MCMC, SMC, and IS in High and Infinite Dimensional Spaces 1

Andrew Stuart

August 27, 2015

There will be there sections:

Probability measures of interest:

$$\mu(du) = \frac{1}{z} e^{-\phi(u)} \mu_0(du), \mu_0 = N(0, C)$$

We want to understand properties of probability measures which have a density with respect to a Gaussian μ_0 . The main objective is to understand what the form of ϕ is.

Measure preserving dynamics: $c = (-\Delta)^{-s}, s > \frac{d}{2}$.

$$\frac{du}{dt} = K(-(-\Delta)^s u - D\phi(u)) + \sqrt{2k} \frac{dw}{dt}$$
$$M \frac{d^2 u}{dt^2} + (-\Delta)^s u + D\phi(u) = 0$$

Two dynamical systems: Stochastic differential equation for the first equation and Hamiltonian mechanics for the second. We are interested in choices of K and M. For example:

- 1. If we take s = 1 and K = 1 the first equation becomes the nonlinear stochastic heat equation.
- 2. If we take s = 1 and M = I then we have a wave equation with nonlinear forcing for the second equation.

Measure preserving dynamics - discrete time (MCMC) We will show how these continuous time dynamical systems play a role in a Monte-Carlo Markov Chain.

1 Probability measures of interest

1.1 Gaussian reference measure

 $(\mathcal{H}, \langle \cdot, \cdot \rangle, |\cdot|)$ separable Hilbert (sometimes $|\cdot|$ will be the Euclidean norm). Mean: $m \in \mathcal{H}$.

Covariance: $c \in \mathcal{L}(\mathcal{H}, \mathcal{H})$ trace-class in \mathcal{H} , positive, self-adjoint.

$$c\phi_j = \lambda_j \phi_j, \quad \lambda_1 \ge \lambda_2 \ge \dots \ge 0, \ \lambda_j \to 0$$

 $\{\phi_j\}_{j\in\mathbb{N}}$ form a complete orthonormal system for \mathcal{H} and $\mu_0 = N(m,c)$

Lemma 1.1 (Karshunen-Loeve) $u \sim \mu_0 \Leftrightarrow u = m + \sum_{j=1}^{\infty} \xi_j \sqrt{\lambda_j} \phi_j$ where $\{\xi_j\}_{j \in \mathbb{N}}$ *i.i.d* $\xi_1 \sim N(0, 1)$.

Corollary 1.0.1 Let $u_j = \langle u - m, \phi_j \rangle$ then $\frac{1}{N} \sum_{j=1}^N \frac{u_j^2}{\lambda_j} \to 1$ as $N \to \infty \mu_0$ -a.s.

Example: $\mathcal{H} = L^2(D; \mathbb{R}), D \subset \mathbb{R}^d$ bounded and open. Assumptions:

- A self-adjoint, invertable, positive definite on \mathcal{H} .
- $\{\phi_j\}_{j \in \mathbb{N}}$ be a complete orthonormal system (smooth) for \mathcal{H} .
- $A\phi_j = \alpha_j \phi_j$, α_j eigenvalues.
- α_j is upper and lower bounded by $j^{\frac{2}{d}}$.
- $\sup_{j \in \mathbb{N}} \left(\|\phi_j\|_{L^{\infty}} + \frac{1}{j^{1/d}} \operatorname{Lip}(\phi(j)) \right) < \infty$

If we take $A = -\Delta + I$, $D(A) = H^2(\mathbb{T}^d)$ then these assumptions are satisfied. More generally:

Theorem 1.1 Let $c = A^{-s}$. Then for $u \sim \mu_0 = N(0, c)$ a.s., $u \in H^t, u \in c^{\lfloor t \rfloor, t - \lfloor t \rfloor}$ and $t < s - \frac{d}{2}$.

Example: Brownian Bridge d = 1 on I(0,1). Take $A = -\frac{d^2}{dx^2}$, $D(A) = H^2(I) \cap H_0^1(I)$, $u \in H^{1/2}$, $u \in C^{0,1/2}$.

