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Main objectives of the lectures

1 To give a short review of the derivation of the NLS from quantum many
body systems via the Gross-Pitaevskii (GP) hierarchy.1

2 The most involved part in such a derivation of NLS consists in
establishing uniqueness of solutions to the GP, which was originally
obtained by Erdös-Schlein-Yau. We will focus on approaches to the
uniqueness step that are motivated by the perspective coming from
nonlinear dispersive PDE, including:

the approach of Klainerman-Machedon
the approach that we developed with T. Chen, C. Hainzl and R.
Seiringer based on the quantum de Finetti’s theorem.

1The GP hierarchy is an infinite system of coupled linear non-homogeneous PDE.
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Interacting bosons

The mathematical analysis of interacting Bose gases is a hot topic in Math
Physics. One of the important research directions is:

Proof of Bose-Einstein condensation
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Bose-Einstein condensation

At very low temperatures dilute Bose gases are characterized by the
“macroscopic occupancy of a single one-particle state”.

The prediction in 1920’s
Bose, Einstein

The first experimental realization in 1995
Cornell-Wieman et al, Ketterle et al

Proof of Bose-Einstein condensation around 2000
Aizenman-Lieb-Seiringer-Solovej-Yngvason, Lieb-Seiringer,
Lieb-Seiringer-Yngvason
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Figure : Velocity distribution data for a gas of rubidium atoms before/just
after the appearance of a Bose-Einstein Condensate, and after further
evaporation. The photo is a courtesy of Wikipedia.
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Nonlinear Schrödinger equation (NLS)

The mathematical analysis of solutions to the nonlinear Schrödinger equation
(NLS) has been a hot topic in PDE.

NLS is an example of a dispersive2 equation.

2Informally, “dispersion” means that different frequencies of the equation propagate
at different velocities, i.e. the solution disperses over time.
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The Cauchy problem for a nonlinear Schrödinger equation

iut + ∆u = µ|u|p−1u(1.1)

u(x , 0) = u0(x) ∈ Hs(Ωn), t ∈ R,(1.2)

where Ωn is either the space Rn or the n-dimensional torus Tn = Rn/Zn.
The equation (1.1) is called

defocusing if µ = 1

focusing if µ = −1.
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NLS - basic questions - I

1 Local in time well-posedness, LWP (existence of solutions, their
uniqueness and continuous dependance on initial data3)

How: usually a fixed point argument.

Tools: Strichartz estimates

Then (in the ’80s, ’90s):
via Harmonic Analysis (e.g. Kato, Cazenave-Weissler,
Kenig-Ponce-Vega)
via Analytic Number Theory (e.g. Bourgain)
via Probability ( e.g. Bourgain a.s. LWP4 )

Now:
via Probability (e.g. Burq-Tzvetkov, Rey-Bellet - Nadmoh - Oh -
Staffilani, Nahmod-Staffilani, Bourgain-Bulut )
via Incidence Theory ( a hot new direction Bourgain-Demeter)

3LWP: For any u0 ∈ X there exist T > 0 and a unique solution u to the IVP in
C([0,T ],X) that is also stable in the appropriate topology.

4a.s. LWP: There exists Y ⊂ X , with µ(Y ) = 1 and such that for any u0 ∈ Y there
exist T > 0 and a unique solution u to the IVP in C([0,T ],X) that is also stable in the
appropriate topology.
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NLS - more on local well-posedness

(A) Energy methods: integrate by parts the IVP to obtain an apriori bound
sup0≤t≤T ‖u(·, t)‖Hs ≤ C(T , u0). Then use approximative methods to obtain a
sequence for which the bound is valid and take a weak limit.
Bad news: usually too many derivatives are needed.

(B) Iterative methods: by the Duhamel’s formula the IVP
iut + Lu = N(u)

is equivalent to the integral equation

u(t) = U(t)u0 +

∫ t

0
U(t − τ)N(u(τ))dτ,

where U(t) is the solution operator associated to the linear problem.
Tools: Strichartz estimates (Strichartz, Ginibre-Velo, Yajima, Keel-Tao)
For any admissible pairs (q, r) and (q̃, r̃) we have
(1.3) ‖U(t)u0‖Lq

t Lr
x
≤ C‖u0‖L2

x
.

(1.4) ‖
∫ t

0
U(t − τ)N(τ) dτ‖Lq

t Lr
x
≤ C‖N‖

Lq̃′
t Lr̃′

x
.

Good news: one can treat problems with much less regularity.
Bad news: some smallness is needed (e.g. short times or small data).
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NLS - basic questions - II

2 Global in time well-posedness/blow-up

How: LWP + use of conserved quantities

Tools: very technical clever constructions in order to access
conserved quantities

Then (in the ’00s):
via Harmonic Analysis (e.g. Bourgain and
Colliander-Keel-Staffilani-Takaoka-Tao induction on energy,
Kenig-Merle concentration-compactness, Killip - Visan)

Now:
via Probability (a construction of Gibbs measure e.g. Burq-Tzvetkov,
Oh, Rey-Bellet - Nadmoh - Oh - Staffilani, Bourgain-Bulut).
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Bosons and NLS

What is a connection between:

interacting bosons

and

NLS?
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Rigorous derivation of the NLS from quantum many body systems

How: the topic of these lectures

Then (in the late ’70s and the ’80s):
via Quantum Field Theory (Hepp, Ginibre-Velo)
via Math Physics (Spohn)

Now:

via Quantum Field Theory (Rodnianski-Schlein,
Grillakis-Machedon-Margetis, Grillakis-Machedon, X. Chen)
via Math Physics (Fröhlich-Tsai-Yau, Bardos-Golse-Mauser,
Erdös-Yau, Adami-Bardos-Golse-Teta, Elgart-Erdös-Schlein-Yau,
Erdös-Schlein-Yau)
via Math Physics + Dispersive PDE (Klainerman-Machedon,
Kirkpatrick-Schlein-Staffilani, Chen-P., Chen-P.-Tzirakis,
Gressman-Sohinger-Staffilani, Sohinger, X. Chen, X. Chen-Holmer,
X. Chen-Smith, Chen-Hainzl-P.-Seiringer, Hong-Taliaferro-Xie,
Herr-Sohinger, Bulut)
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From bosons to NLS following Erdös-Schlein-Yau [2006-07]

Step 1: From N-body Schrödinger to BBGKY hierarchy

The starting point is a system of N bosons whose dynamics is generated
by the Hamiltonian

HN :=
N∑

j=1

(−∆xj ) +
1
N

∑
1≤i<j≤N

VN(xi − xj ) ,(2.1)

on the Hilbert space HN = L2
sym(RdN), whose elements Ψ(x1, . . . , xN) are fully

symmetric with respect to permutations of the arguments xj .

Here
VN(x) = NdβV (Nβx),

with 0 < β ≤ 1.
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When β = 1, the Hamiltonian

HN :=
N∑

j=1

(−∆xj ) +
1
N

∑
1≤i<j≤N

VN(xi − xj ) ,(2.2)

is called the Gross-Pitaevskii Hamiltonian.

