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There will be there sections:

Probability measures of interest:
1
pldu) =~ pug(du), jio = N(0,C)

We want to understand properties of probability measures which have a density with respect to a
Gaussian pg. The main objective is to understand what the form of ¢ is.

Measure preserving dynamics: ¢ = (—A) 7%, s > %.

du s —dw
d2
Md—tl; + (=A)*u+ Dp(u) =0

Two dynamical systems: Stochastic differential equation for the first equation and Hamiltonian
mechanics for the second. We are interested in choices of K and M. For example:

1. If we take s = 1 and K = 1 the first equation becomes the nonlinear stochastic heat equation.

2. If we take s = 1 and M = I then we have a wave equation with nonlinear forcing for the
second equation.

Measure preserving dynamics - discrete time (MCMC) We will show how these continuous
time dynamical systems play a role in a Monte-Carlo Markov Chain.

1 Probability measures of interest

1.1 Gaussian reference measure

(H,(-,-),] - |) separable Hilbert (sometimes |- | will be the Euclidean norm).
Mean: m € H.
Covariance: ¢ € L(H,H) trace-class in H, positive, self-adjoint.

cpj =Ajdj, M =A== 20,4 =0
{#;},en form a complete orthonormal system for H and pg = N (m, c)

Lemma 1.1 (Karshunen-Loeve) u ~ g < u = m+ > 22, §j1/A;j¢; where {&}jen @id &~
N(0,1).

N 2
Corollary 1.0.1 Let uj = (u —m, ¢;) then % > Z—j — 1 as N — 0o pg-a.s.
j=1

Example: H = L?(D;R), D c R? bounded and open.
Assumptions:




A self-adjoint, invertable, positive definite on H.

{65 }jeN be a complete orthonormal system (smooth) for H.
® Aqu = a;¢j, o eigenvalues.

e «; is upper and lower bounded by j%.

o supjen (5]l + ELin(6(7)) < o
If we take A = —A + I, D(A) = H?(T?) then these assumptions are satisfied. More generally:
Theorem 1.1 Let ¢ = A=, Then for u ~ g = N(0,¢) a.s., u € H ,u € =11 and t < s — %.
Example: Brownian Bridge d = 1 on I(0,1). Take A = —j—;,D(A) = H*(I) N HY(I),u €
H2, e CO12,

1.2 Measure of interest

(X, ]| - ||) a separable Banach Space and assume the Gaussian measure satisfies po(X) = 1 (this is
short for saying u € X, o — a.s.). Also assume ¢ : X — R satisfies
e ¢ >0.

e ¢ is locally Lipschitz.
e c?eL (X,R).

These conditions can (and will for a couple examples) be relaxed, but are sufficient for our under-
standing in the lectures.

Define 1
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Since p is absolutely continuous with respect to pug, the same things (corollary 1.0.1) holds for u
a.s.

1.3 Elliptic inverse problems
{ ~V-(kVp)=f, z€DCR?
p =0, x € 0D
Spaces:
o Z=L%(D;R)
o /T ={k € Z:essinfuepr >0}
e V = H}(D) (weak formulation)

Proposition 1.1 If k € ZT, then 3!p € V solving the equation. Thus we may write p = G(k) for
some G : Z+ — V. Furthermore, G is locally Lipschitz.




Inverse Problem: We have a collection of linear functions I; € V*, j =1,...,J. Our goal is to
J

find « from noisy measurements {l;(p)};_,.

Probability comes in because of the noisy data as well as noting that we are trying to reconstruct
a function k € L* from a finite set of observations.

Bayesian Inverse Problem: X = C(D;R), F: X — Z+.
(i) (first choice) F(u) = e" i.e. k = e".
(ii) (second choice) F(u) = kT 1,50 + £~ 1y<o where kT, k7 < 0.

Now F maps from the place where we will put Gaussians into the space of permabilities. From
permabilities, G will map us to p. Then we will map into the finite set of operators. Putting this
together:

y; = (Ij 0o G o F)(u) + nj, where n ~ N(0,4%) (i.i.d).
y=G(u)+n, n~ (0,v2I) where G : X — R’

(i) (for first choice) G is locally Lipschitz. (exponentiation is locally Lipschitz)

(ii) (for second choice) G is continuous pp-a.s.

1
Now ¢(u;y) = ﬁ‘y —G|? and ¢: X x R/ = R*.

du dv
\/d,uo(u) - \/d,uo(u)

u ~ o satisfying above assumptions. (Prior)
ylu ~ N(G(u),¥?I) - Likelihood u|y ~ p¥ (Posterior)

We will use two distance in these talks:

2
fo(du)

dpen(p,v)? = /

Theorem 1.2 pY < pg. Furthermore, V|y1, ly2| < 7, dgen(p¥*, p¥2) < C(r)|y1 — yol.
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