1.2 Measure of interest

 $(X, \|\cdot\|)$ a separable Banach Space and assume the Gaussian measure satisfies $\mu_0(X) = 1$ (this is short for saying $u \in X, \mu_0 - a.s.$). Also assume $\phi : X \to \mathbb{R}$ satisfies

- $\phi \ge 0.$
- ϕ is locally Lipschitz.
- $e^{-\phi} \in L^1_{\mu_0}(X, \mathbb{R}).$

These conditions can (and will for a couple examples) be relaxed, but are sufficient for our understanding in the lectures.

Define

$$\mu(du) = \frac{1}{z} e^{-\phi(u)} \mu_0(du), \quad z = \int_x e^{-\phi(u)} \mu_0(du).$$

Since μ is absolutely continuous with respect to μ_0 , the same things (corollary 1.0.1) holds for μ a.s.

1.3 Elliptic inverse problems

$$\begin{cases} -\nabla \cdot (\kappa \nabla p) = f, & x \in D \subset \mathbb{R}^2 \\ p = 0, & x \in \partial D \end{cases}$$

Spaces:

- $Z = L^{\infty}(D; \mathbb{R})$
- $Z^+ = \{\kappa \in Z : \operatorname{essinf}_{x \in D} \kappa > 0\}$
- $V = H_0^1(D)$ (weak formulation)

Proposition 1.1 If $\kappa \in Z^+$, then $\exists ! p \in V$ solving the equation. Thus we may write $p = G(\kappa)$ for some $G : Z^+ \to V$. Furthermore, G is locally Lipschitz.

Inverse Problem: We have a collection of linear functions $l_j \in V^*$, j = 1, ..., J. Our goal is to find κ from noisy measurements $\{l_j(p)\}_{j=1}^J$.

Probability comes in because of the noisy data as well as noting that we are trying to reconstruct a function $\kappa \in L^{\infty}$ from a finite set of observations.

Bayesian Inverse Problem: $X = C(D; \mathbb{R}), F : X \to Z^+$.

- (i) (first choice) $F(u) = e^u$ i.e. $\kappa = e^u$.
- (ii) (second choice) $F(u) = \kappa^+ \mathbb{1}_{u>0} + \kappa^- \mathbb{1}_{u<0}$ where $\kappa^+, \kappa^- < 0$.

Now F maps from the place where we will put Gaussians into the space of permabilities. From permabilities, G will map us to p. Then we will map into the finite set of operators. Putting this together:

$$\begin{split} y_j &= (l_j \circ G \circ F)(u) + \eta_j, \text{ where } \eta \sim N(0, \gamma^2) \text{ (i.i.d)}. \\ y &= \mathcal{G}(u) + \eta, \ \eta \sim (0, \gamma^2 I) \text{ where } \mathcal{G} : X \to \mathbb{R}^J \end{split}$$

- (i) (for first choice) \mathcal{G} is locally Lipschitz. (exponentiation is locally Lipschitz)
- (ii) (for second choice) \mathcal{G} is continuous μ_0 -a.s.

Now $\phi(u; y) = \frac{1}{2\gamma^2} |y - \mathcal{G}|^2$ and $\phi: X \times \mathbb{R}^J \to \mathbb{R}^+$.

We will use two distance in these talks:

$$d_{Hell}(\mu,\nu)^{2} = \int_{x} \left| \sqrt{\frac{d\mu}{d\mu_{0}}(u)} - \sqrt{\frac{d\nu}{d\mu_{0}}(u)} \right|^{2} \mu_{0}(du)$$

 $u \sim \mu_0$ satisfying above assumptions. (Prior) $y|u \sim N(\mathcal{G}(u), \gamma^2 I)$ - Likelihood $u|y \sim \mu^y$ (Posterior)

Theorem 1.2 $\mu^y \ll \mu_0$. Furthermore, $\forall |y_1|, |y_2| < r, d_{Hell}(\mu^{y_1}, \mu^{y_2}) \le C(r)|y_1 - y_2|$.