We note that physically (2.2) describes a very dilute gas, where
interactions among particles are very rare and strong.

This is in contrast to a mean field Hamiltonian, where each particle
usually reacts with all other particles via a very weak potential.

However thanks to the factor 1
N in front of the interaction potential, (2.2)

can be formally interpreted as a mean field Hamiltonian. In particular,
one can still apply to (2.2) similar mathematical methods as in the case
of a mean field potential.
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Schrödinger equation

The wave function satisfies the Schrödinger equation

(2.3) i∂tψN = HNψN ,

with initial condition ΨN,0 ∈ HN .

Since the Schrödinger equation (2.3) is linear and the Hamiltonian HN is
self-adjoint, global well-posedness of (2.3) is not an issue.
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On the N-body Schrödinger equation

Bad news:

Qualitative and quantitative properties of the solution are hard to extract
in physically relevant cases when number of particles N is very large
(e.g. it varies from 103 for very dilute Bose-Einstein samples, to 1030 in
stars).

Good news:

Physicists often care about macroscopic properties of the system, which
can be obtained from averaging over a large number of particles.

Further simplifications are related to obtaining a macroscopic behavior
in the limit as N →∞, with a hope that the limit will approximate
properties observed in the experiments for a very large, but finite N.
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To study the limit as N →∞, one introduces:

the N-particle density matrix

γN(t , xN ; x ′N) = ΨN(t , xN)ΨN(t , x ′N),

and its k -particle marginals

γ
(k)
N (t , xk ; x ′k ) =

∫
dxN−kγN(t , xk , xN−k ; x ′k , xN−k ) ,

for k = 1, . . . ,N.

Here

xk = (x1, . . . , xk ),

xN−k = (xk+1, . . . , xN).
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The BBGKY5, hierarchy is given by

i∂tγ
(k)
N = −(∆xk −∆x′k

)γ
(k)
N

+
1
N

∑
1≤i<j≤k

(
VN(xi − xj )− VN(x ′i − x ′j )

)
γ

(k)
N(2.4)

+
N − k

N

k∑
i=1

Trk+1
(
VN(xi − xk+1)− VN(x ′i − xk+1)

)
γ

(k+1)
N(2.5)

In the limit N →∞, the sums weighted by combinatorial factors have the
following size:

In (2.4), k2

N → 0 for every fixed k and sufficiently small β.

In (2.5), N−k
N → 1 for every fixed k and VN(xi − xj )→ b0δ(xi − xj ), with

b0 =
∫

dx V (x).

5Bogoliubov-Born-Green-Kirkwood-Yvon
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Step 2: BBGKY hierarchy→ GP hierarchy

As N →∞, one obtains the infinite GP hierarchy as a weak limit.

i∂tγ
(k)
∞ = −

k∑
j=1

(∆xj −∆x′j
) γ(k)
∞ + b0

k∑
j=1

Bj;k+1γ
(k+1)
∞

where the “contraction operator” is given via(
Bj;k+1γ

(k+1)
∞

)
(t , x1, . . . , xk ; x ′1, . . . , x

′
k )

= γ(k+1)
∞ (t , x1, . . . , xj , . . . , xk , xj ; x ′1, . . . , x

′
k , xj )

− γ(k+1)
∞ (t , x1, . . . , xk , x ′j ; x ′1, . . . , x

′
j , . . . , x

′
k , x
′
j ).
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Step 3: Factorized solutions of the GP hierarchy

It is easy to see that

γ(k)
∞ =

∣∣φ 〉〈φ ∣∣⊗k
:=

k∏
j=1

φ(t , xj )φ(t , x ′j )

is a solution of the GP if φ satisfies the cubic NLS

i∂tφ + ∆xφ − b0 |φ|2 φ = 0

with φ0 ∈ L2(Rd ).
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Step 4: Uniqueness of solutions to the GP hierarchy

While the existence of factorized solutions can be easily obtained, the proof
of uniqueness of solutions of the GP hierarchy is the most difficult6 part in
this analysis.

6We will describe those difficulties soon.
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Summary of the method of ESY

Roughly speaking, the method of Erdös, Schlein, and Yau for deriving the
cubic NLS justifies the heuristic explained above and it consists of the
following two steps:

(i) Deriving the GP hierarchy as the limit as N→∞ of the BBGKY
hierarchy.

(ii) Proving uniqueness of solutions for the GP hierarchy, which implies
that for factorized initial data, the solutions of the GP hierarchy are
determined by a cubic NLS. The proof of uniqueness is accomplished by
using highly sophisticated Feynman graphs.
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A remark about ESY solutions of the GP hierarchy

Solutions of the GP hierarchy are studied in “L1-type trace Sobolev”
spaces of k -particle marginals

{γ(k) | ‖γ(k)‖h1 < ∞}

with norms

‖γ(k)‖hα := Tr(|S(k,α)γ(k)|) ,

where7

S(k,α) :=
k∏

j=1

〈∇xj 〉
α〈∇x′j

〉α .

7Here we use the standard notation: 〈y〉 :=
√

1 + y2.
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Why is it difficult to prove uniqueness?

One considers the r -fold iterate of the Duhamel formula for γ(k), with initial
data γ(k)

0 = 0, for some arbitrary r ∈ N,

γ(k)(t) = (iλ)r
∫

t≥t1≥···≥tr
dt1 · · · dtr U(k)(t − t1)Bk+1U(k+1)(t1 − t2) · · ·

· · ·U(k+r−1)(tr−1 − tr )Bk+rγ
(k+r)(tr )

=:

∫
t≥t1≥···≥tr

dt1 · · · dtr Jk (t r ) , t r := (t1, . . . , tr ) .(2.6)

A key difficulty stems from the fact that the interaction operator B`+1 is the
sum of O(`) terms, therefore (2.6) contains O( (k+r−1)!

(k−1)!
) = O(r !) terms.
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Uniqueness of GP following Klainerman-Machedon

Klainerman and Machedon (2008) introduced an alternative method for
proving uniqueness in a space of density matrices equipped with the
Hilbert-Schmidt type Sobolev norm

‖γ(k)‖Hαk
:= ‖S(k,α)γ(k)‖L2(Rdk×Rdk ).

The method is based on:

a reformulation of the relevant combinatorics via the “board game
argument” and

the use of certain space-time estimates of the type:

‖Bj;k+1 U(k+1)γ(k+1)‖L2
t Ḣα(R×Rdk×Rdk ) . ‖γ

(k+1)‖Ḣα(Rd(k+1)×Rd(k+1)).
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The method of Klainerman and Machedon makes the assumption that the a
priori space-time bound

‖Bj;k+1γ
(k+1)‖L1

t Ḣ1
k
< Ck ,(2.7)

holds, with C independent of k .

