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There will be there sections:

Probability measures of interest:

µ(du) =
1

z
e−φ(u)µ0(du), µ0 = N(0, C)

We want to understand properties of probability measures which have a density with respect to a
Gaussian µ0. The main objective is to understand what the form of φ is.

Measure preserving dynamics: c = (−∆)−s, s > d
2 .

du

dt
= K(−(−∆)su−Dφ(u)) +

√
2k
dw

dt

M
d2u

dt2
+ (−∆)su+Dφ(u) = 0

Two dynamical systems: Stochastic differential equation for the first equation and Hamiltonian
mechanics for the second. We are interested in choices of K and M . For example:

1. If we take s = 1 and K = 1 the first equation becomes the nonlinear stochastic heat equation.

2. If we take s = 1 and M = I then we have a wave equation with nonlinear forcing for the
second equation.

Measure preserving dynamics - discrete time (MCMC) We will show how these continuous
time dynamical systems play a role in a Monte-Carlo Markov Chain.

1 Probability measures of interest

1.1 Gaussian reference measure

(H, 〈·, ·〉, | · |) separable Hilbert (sometimes | · | will be the Euclidean norm).
Mean: m ∈ H.
Covariance: c ∈ L(H,H) trace-class in H, positive, self-adjoint.

cφj = λjφj , λ1 ≥ λ2 ≥ · · · ≥ 0, λj → 0

{φj}j∈N form a complete orthonormal system for H and µ0 = N(m, c)

Lemma 1.1 (Karshunen-Loeve) u ∼ µ0 ⇔ u = m +
∑∞

j=1 ξj
√
λjφj where {ξj}j∈N i.i.d ξ1 ∼

N(0, 1).

Corollary 1.0.1 Let uj = 〈u−m,φj〉 then 1
N

N∑
j=1

u2j
λj
→ 1 as N →∞ µ0-a.s.

Example: H = L2(D;R), D ⊂ Rd bounded and open.
Assumptions:



• A self-adjoint, invertable, positive definite on H.

• {φj}j∈N be a complete orthonormal system (smooth) for H.

• Aφj = αjφj , αj eigenvalues.

• αj is upper and lower bounded by j
2
d .

• supj∈N

(
‖φj‖L∞ + 1

j1/d
Lip(φ(j))

)
<∞

If we take A = −∆ + I,D(A) = H2(Td) then these assumptions are satisfied. More generally:

Theorem 1.1 Let c = A−s. Then for u ∼ µ0 = N(0, c) a.s., u ∈ Ht, u ∈ cbtc,t−btc and t < s− d
2 .

Example: Brownian Bridge d = 1 on I(0, 1). Take A = − d2

dx2
, D(A) = H2(I) ∩ H1

0 (I), u ∈
H1/2, u ∈ C0,1/2.

1.2 Measure of interest

(X, ‖ · ‖) a separable Banach Space and assume the Gaussian measure satisfies µ0(X) = 1 (this is
short for saying u ∈ X,µ0 − a.s.). Also assume φ : X → R satisfies

• φ ≥ 0.

• φ is locally Lipschitz.

• e−φ ∈ L1
µ0(X,R).

These conditions can (and will for a couple examples) be relaxed, but are sufficient for our under-
standing in the lectures.

Define

µ(du) =
1

z
e−φ(u)µ0(du), z =

∫
x
e−φ(u)µ0(du).

Since µ is absolutely continuous with respect to µ0, the same things (corollary 1.0.1) holds for µ
a.s.

1.3 Elliptic inverse problems{
−∇ · (κ∇p) = f, x ∈ D ⊂ R2

p = 0, x ∈ ∂D

Spaces:

• Z = L∞(D;R)

• Z+ = {κ ∈ Z : essinfx∈Dκ > 0}

• V = H1
0 (D) (weak formulation)

Proposition 1.1 If κ ∈ Z+, then ∃!p ∈ V solving the equation. Thus we may write p = G(κ) for
some G : Z+ → V . Furthermore, G is locally Lipschitz.



Inverse Problem: We have a collection of linear functions lj ∈ V ∗, j = 1, . . . , J . Our goal is to

find κ from noisy measurements {lj(p)}Jj=1.

Probability comes in because of the noisy data as well as noting that we are trying to reconstruct
a function κ ∈ L∞ from a finite set of observations.

Bayesian Inverse Problem: X = C(D;R), F : X → Z+.

(i) (first choice) F (u) = eu i.e. κ = eu.

(ii) (second choice) F (u) = κ+1u≥0 + κ−1u<0 where κ+, κ− < 0.

Now F maps from the place where we will put Gaussians into the space of permabilities. From
permabilities, G will map us to p. Then we will map into the finite set of operators. Putting this
together:

yj = (lj ◦G ◦ F )(u) + ηj , where η ∼ N(0, γ2) (i.i.d).
y = G(u) + η, η ∼ (0, γ2I) where G : X → RJ

(i) (for first choice) G is locally Lipschitz. (exponentiation is locally Lipschitz)

(ii) (for second choice) G is continuous µ0-a.s.

Now φ(u; y) =
1

2γ2
|y − G|2 and φ : X × RJ → R+.

We will use two distance in these talks:

dHell(µ, ν)2 =

∫
x

∣∣∣∣∣
√

dµ

dµ0
(u)−

√
dν

dµ0
(u)

∣∣∣∣∣
2

µ0(du)

u ∼ µ0 satisfying above assumptions. (Prior)
y|u ∼ N(G(u), γ2I) - Likelihood u|y ∼ µy (Posterior)

Theorem 1.2 µy � µ0. Furthermore, ∀|y1|, |y2| < r, dHell(µ
y1 , µy2) ≤ C(r)|y1 − y2|.
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