamma \in \Gamma, \|x - \gamma\| < \delta, \mathsf{height}(\gamma) < T\}$

• =
$$m_{\infty}(B_{\delta}(x))m_p(B_T) + E_{T,\delta}(x)$$

- where $\|E_{\mathcal{T},\delta}\|_{L^2(Q)} \leq C(Q)(m_\infty(B_\delta(x))m_p(B_\mathcal{T}))^{1- au}$
- Then the unitary representation of G(Q_p) on L²(Y) has spectral gap at least τ, i.e.
- $\|\pi_Y(\beta_t)\|_{L^2(Y)} \ll m_p(B_T))^{-\tau}$

• Suppose $\#\{\gamma \in \Gamma, \|x - \gamma\| < \delta, \mathsf{height}(\gamma) < T\}$

• =
$$m_{\infty}(B_{\delta}(x))m_p(B_T) + E_{T,\delta}(x)$$

- where $\|E_{\mathcal{T},\delta}\|_{L^2(Q)} \leq C(Q)(m_\infty(B_\delta(x))m_p(B_\mathcal{T}))^{1- au}$
- Then the unitary representation of G(Q_p) on L²(Y) has spectral gap at least τ, i.e.

•
$$\|\pi_Y(\beta_t)\|_{L^2(Y)} \ll m_p(B_T))^{-\tau}$$

 Provided G is a product of split rank 1 groups and Γ is cocompact