Subsequently:

Kirkpatrick, Schlein and Staffilani (2011) were the first to use the KM
formulation to derive the cubic NLS in d = 2 via proving that the limit of
the BBGKY satisfies (2.7).

Chen-P (2011) generalized this to derive the quintic GP in d = 1, 2.

Xie (2013) generalized it further to derive a NLS with a general
power-type nonlinearity in d = 1, 2.

A derivation of the cubic NLS in d = 3 based on the KM combinatorial
formulation was settled recently (Chen-P; X. Chen, X. Chen-Holmer and
T. Chen-Taliaferro).
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Uniqueness argument of Klainerman and Machedon

Main steps of the approach:

1 a reformulation of the relevant combinatorics of ESY via the
“board game argument”

2 the use of certain space-time estimates
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The board game combinatorial argument, in a nutshell
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Revisit the iterated Duhamel formula

Let us go back to the r -fold iterate of the Duhamel formula for γ(k), with initial
data γ(k)

0 = 0, for some arbitrary r ∈ N,

γ(k)(t) = (iλ)r
∫

t≥t1≥···≥tr
dt1 · · · dtr U(k)(t − t1)Bk+1U(k+1)(t1 − t2) · · ·

· · ·U(k+r−1)(tr−1 − tr )Bk+rγ
(k+r)(tr )

=:

∫
t≥t1≥···≥tr

dt1 · · · dtr Jk (t r ) , t r := (t1, . . . , tr ) .(2.8)
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Recalling that B`+1 =
∑`

j=1 Bj;`+1, we write

Jk (t r ) =
∑

σ∈Mk,r

Jk (σ; t r ),(2.9)

where

Jk (σ; tr ) := (iλ)r U(k)(t − t1)Bσ(k+1),k+1U(k+1)(t1 − t2) · · ·

· · · U(k+`−1)(t`−1 − t`)Bσ(k+`),k+` · · · U(k+r−1)(tr−1 − tr )Bσ(k+r),k+rγ
(k+r)(tr ),

and σ is a map σ : {k + 1, k + 2, ..., k + r} → {1, 2, ..., k + r − 1}, σ(2) = 1,
and σ(j) < j for all j .

Each map σ can be represented by highlighting one nonzero entry in each
column of an (k + r − 1)× r matrix:



B1,k+1 B1,k+2 ... ... ... B1,k+r
... B2,k+2 ... ... ... ...

... ... ... Bσ(k+`),k+` ... ...

Bk,k+1 Bk,k+2 ... ... ... ...

0 Bk+1,k+2 ... ... ... ...

... 0 ... ... ... ...

... ... ... ... ... ...

... ... ... 0 ... ...
0 0 ... 0 ... Bk+r−1,k+r


.(2.10)
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A representation of γ(k)

Having defined σ, we can rewrite γ(k) as

γ(k)(t) =
∑

σ∈Mk,r

∫
t≥t1≥···≥tr

Jk (σ, t r ) dt1...dtr .(2.11)

where the time domains are given by the same simplex
{t > t1 > · · · > tr} ⊂ [0, t ]r for all integrals in the sum over σ.
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A very brief summary of the combinatorial part of KM:

introduce a boardgame on a set related toMk,r , so that an acceptable
move does not change values of corresponding integrals

in finitely many acceptable moves, each matrix can be transforrmed to
an upper echelon matrix

an upper echelon matrix is a representative of a class of equivalance

easy to obtain the number of classes of equivalence

in each equivalence class, one can re-organize all relevant integrals
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Now, the details of the combinatorial argument of KM
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Enlarged matrix:

Now we consider the integrals with permuted time integration orders:

I(σ, π) =

∫
t≥tπ(1)≥...≥tπ(r)

Jk (σ; t r ) dt1...dtr ,(2.12)

where π is a permutation of {1, 2, ..., r}.

One can associate to I(σ, π) the matrix

t
π−1(1)

t
π−1(2)

... t
π−1(r)

B1,k+1 B1,k+2 ... B1,k+r
... B2,k+2 ... ...

... ... ... ...
Bk,k+1 Bk,k+2 ... ...

0 Bk+1,k+2 ... ...

... 0 ... ...

... ... ... ...
0 0 ... Bk+r−1,k+r


whose columns are labeled 1 through r and whose rows are labeled
0, 1, ..., k + r − 1.
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On the set of such matrices

t
π−1(1)

t
π−1(2)

... t
π−1(r)

B1,k+1 B1,k+2 ... B1,k+r
B2,k+1 B2,k+2 ... ...

... ... ... ...
Bk,k+1 Bk,k+2 ... ...

0 Bk+1,k+2 ... ...

... 0 ... ...

... ... ... ...
0 0 ... Bk+r−1,k+r


KM introduce the following board game:

An acceptable move is characterized via: If σ(k + `) < σ(k + `− 1), the
player is allowed to do the following three changes at the same time:

exchange the highlights in columns ` and `+ 1,

exchange the highlights in rows k + `− 1 and k + `,

exchange tπ−1(`) and tπ−1(`+1).
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The main property of the integrals I(σ, π) is invariance under
acceptable moves:

Lemma

If (σ, π) is transformed into (σ′, π′) by an acceptable move, then
I(σ, π) = I(σ′, π′).
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Upper echelon form

We say that a matrix of the type (2.10) is in upper echelon form if each
highlighted entry in a row is to the left of each highlighted entry in a lower row.

For example, the following matrix is in upper echelon form (with k = 1 and
r = 4): 

B1,2 B1,3 B1,4 B1,5

0 B2,3 B2,4 B2,5

0 0 B3,4 B3,5

0 0 0 B4,5

 .
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Why are upper echelon matrices handy?

The following normal form property holds:

Lemma

For each matrix inMk,r , there is a finite number of acceptable moves that
transforms the matrix into upper echelon form.

And we can count:

Lemma

Let Ck,r denote the number of upper echelon matrices of size (k + r − 1)× r .
Then

Ck,r ≤ 2k+r .(2.13)
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Let Nk,r denote the subset of matrices inMk,r which are in upper echelon
form. Let σs account for a matrix in Nk,r . We write σ ∼ σs if the matrix
corresponding to σ can be transformed into that corresponding to σs in finitely
many acceptable moves.

Then, the following key theorem holds:

Theorem

Suppose σs ∈ Nk,r . Then, there exists a subset of [0, t ]r , denoted by D(σs, t),
such that∑

σ∼σs

∫
t≥t1≥···≥tr

Jk (σ; t r ) dt1...dtr =

∫
D(σs,t)

Jk (σs; t r ) dt1...dtr .(2.14)
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The space-time estimate
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Strichartz-type estimate for the GP

Theorem

Let γ(k+1) be the solution of

i∂tγ
(k+1)(t , xk+1; x ′k+1) + (∆xk+1 −∆x′k+1

)γ(k+1)(t , xk+1; x ′k+1) = 0

with initial condition γ(k+1)(0, · ) = γ
(k+1)
0 ∈ H1 . Then, there exists a constant

C such that∥∥∥Bj;k+1γ
(k+1)

∥∥∥
L2(R)Ḣ1

k (Rdk×Rdk )
≤ C

∥∥∥ γ(k+1)
0

∥∥∥
Ḣ1

k+1(Rd(k+1)×Rd(k+1))

holds.

