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There will be there sections:

Probability measures of interest:
— 1 —é(u) —
/L(du) = Ze uo(du), 1o N(O, C’) (1)

We want to understand properties of probability measures which have a density with respect to a
Gaussian pg. The main objective is to understand what the form of ¢ is.

Measure preserving dynamics: ¢ = (—A) 7%, s > %.

du s —dw
d2
Md—tl; + (=A)*u+ Dp(u) =0

Two dynamical systems: Stochastic differential equation for the first equation and Hamiltonian
mechanics for the second. We are interested in choices of K and M. For example:

1. If we take s = 1 and K = 1 the first equation becomes the nonlinear stochastic heat equation.

2. If we take s = 1 and M = I then we have a wave equation with nonlinear forcing for the
second equation.

Measure preserving dynamics - discrete time (MCMC) We will show how these continuous
time dynamical systems play a role in a Monte-Carlo Markov Chain.

1 Probability measures of interest

1.1 Gaussian reference measure

(H,(-,-),] - |) separable Hilbert (sometimes |- | will be the Euclidean norm).
Mean: m € H.
Covariance: ¢ € L(H,H) trace-class in H, positive, self-adjoint.

cpj =Ajdj, M =A== 20,4 =0
{#;},en form a complete orthonormal system for H and pg = N (m, c)

Lemma 1.1 (Karshunen-Loeve) u ~ g < u = m+ > 22, §j1/A;j¢; where {&}jen @id &~
N(0,1).

N 2
Corollary 1.0.1 Let uj = (u —m, ¢;) then % > Z—j — 1 as N — 0o pg-a.s.
j=1

Example: H = L?(D;R), D c R? bounded and open.
Assumptions:




A self-adjoint, invertable, positive definite on H.

{65 }jeN be a complete orthonormal system (smooth) for H.
® Aqu = a;¢j, o eigenvalues.

e «; is upper and lower bounded by j%.

o supjen (5]l + ELin(6(7)) < o
If we take A = —A + I, D(A) = H?(T?) then these assumptions are satisfied. More generally:
Theorem 1.1 Let ¢ = A=, Then for u ~ g = N(0,¢) a.s., u € H ,u € =11 and t < s — %.
Example: Brownian Bridge d = 1 on I(0,1). Take A = —j—;,D(A) = H*(I) N HY(I),u €
H2, e CO12,

1.2 Measure of interest

(X, ]| - ||) a separable Banach Space and assume the Gaussian measure satisfies po(X) = 1 (this is
short for saying u € X, o — a.s.). Also assume ¢ : X — R satisfies
e ¢ >0.

e ¢ is locally Lipschitz.
e c?eL (X,R).

These conditions can (and will for a couple examples) be relaxed, but are sufficient for our under-
standing in the lectures.
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Since p is absolutely continuous with respect to pug, the same things (corollary 1.0.1) holds for u
a.s.

1.3 Elliptic inverse problems
{ ~V-(kVp)=f, z€DCR?
p =0, x € 0D
Spaces:
o Z=L%(D;R)
o /T ={k € Z:essinfuepr >0}
e V = H}(D) (weak formulation)

Proposition 1.1 If k € ZT, then 3!p € V solving the equation. Thus we may write p = G(k) for
some G : Z+ — V. Furthermore, G is locally Lipschitz.




Inverse Problem: We have a collection of linear functions I; € V*, j =1,...,J. Our goal is to
J

find « from noisy measurements {l;(p)};_,.

Probability comes in because of the noisy data as well as noting that we are trying to reconstruct
a function k € L* from a finite set of observations.

Bayesian Inverse Problem: X = C(D;R), F: X — Z+.
(i) (first choice) F(u) = e" i.e. k = e".
(ii) (second choice) F(u) = kT 1,50 + £~ 1y<o where kT, k7 < 0.

Now F maps from the place where we will put Gaussians into the space of permabilities. From
permabilities, G will map us to p. Then we will map into the finite set of operators. Putting this
together:

y; = (Ij 0o G o F)(u) + nj, where n ~ N(0,4%) (i.i.d).
y=G(u)+n, n~ (0,v2I) where G : X — R’

(i) (for first choice) G is locally Lipschitz. (exponentiation is locally Lipschitz)

(ii) (for second choice) G is continuous pp-a.s.