In other words:
∥∥∥Bj;k+1U(k+1)γ

(k+1)
0

∥∥∥
L2Ḣ1

k

≤ C
∥∥∥ γ(k+1)

0

∥∥∥
Ḣ1

k+1

.
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The finale
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For I = [0,T ] , D ⊂ Ir and Dt1 = {(t2, ..., tr ) | (t1, ..., tr ) ∈ D} we have that
‖ γ(k)(t) ‖Ḣ1 is bounded by the sum of at most 2k+r terms of the form:

∥∥∥ ∫
D

dt1...dtr U(k)(t − t1)Bσ(k+1),k+1U(k+1)(t1 − t2)...Bσ(k+r),k+rγ
(k+r)

∥∥∥
Ḣ1

k

=
∥∥∥∫ t

0
dt1U(k)(t − t1)

∫
Dt1

dt2 · · · dtr Bσ(k+1),k+1U(k+1)(t1 − t2) · · ·Bσ(k+r),k+rγ
(k+r)

∥∥∥
Ḣ1

k

≤
∫

Ir
dt1 · · · dtr

∥∥∥Bσ(k+1),k+1U(k+1)(t1 − t2) · · ·Bσ(k+r),k+rγ
(k+r)

∥∥∥
Ḣ1

k

≤ t1/2
∫

Ir−1
dt2 · · · dtr

∥∥∥Bσ(k+1),k+1U(k+1)(t1 − t2)Bσ(k+2),k+2 · · ·Bσ(k+r),k+rγ
(k+r)

∥∥∥
L2

t1∈I Ḣ
1
k

(2.15)

≤ t1/2
∫

Ir−1
dt2 · · · dtr

∥∥∥Bσ(k+2),k+2U(k+2)(t2 − t3) · · ·Bσ(k+r),k+rγ
(k+r)

∥∥∥
Ḣ1

k+1

(2.16)

≤ · · ·
(

t1/2
)r−1

∫
I
dtr
∥∥∥Bσ(k+r),k+rγ

(k+r)
∥∥∥

Ḣ1
k+r−1

.

(2.15) was obtained by Cauchy-Schwarz w.r.t. to t1, (2.16) via the space-time estimate, and the last line via iteration.
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Therefore, we have:

(2.17) ‖ γ(k)(t) ‖Ḣ1 ≤ c
(

Ct1/2
)r−1

∫
I
dtr
∥∥∥Bσ(k+r),k+rγ

(k+r)
∥∥∥

Ḣ1
k+r−1

which after we recall the assumption of Klainerman and Machedon

‖Bj;k+1γ
(k+1)‖L1

t Ḣ1
k
< Ck(2.18)

implies

‖ γ(k)(t) ‖Ḣ1 ≤ c
(

Ct1/2
)r−1

.

Hence by choosing Ct1/2 < 1 and letting r →∞, it follows that:

‖ γ(k)(t) ‖Ḣ1 = 0.
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Going backwards i.e. from NLS to bosons

Since the GP

arises in a derivation of the NLS from quantum many-body system

it is natural to ask:

1 Whether the GP retains some of the features of a dispersive PDE?

2 Whether methods of nonlinear dispersive PDE can be “lifted” to the GP
and the QFT levels?
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Some questions about the GP - inspired by the NLS theory

1 Local in time existence of solutions to GP.

2 Blow-up of solutions to the focusing GP hierarchies.

3 Global existence of solutions to the GP hierarchy.

4 Derivation of the cubic GP hierarchy in [KM] spaces.

5 Uniqueness of the cubic GP hierarchy on T3.

6 Uniqueness of the cubic GP hierarchy on R3 via dispersive tools.
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Now, we shall look a bit into two of those questions:

1 Local in time existence and uniqueness for the GP

2 Negative energy blow-up result for the GP
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Local in time existence and uniqueness

The work of Klainerman and Machedon inspired us to study the Cauchy
problem for GP hierarchies.
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Towards a well-posedness result for the GP

Problem: The equations for γ(k) do not close & no fixed point argument.

Solution: Endow the space of sequences

Γ := ( γ(k) )k∈N.

with a suitable topology.
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Revisiting the GP hierarchy

Recall,

∆
(k)
± = ∆xk −∆x′k

, with ∆xk =
k∑

j=1

∆xj .

We introduce the notation:

Γ = ( γ(k)( t , x1, . . . , xk ; x ′1, . . . , x
′
k ) )k∈N ,

∆̂±Γ := ( ∆
(k)
± γ

(k) )k∈N ,

B̂Γ := ( Bk+1γ
(k+1) )k∈N .

Then, the cubic GP hierarchy can be written as8

i∂t Γ + ∆̂±Γ = µB̂Γ .(3.1)

8Moreover, for µ = 1 we refer to the GP hierarchy as defocusing, and for µ = −1 as
focusing.
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Spaces

Let

G :=
∞⊕

k=1

L2(Rdk × Rdk )

be the space of sequences of density matrices

Γ := ( γ(k) )k∈N.

As a crucial ingredient of our arguments, we introduce Banach spaces
Hαξ = { Γ ∈ G | ‖ Γ ‖Hα

ξ
<∞} where

‖ Γ ‖Hα
ξ

:=
∑
k∈N

ξk ‖ γ(k) ‖Hα(Rdk×Rdk ) .

Properties:

Finiteness: ‖ Γ ‖Hα
ξ
< C implies that ‖ γ(k) ‖Hα(Rdk×Rdk ) < Cξ−k .

Interpretation: ξ−1 upper bound on typical Hα-energy per particle.
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With T. Chen, we prove local in time existence and uniqueness of solutions
to the cubic and quintic GP hierarchy with focusing or defocusing interactions,
in a subspace of Hαξ , for α ∈ A(d , p), which satisfy a spacetime bound

‖B̂Γ‖L1
t∈IH

α
ξ
<∞,(3.2)

for some ξ > 0.
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Flavor of the proof:
Note that the GP hierarchy can be formally written as a system of integral
equations

Γ(t) = eit∆̂±Γ0 − iµ
∫ t

0
ds ei(t−s)∆̂± B̂Γ(s)(3.3)

B̂Γ(t) = B̂ eit∆̂±Γ0 − iµ
∫ t

0
ds B̂ ei(t−s)∆̂± B̂Γ(s) ,(3.4)

where (3.4) is obtained by applying the operator B̂ on the linear
non-homogeneous equation (3.3).

We prove the local well-posedness result by applying the fixed point
argument in the following space:

Wα
ξ (I) := { Γ ∈ L∞t∈IHαξ | B̂Γ ∈ L1

t∈IHαξ },(3.5)

where I = [0,T ].
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The conserved energy for the GP and an application

It is possible to:

1 Identify an observable corresponding to the average energy per
particle and prove that it is conserved.

2 Prove, on the L2 critical and supercritical level, that solutions of focusing
GP hierarchies with a negative average energy per particle and finite
variance blow up in finite time.
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Inspired by the spaces of solutions used by ESY, we introduce the spaces

Hαξ = { Γ ∈ G | ‖ Γ ‖Hα
ξ
<∞}

where

‖ Γ ‖Hα
ξ

:=
∑
k∈N

ξk ‖ γ(k) ‖hα ,

with

‖γ(k)‖hα := Tr( |S(k,α)γ(k)| ) .
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Conservation of average energy per particle

Theorem (Chen-P-Tzirakis)

Assume Γ(t) ∈ Hαξ , α ≥ 1, solves p-GP for µ = ±1.
Define k-particle energy and ξ-energy of GP, 0 < ξ < 1,

Ek ( Γ(t) ) := Tr
[ k∑

j=1

(−1
2

∆xj )γ
(k)
]

+
µ

p + 2
Tr
[

B+

k+ p
2
γ(k+ p

2 )
]

Eξ( Γ(t) ) :=
∑
k≥1

ξk Ek ( Γ(t) ) .

Then, the ξ-energy is conserved, Eξ( Γ(t) ) = Eξ( Γ(0) ).
In particular, admissibilitya ⇒ reduction to the one-particle density

Eξ( Γ(t) ) =
(∑

k≥1

kξk )E1( Γ(t) ).

aWe call Γ = (γ(k))k∈N admissible if γ(k) = Trk+1γ
(k+1) for all k ∈ N.
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Explicit expression for one-particle energy

Let kp := 1 + p
2 . Then,

E1(Γ) = Tr[−1
2

∆xγ
(1)] +

µ

p + 2

∫
dx γ(kp)(x , . . . , x︸ ︷︷ ︸

kp

; x , . . . , x︸ ︷︷ ︸
kp

)

For factorized states Γ(t) = (|φ(t)〉〈φ(t)|⊗k )k∈N,

E1( Γ(t) ) =
1
2
‖∇φ(t)‖2

L2 +
µ

p + 2
‖φ(t)‖p+2

Lp+2 ,

coincides with energy for NLS

i∂tφ+ ∆φ+ µ|φ|pφ = 0.
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Blow-up of solutions to the focusing GP hierarchies

Theorem (Chen-P-Tzirakis)

Let p ≥ pL2 = 4
d . Assume that Γ(t) = ( γ(k)(t) )k∈N solves the focusing p-GP

with Γ(0) ∈ H1
ξ for some 0 < ξ < 1, and Tr( x2γ(1)(0) ) <∞.

If E1( Γ(0) ) < 0, then the solution Γ(t) blows up in finite time.

Skip details...
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Zakharov-Glassey’s argument for the L2-critical or supercritical focusing NLS

Consider a solution of
i∂tφ = −∆φ− |φ|pφ

with φ(0) = φ0 ∈ H1(Rd ) and p ≥ pL2 = 4
d , such that

E [φ(t)] :=
1
2
‖∇φ(t)‖2

L2 −
1

p + 2
‖φ(t)‖p+2

Lp+2 = E [φ0] < 0.

Moreover, assume that ‖ |x |φ0 ‖L2 <∞.
Then the quantity V (t) := 〈φ(t), x2φ(t)〉 satisfies the virial identity

∂2
t V (t) = 16E [φ0] − 4d

p − pL2

p + 2
‖φ(t)‖p+2

Lp+2 .(3.6)

Hence, if E [φ0] < 0, and p ≥ pL2 , this identity shows that V is a strictly
concave function of t . But since V is also non-negative, we conclude that the
solution can exit only for a finite amount of time.
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Zakharov-Glassey’s argument for the L2-critical or supercritical focusing GP

The quantity that will be relevant in reproducing Zakharov-Glassey’s
argument is given by

Vk ( Γ(t) ) := Tr(
k∑

j=1

x2
j γ

(k)(t) ) .(3.7)

Similarly as in our discussion of the conserved energy, we observe that9

Vk ( Γ(t) ) = k V1( Γ(t) ) .(3.8)

9Again, this follows from the fact that γ(k) is symmetric in its variables, and from the
admissibility of γ(k)(t) for all k ∈ N.
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We calculate ∂2
t V1(t) and relate it to the conserved energy per particle:

∂2
t V1(t) = 16E1( Γ(0) ) + 4dµ

p − pL2

p + 2

∫
dX γ(X , ...,X︸ ︷︷ ︸

1+ p
2

; X , ...,X︸ ︷︷ ︸
1+ p

2

).

Hence for the focusing (µ = −1) GP hierarchy with p ≥ pL2 ,

∂2
t V1(t) ≤ 16E1( Γ(0) ).

However, the function V1(t) is nonnegative, so we conclude that if
E1( Γ(0) ) < 0, the solution can exist only for a finite amount of time.
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Dispersive tools at the level of the GP

1 Tools at the level of the GP, that are inspired by the NLS techniques, are
instrumental in understanding:

Well-posedness for the GP hierarchy
Well-posedness for quantum many body systems
Going from bosons to NLS in Klainerman-Machedon spaces

Results of: Gressman-Sohinger-Staffilani, Sohinger, Chen-P,
Chen-P-Tzirakis, Chen-Taliaferro, X. Chen, X. Chen-Holmer.

2 But there were still few questions that resisted the efforts to apply newly
built tools at the level of the GP, e.g.

Long time behavior of the GP hierarchy
Uniqueness of the cubic GP on T3

Uniqueness of the quintic GP on R3
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Q & A session

Q How to address the questions that are “GP tools resistant”?

an A Use tools at the level of the NLS?

Q How to use NLS tools when considering the GP?

an A Apply the quantum de Finetti theorem, which roughly says that
(relevant) solutions to the GP are given via an average of factorized
solutions.
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Quantum de Finetti as a bridge between the NLS and the GP

What is quantum De Finetti?
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Strong quantum de Finetti theorem

Due to: Hudson-Moody (1976/77), Stormer (1969), Lewin-Nam-Rougerie
(2013)

Theorem

(Strong Quantum de Finetti theorem) Let H be any separable Hilbert space
and let Hk =

⊗k
symH denote the corresponding bosonic k-particle space. Let

Γ denote a collection of admissible bosonic density matrices on H, i.e.,

Γ = (γ(1), γ(2), . . . )

with γ(k) a non-negative trace class operator on Hk , and γ(k) = Trk+1γ
(k+1),

where Trk+1 denotes the partial trace over the (k + 1)-th factor. Then, there
exists a unique Borel probability measure µ, supported on the unit sphere
S ⊂ H, and invariant under multiplication of φ ∈ H by complex numbers of
modulus one, such that

(4.1) γ(k) =

∫
dµ(φ)(|φ〉〈φ|)⊗k , ∀k ∈ N .
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Weak quantum de Finetti theorem

The limiting hierarchies obtained via weak-* limits from the BBGKY hierarchy
of bosonic N-body Schrödinger systems as in Erdös-Schlein-Yau do not
necessarily satisfy admissibility.