1
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du dv
\/d,uo(u) - \/d,uo(u)

u ~ o satisfying above assumptions. (Prior)
ylu ~ N(G(u),¥?I) - Likelihood u|y ~ p¥ (Posterior)

We will use two distance in these talks:

2
fo(du)

dpen(p,v)? = /

Theorem 1.2 p¥ < pg. Furthermore, ¥|y1|, ly2| < r, dgen(p¥*, p¥2) < C(r)|y1 — y2l.

Lecture 2 begins below:

1.4 Navier-Stokes equation

First we will start with another construction of ¢. Below we have Navier-Stokes in two dimensions
on a Torus:

ov+v-Vo=vAv—Vp, ze€T?t>0

divov =0, zeT?t>0

v =u, xeT?t>0

Two examples of data from which we would like to recover the initial condition:
Problem 1 “Weather-forcasting”

Yik = v(Tj, tk) + Vjg, njx ~ N(0,~41)
y=G(u)+n, n~ N(0,7I).




Problem 2 “Oceanography”
de
dt
Yik = 2i(tk) + njk
y=G(u)+n

= v(zj,1),2;(0) = zj0

In both cases we can define the misfit function :

o(usy) = Q;\y — G(u)?

u~ pp=N(0,C) (Prior)

C = (—Agtokes) 58 >1

ylu ~ N(G(u),7*I)

uly ~ p¥ in (1)
Theorem 1.3 p¥ < pg given by , then dien(p¥t, 1¥?) < c(y1,y2)|ly1 — vl
Comments: In Problem 1, G € C'(H;R”) and in Problem 2, G € C'(H%;R”7),t > 0.

1.5 Getting information about u

Can we find a point estimate to maximize pu?

1.5.1 Map Estimators

uo(z) = 1 and ¢ € C(X;R). E a Hilbert space is compact in X. Inner product (-,-)p =
<C_%~,C_%-> and norm |- |gp = \C_% -|. Note u ¢ F pg-a.s. Pretend H = RY, then to max-
imize the quantity below, we would minimize —J|u%:
p(du) o e ¢ =3hulE gy,

Consider

Bs(z) ={ue X :||u—zl: < d}

J*(2) = n(Bs(2))
We are looking for the z value that maximizes J°(z).

Definition 1.1 Z is a MAP estimator if

J°(z)
lim L =1
530 J0(29)

Such points exists and can be characterized by:

I(z) = %|2|% + ¢(2) Onsager-Machlup Functional.




Theorem 1.4 (Dosht, Law, Stuart, Voss)
(i) Any MAP estimator is a minimizer of I.

(i) Any z* € E which minimizes I is a map estimator.

1.5.2 Variational characterization

Work by (Pinski, Simpson, Stuart, Weber):

We want to generalize the previous minimization problem. To do this we minimize over Gaussians
instead.

Dicp(vllm) = B log (12)).
P will be a probability measure on H and
C;LM — le—¢(u)

z

Next we will define a functional J:
J:P—Rand J(v) = Drr(v||pmo) + EY¢(u)

Theorem 1.5 arg inf J(v) = p
veP

Sketch of proof: J(v) = Dk (v|p) + constant . Next notice Dy, (v| i) > 0, Dir(p||e) = 0. Thus
the min is attained by setting v = u.

Remark 1.1 Now minimize J(v) over A C P. For the Gaussian case,
A=UN(m,X) and N(z,X) equivalent to pg

The J(v) within this class can be written as

1 - 1 _ det C'
J(v) = §\z\2E +ESNOR (2 +6) + S IS~ 1)+ <det2)

1.5.3 MCMC

Idea is to create a Markov Chain {u(”)}neN which is p-ergodic. Then we have a method (see
Jonathan Mattingly’s lectures) to show

1 N
L3 6u) - o)
n=1

2 pu-preserving dynamics

Goal for the rest of this lecture is to describe the basic ideas of u-preserving dynamics so we can
explain how they relate Markov Chains.




2.1 SDE on R"
Start with p(du) o< E=%du and ¥ : R” — R. We assume e~ Y e L2(R;R™T).

du dw
o = hVU(u) + @E (2)

RNXN

k > 0, symmetric matrix.

Theorem 2.1 is p-invariant a-ergodic. (there are more conditions needed, but not listed in
lecture)

Sketch of proof:

Invariance:

Lp=

Lo =V-(J(9))

Get the equation:

J(6) = KV¥()¢ + V- (ko)
L =L

If poae=¥® then J(p) =
Ergodicity:

L$=¢— EFo.

Apply the Ito’s formula to get: d¢ = Eqb + (Vo(u), vV2ELL).

L[ o(tydt = BrG + R(o(T) — ¢(0) — % [/ (Vo(u), vV2ELL).
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