A weak version of the quantum de Finetti theorem then still applies (a
version was recently proven by y Lewin-Nam-Rougerie).
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De Finetti theorems in action

1 Uniqueness of solutions to the GP hierarchy

2 Scattering for the GP hierarchy
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Uniqueness of solutions to the GP via quantum de Finetti theorems

Until recently, the only available proof of unconditional uniqueness of
solutions in10 L∞t∈[0,T )H

1 to the cubic GP hierarchy in R3 was given in the
works of Erdös, Schlein, and Yau, who developed an approach based on
use of Feynman graphs. A key ingredient in their proof is a powerful
combinatorial method that resolves the problem of the factorial growth of
number of terms in iterated Duhamel expansions.

Recently, together with T. Chen, C. Hainzl and R. Seiringer, we obtained
a new proof based on quantum de Finetti theorem.

10The H1 denotes the trace class Sobolev space defined for the entire sequence
(γ(k))k∈N:

H1 :=
{

(γ(k))k∈N

∣∣∣Tr(|S(k,1)γ(k)|) < M2k for some constant M <∞
}
.
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Mild solution to the GP hierarchy

A mild solution in the space L∞t∈[0,T )H
1, to the GP hierarchy with initial data

(γ(k)(0))k∈N ∈ H1, is a solution of the integral equation

γ(k)(t) = U(k)(t)γ(k)(0) + iλ
∫ t

0
U(k)(t − s)Bk+1γ

(k+1)(s)ds , k ∈ N ,

satisfying
sup

t∈[0,T )

Tr(|S(k,1)γ(k)(t)|) < M2k

for a finite constant M independent of k .

Here,

U(k)(t) :=
k∏
`=1

e
it(∆x`−∆x′

`
)

denotes the free k -particle propagator.
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Statement of the result

Theorem (Chen-Hainzl-P-Seiringer)

Let (γ(k)(t))k∈N be a mild solution in L∞t∈[0,T )H
1 to the (de)focusing cubic GP

hierarchy in R3 with initial data (γ(k)(0))k∈N ∈ H1, which is either admissible,
or obtained at each t from a weak-* limit.
Then, (γ(k))k∈N is the unique solution for the given initial data.
Moreover, assume that the initial data (γ(k)(0))k∈N ∈ H1 satisfy

γ(k)(0) =

∫
dµ(φ)(|φ〉〈φ|)⊗k , ∀k ∈ N ,(4.2)

where µ is a Borel probability measure supported either on the unit sphere or
on the unit ball in L2(R3), and invariant under multiplication of φ ∈ H by
complex numbers of modulus one. Then,

γ(k)(t) =

∫
dµ(φ)(|St (φ)〉〈St (φ)|)⊗k , ∀k ∈ N ,(4.3)

where St : φ 7→ φt is the flow map of the cubic (de)focusing NLS.
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Key tools that we use:

1 The boardgame combinatorial organization as presented by
Klainerman and Machedon (KM)

2 The quantum de Finetti theorem allows one to avoid using the
condition that was assumed in the work of KM.
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Setup of the proof

Assume that we have two positive semidefinite solutions
(γ

(k)
j (t))k∈N ∈ L∞t∈[0,T )H

1 satisfying the same initial data,

(γ
(k)
1 (0))k∈N = (γ

(k)
2 (0))k∈N ∈ H1.

Then,

γ(k)(t) := γ
(k)
1 (t)− γ(k)

2 (t) , k ∈ N ,(4.4)

is a solution to the GP hierarchy with initial data γ(k)(0) = 0 ∀k ∈ N, and it
suffices to prove that

γ(k)(t) = 0

for all k ∈ N, and for all t ∈ [0,T ).
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Remarks:

From de Finetti theorems, we have

γ
(k)
j (t) =

∫
dµ(j)

t (φ)
(
|φ〉〈φ|

)⊗k
, j = 1, 2 ,

γ(k)(t) =

∫
d µ̃t (φ)

(
|φ〉〈φ|

)⊗k
,(4.5)

where µ̃t := µ
(1)
t − µ

(2)
t is the difference of two probability measures on

the unit ball in L2(R3).

From the assumptions of Theorem 9, we have that

sup
t∈[0,T )

Tr(|S(k,1)γ
(k)
i (t)|) < M2k , k ∈ N , i = 1, 2,(4.6)

for some finite constant M, which is equivalent to∫
dµ(j)

t (φ)‖φ‖2k
H1 < M2k , j = 1, 2 ,(4.7)

for all k ∈ N.
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Representation of solution using KM and de Finetti

KM implies that we can represent γ(k)(t) in upper echelon form:

γ(k)(t) =
∑

σ∈Nk,r

∫
D(σ,t)

dt1 · · · dtr U(k)(t − t1)Bσ(k+1),k+1U(k+1)(t1 − t2) · · ·

· · ·U(k+r−1)(tr−1 − tr )Bσ(k+r),k+rγ
(k+r)(tr )

Now using the quantum de Finetti theorem, we obtain:

γ(k)(t) =
∑

σ∈Nk,r

∫
D(σ,t)

dt1, . . . , dtr
∫

d µ̃tr (φ) Jk (σ; t , t1, . . . , tr ) ,

where

Jk (σ; t , t1, . . . , tr ; xk ; x ′k ) =
(

U(k)(t − t1)Bσ(k+1),k+1U(k+1)(t1 − t2) · · ·

· · ·U(k+r−1)(tr−1 − tr )Bσ(k+r),k+r
(
|φ〉〈φ|

)⊗(k+r)
)

(xk ; x ′k ) .
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Product form

For fixed φ, we note that since

(
|φ〉〈φ|

)⊗(k+r)
(xk+r ; x ′k+r ) =

k+r∏
i=1

(|φ〉〈φ|)(xi ; x ′i )(4.8)

is given by a product of 1-particle kernels, it follows that

Jk (σ; t , t1, . . . , tr ; xk ; x ′k ) =
k∏

j=1

J1
j (σj ; t , t`j,1 , . . . , t`j,mj

; xj ; x ′j )(4.9)

likewise has product form, for each fixed σ.
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Goal:

Hence11

Tr( |γ(k)| )

≤ Cr
∑
i=1,2

sup
σ

∫
[0,t]r

dt1 · · · dtr
∫

dµ(i)
tr (φ)

k∏
j=1

Tr
( ∣∣∣ J1

j (σj ; t , t`j,1 , . . . , t`j,mj
)
∣∣∣ ) .

Goal: prove that the right hand side tends to zero as r →∞, for t ∈ [0,T ),
and sufficiently small T > 0. Since r is arbitrary, this implies that the left hand
side equals zero, thus establishing uniqueness.

11Recall that for a fixed k , the number of inequivalent echelon forms is bounded by
Cr .
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Binary tree graphs

We now introduce binary tree graphs as a bookkeeping device to keep
track of the complicated contraction structures imposed by the interaction
operators inside the iterated Duhamel formula.
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Definition of binary trees

We associate to the iterated Duhamel formula the union of k disjoint binary
tree graphs, (τj )

k
j=1. We assign:

An internal vertex v`, ` = 1, . . . , r , to each operator Bσ(k+`),k+`.

A root vertex wj , j = 1, . . . , k to each factor J1
j (· · · ; xj ; x ′j ) in (4.9).

A leaf vertex ui , i = 1, . . . , k + r , to the factor (|φ〉〈φ|)(xi ; x ′i ) in (4.8).

We say that the tree τj is distinguished if vr ∈ τj , and regular if vr 6∈ τj .
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How to draw a tree?

For the sake of concreteness, we draw graphs as follows. We consider the
strip in (x , y) ∈ R2 given by x ∈ [0, 1] and draw:

all root vertices (wj )
k
j=1, ordered vertically, on the line x = 0,

all internal vertices (v`)r
`=1 in the region x ∈ (0, 1), where v`′ is on the

right of v` if `′ > `.

all leaf vertices (ui )
k+r
i=1 , ordered vertically, on the line x = 1.

We introduce the equivalence relation “∼” of connectivity between
vertices to describe the contraction structure determined by Bσ(k+`),k+`

operators. Between any pair of connected vertices, we draw a
connecting line, which we refer to as an edge.
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A drawing of tree graphs

u1

u2

u3

u4

u5

u6

u7

w1

w2

w3

B2,4 B2,5

B3,6

B5,7

Figure 1. The disjoint union of three tree graphs τj , j = 1, 2, 3, corresponding
to the case k = 3, r = 4, and

J3(σ; t , t1, . . . , t4) = U(3)
0,1B2,4U(4)

1,2B2,5U(5)
2,3B3,6U(6)

3,4B5,7(|φ〉〈φ|)⊗7 ,

The root vertex wj belongs to the tree τj , j = 1, 2, 3. The internal vertices
correspond to v1 ∼ B2,4, v2 ∼ B2,5, v3 ∼ B3,6, and v4 ∼ B5,7. The leaf vertices
u5 and u7, and the internal vertex v4 ∼ B5,7 are distinguished. The
distinguished tree τ2 is drawn with thick edges.
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Roadmap of the proof

1 recognize that a certain product structure gets preserved from
right to left (via recursively introducing kernels that account for
contractions performed by B operators)

2 get an estimate on integrals in upper echelon form via recursively
performing Strichartz estimates (at the level of the Schrödinger
equation) from left to right
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A taste of the proof or skip tasting

We consider, as an example, the contribution to the main bound of the form∫
[0,T )3

dt1dt2dt3
∫

dµ(i)
t3

(φ)

Tr
( ∣∣∣ (U(1)(t − t1)B1,2U(2)(t1 − t2)B2,3U(3)(t2 − t3)B3,4

(
|φ〉〈φ|

)⊗4
∣∣∣ ) .(4.10)
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Recursive determination of contraction structure

To account for the contractions performed by Bσ(α+1),α+1, we introduce
kernels Θα, α = 1, . . . , 3:

Θα(x , x ′) =
∑
βα

cαβαχ
α
βα(x)ψαβα(x ′)

where χαβα , ψαβα are certain functions that will be recursively determined, and
cαβα are coefficients with values in {1,−1}.
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The kernel Θ3

We start at the last interaction operator B3,4 in (4.10). It acts nontrivially only
on the 3-rd and 4-th factor in (|φ〉〈φ|)⊗4,

B3,4(|φ〉〈φ|)⊗4 = (|φ〉〈φ|)⊗2 ⊗Θ3 .(4.11)

The kernel Θ3 is obtained from contracting a two particle density matrix to the
one particle density matrix via B1,2 (which acts on a two-particle kernel
f (x , y ; x ′, y ′) by (B1,2f )(x , x ′) = f (x , x ; x ′, x)− f (x , x ′; x ′, x ′)),

Θ3(x , x ′) := B1,2

((
|φ〉〈φ|

)⊗2
)

(x , x ′) = ψ̃(x)φ(x ′)− φ(x)ψ̃(x ′)

=:
2∑

β3=1

c3
β3χ

3
β3 (x)ψ3

β3
(x ′)(4.12)

where

ψ̃ := |φ|2φ .(4.13)

Here, we have c3
1 = 1, c3

2 = −1, χ3
1 = ψ̃, χ3

2 = φ, ψ3
1 = φ, ψ3

2 = ψ̃.

In a similar way, one determines Θ2 and Θ1.
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Main difficulty

The main difficulty stems from the fact that the term ψ̃ = |φ|2φ can only be
controlled in L2, where by Sobolev embedding,

‖ψ̃‖L2 ≤ C‖φ‖3
H1 ,

which can be controlled by the assumptions of the theorem.

Our objective is to apply the triangle inequality to the trace norm inside
(4.10), and to recursively “propagate” the resulting L2 norm through all
intermediate terms until we reach ψ̃.
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Return to (4.10) and perform recursive bounds

• Integral in t1. Applying Cauchy-Schwarz with respect to the integral in t1 and
the triangle inequality for the trace norm, we obtain that

(4.10) =

∫
[0,T )3

dt1dt2dt3
∫

dµ(i)
t3

(φ)Tr
( ∣∣∣U(1)(t − t1)Θ1

∣∣∣ )
≤

8∑
β1=1

T 1/2
∫

[0,T )2
dt2dt3

∫
dµ(i)

t3
(φ)
∥∥∥ ‖χ1

β1‖L2
x
‖ψ1

β1‖L2
x

∥∥∥
L2

t1∈[0,T )

,

It can be seen that given β1 ∈ {1, . . . , 8}, there exists β2 such that

χ1
β1 (x) = (U1,3φ)(x)

ψ1
β1 (x) = (U1,3φ)(x)(U1,2χ2

β2
)(x)(U1,2ψ

2
β2 )(x)

(or with a cubic expressions for χ1
β1

and a linear expression for ψ1
β1

).
Therefore,∥∥∥ ‖χ1

β1‖L2
x
‖ψ1

β1‖L2
x

∥∥∥
L2

t1∈[0,T )

= ‖φ‖L2
x

∥∥∥ (U1,3φ)(x)(U1,2χ2
β2

)(x)(U1,2ψ
2
β2 )(x)

∥∥∥
L2

t1∈[0,T )
L2

x

.
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The crucial estimate (via Strichartz)

Next we observe that∥∥∥(eit∆f1)(x)(eit∆f2)(x)(eit∆f3)(x)
∥∥∥

L2
t (R)L2

x (R3)

≤ ‖eit∆f1‖L∞t L6
x
‖eit∆f2‖L∞t L6

x
‖eit∆f3‖L2

t L6
x

≤ C‖f1‖H1
x
‖f2‖H1

x
‖f3‖L2

x
(4.14)

using the Hölder inequality, the Sobolev inequality, and the Strichartz
estimate ‖eit∆f‖L2

t L6
x
≤ C‖f‖L2 for the free Schrödinger evolution.

We make the important observation that in (4.14), we can place the L2
x -norm

on any of the three functions fj , j = 1, 2, 3, and not only on f3.
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The crucial estimate continues

Similarly, if a derivative is included,∥∥∥∇x ( (eit∆f1)(x)(eit∆f2)(x)(eit∆f3)(x) )
∥∥∥

L2
t (R)L2

x (R3)

≤
3∑

j=1

‖eit∆∇x fj‖L2
t L6

x

∏
1≤i≤3

i 6=j

‖eit∆fi‖L∞t L6
x

≤ C ‖f1‖H1
x
‖f2‖H1

x
‖f3‖H1

x
,(4.15)

which, together with (4.14), implies that

∥∥∥(eit∆f1)(x)(eit∆f2)(x)(eit∆f3)(x) )
∥∥∥

L2
t (R)H1

x (R3)
≤ C

3∏
j=1

‖fj‖H1
x
.(4.16)
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The integral in t1 continues

Only one of the factors χ2
β2

, ψ2
β2

is distinguished12, say for instance ψ2
β2

. We
then use (4.14) in such a way that the L2

x -norm is applied to this term, thus
obtaning:

(4.10) ≤ CT 1/2
8∑

β1=1

∫
[0,T )2

dt2dt3
∫

dµ(i)
t3

(φ)‖φ‖2
H1

x
‖χ2

β2‖H1
x
‖ψ2

β2‖L2
x
,

where the indices β2 depend on β1.

Next, we use the defining relation for the functions χ2
β2

, ψ2
β2

, and consider the
integral in t2 and then, at the end, the integral in t3.

12We call a factor distinguished if it is a function of ψ̃.
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Using de Finetti for the last step

Subsequently we obtain

(4.10) ≤ CT
8∑

β1=1

∫
[0,T )

dt3
∫

dµ(i)
t3

(φ)‖φ‖5
H1‖ψ̃‖L2

x

≤ 8CT 2 sup
t3∈[0,T )

∫
dµ(i)

t3
(φ)‖φ‖8

H1

≤ 8CT 2M4 ,(4.17)

where we used ‖ψ̃‖L2
x
≤ C‖φ‖3

H1 from Sobolev embedding, and the bound
related to the de Finetti theorem, which is uniform in t3.
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Scattering for the GP hierarchy

Previous works: Scattering for the GP has been a longstanding open
problem despite much activity in the field.

Our result, joint with Chen-Hainzl-Seiringer: Establishes the existence of
scattering states for the cubic defocusing GP hierarchy on R3.

How: Via the de Finetti theorem, the result follows from the scattering
theory for the NLS.
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Scattering for the NLS

Let us recall that in the defocusing case λ = 1, the cubic NLS

i∂tφ(t) = −∆φ(t) + λ|φ(t)|2φ(t) , φ(0) = φ0 ∈ H1 ,(4.18)

is globally well-posed and displays the existence of scattering states and
asymptotic completeness:

Theorem

Let St : φ0 7→ φ(t) denote the flow map associated to (4.18), for t ∈ R and
λ = 1. Then, there exist continuous bijections (wave operators)
W+,W− : H1(R3)→ H1(R3), such that the strong limit

lim
t→±∞

e−it∆St (φ0) = φ± , φ0 = W±(φ±)(4.19)

holds for all φ0 ∈ H1(R3).
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The statement of the scattering result

Theorem (Chen-Hainzl-P-Seiringer)

Let γ(k)
0 =

∫
dµ(φ)

(
|φ〉〈φ|

)⊗k and such that∫
dµ(φ)(E [φ])2k ≤ Rk , for some R > 0, and all k ∈ N.(4.20)

Let γ(k)(t) =
∫

dµ(φ)(|Stφ〉〈Stφ|)⊗k , for k ∈ N, denote the unique solution to
the cubic defocusing GP satisfying γ(k)(0) = γ

(k)
0 , for k ∈ N.

Then, there exist unique asymptotic measures µ+, µ− such that
γ

(k)
± :=

∫
dµ±(φ)(|φ〉〈φ|)k are scattering states on L2(R3k ) satisfying

lim
t→±∞

Tr
( ∣∣∣S(k,1)

[
U(k)(−t)γ(k)(t)− γ(k)

±

] ∣∣∣ ) = 0, for all k ∈ N.

In particular, dµ±(φ) = dµ(W±(φ)) where the continuous bijections W+,
W− : H1 → H1 are the wave operators from Theorem 10.
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On the initial data

We note that while the de Finetti theorems provide the existence and
uniqueness of a measure µ, µ is in general not explicitly known.
Therefore, it is important to express the condition (4.20), directly at the
level of density matrices.

This can be done using higher order energy functionals for GP
hierarchies that were introduced in an earlier work of Chen-P.
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The roadmap of the proof

1 Initial conditions are chosen so that µ-almost surely, there exists a
unique solution to the defocusing cubic NLS (4.18) with initial data φ
which exhibits scattering and asymptotic completeness:

lim
t→±∞

‖e−it∆St (φ)− φ±‖H1 = 0 .(4.21)

Then, φ± = W−1
± (φ).

2 Define scattering states for the GP as:

γ
(k)
± :=

∫
dµ(φ)

(
|φ±〉〈φ±|

)⊗k
=

∫
dµ±(φ)

(
|φ〉〈φ|

)⊗k
,(4.22)

where dµ±(φ) = dµ(W±(φ)).

3 Prove the existence of scattering states at the level of the GP using:
Our uniqueness theorem for the GP
The definition of the scattering states (4.22)
Scattering for the NLS (4.21)
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Very recent related works

Uniqueness of solutions to the cubic GP in low regularity spaces
Hong-Taliaferro-Xie

Uniqueness of solutions to the quintic GP on R3

Hong-Taliaferro-Xie

Uniqueness of solutions to the cubic GP on Td

Sohinger, Herr-Sohinger.

Uniqueness of solutions to the infinite hierarchy that appears in a
connection to the Chern-Simons-Schrödinger system
X. Chen-Smith

Negative energy blow-up for the focusing Hartree hierarchy
Bulut
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Back and forth from many body systems to nonlinear equations

Other examples:

“From Newton to Boltzmann: hard spheres and short-range potentials”
Gallagher - Saint-Raymond -Texier, 2012

“Kac’s Program in Kinetic Theory”
Mischler - Mouhot, 2011
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Thank you!
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