MCMC, SMC, and IS in High and Infinite Dimensional Spaces $1+2$

Andrew Stuart

August 27, 2015

There will be there sections:

Probability measures of interest:

$$
\mu(du) = \frac{1}{z} e^{-\phi(u)} \mu_0(du), \mu_0 = N(0, C)
$$
\n(1)

We want to understand properties of probability measures which have a density with respect to a Gaussian μ_0 . The main objective is to understand what the form of ϕ is.

Measure preserving dynamics: $c = (-\Delta)^{-s}, s > \frac{d}{2}$.

$$
\frac{du}{dt} = K(-(-\Delta)^s u - D\phi(u)) + \sqrt{2k} \frac{dw}{dt}
$$

$$
M\frac{d^2u}{dt^2} + (-\Delta)^s u + D\phi(u) = 0
$$

Two dynamical systems: Stochastic differential equation for the first equation and Hamiltonian mechanics for the second. We are interested in choices of K and M . For example:

- 1. If we take $s = 1$ and $K = 1$ the first equation becomes the nonlinear stochastic heat equation.
- 2. If we take $s = 1$ and $M = I$ then we have a wave equation with nonlinear forcing for the second equation.

Measure preserving dynamics - discrete time (MCMC) We will show how these continuous time dynamical systems play a role in a Monte-Carlo Markov Chain.

1 Probability measures of interest

1.1 Gaussian reference measure

 $(\mathcal{H}, \langle \cdot, \cdot \rangle, |\cdot|)$ separable Hilbert (sometimes $|\cdot|$ will be the Euclidean norm). Mean: $m \in \mathcal{H}$.

Covariance: $c \in \mathcal{L}(\mathcal{H}, \mathcal{H})$ trace-class in \mathcal{H} , positive, self-adjoint.

$$
c\phi_j = \lambda_j \phi_j, \quad \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \lambda_j \to 0
$$

 $\{\phi_j\}_{j\in\mathbb{N}}$ form a complete orthonormal system for $\mathcal H$ and $\mu_0 = N(m, c)$

Lemma 1.1 (Karshunen-Loeve) $u \sim \mu_0 \Leftrightarrow u = m + \sum_{j=1}^{\infty} \xi_j \sqrt{\lambda_j} \phi_j$ where $\{\xi_j\}_{j \in \mathbb{N}}$ i.i.d $\xi_1 \sim$ $N(0, 1)$.

Corollary 1.0.1 Let $u_j = \langle u - m, \phi_j \rangle$ then $\frac{1}{N} \sum_{i=1}^{N}$ $j=1$ $\frac{u_j^2}{\lambda_j} \to 1$ as $N \to \infty$ μ_0 -a.s.

Example: $\mathcal{H} = L^2(D;\mathbb{R})$, $D \subset \mathbb{R}^d$ bounded and open. Assumptions:

- A self-adjoint, invertable, positive definite on H .
- ${\{\phi_j\}}_{j \in \mathbb{N}}$ be a complete orthonormal system (smooth) for \mathcal{H} .
- $A\phi_j = \alpha_j \phi_j$, α_j eigenvalues.
- α_j is upper and lower bounded by $j^{\frac{2}{d}}$.
- $\sup_{j\in\mathbb{N}}\left(\|\phi_j\|_{L^\infty}+\frac{1}{j^{1/2}}\right)$ $\frac{1}{j^{1/d}}\mathrm{Lip}(\phi(j))\Big)<\infty$

If we take $A = -\Delta + I$, $D(A) = H^2(\mathbb{T}^d)$ then these assumptions are satisfied. More generally:

Theorem 1.1 Let $c = A^{-s}$. Then for $u \sim \mu_0 = N(0, c)$ a.s., $u \in H^t, u \in c^{\lfloor t \rfloor, t-\lfloor t \rfloor}$ and $t < s - \frac{d}{2}$ $\frac{d}{2}$.

Example: Brownian Bridge $d = 1$ on $I(0, 1)$. Take $A = -\frac{d^2}{dx^2}$, $D(A) = H^2(I) \cap H_0^1(I)$, $u \in$ $H^{1/2}, u \in C^{0,1/2}.$

1.2 Measure of interest

 $(X, \|\cdot\|)$ a separable Banach Space and assume the Gaussian measure satisfies $\mu_0(X) = 1$ (this is short for saying $u \in X$, $\mu_0 - a.s.$). Also assume $\phi : X \to \mathbb{R}$ satisfies

- $\bullet \ \phi \geq 0.$
- \bullet ϕ is locally Lipschitz.
- $e^{-\phi} \in L^1_{\mu_0}(X, \mathbb{R}).$

These conditions can (and will for a couple examples) be relaxed, but are sufficient for our understanding in the lectures.

Define

$$
\mu(du) = \frac{1}{z} e^{-\phi(u)} \mu_0(du), \quad z = \int_x e^{-\phi(u)} \mu_0(du).
$$

Since μ is absolutely continuous with respect to μ_0 , the same things (corollary 1.0.1) holds for μ a.s.

1.3 Elliptic inverse problems

$$
\begin{cases}\n-\nabla \cdot (\kappa \nabla p) = f, & x \in D \subset \mathbb{R}^2 \\
p = 0, & x \in \partial D\n\end{cases}
$$

Spaces:

- $Z = L^{\infty}(D;\mathbb{R})$
- $Z^+ = \{ \kappa \in Z : \text{essinf}_{x \in D} \kappa > 0 \}$
- $V = H_0^1(D)$ (weak formulation)

Proposition 1.1 If $\kappa \in \mathbb{Z}^+$, then $\exists ! p \in V$ solving the equation. Thus we may write $p = G(\kappa)$ for some $G: Z^+ \to V$. Furthermore, G is locally Lipschitz.

Inverse Problem: We have a collection of linear functions $l_j \in V^*$, $j = 1, \ldots, J$. Our goal is to find κ from noisy measurements $\{l_j(p)\}_{j=1}^J$.

Probability comes in because of the noisy data as well as noting that we are trying to reconstruct a function $\kappa \in L^{\infty}$ from a finite set of observations.

Bayesian Inverse Problem: $X = C(D; \mathbb{R}), F : X \to Z^+$.

- (i) (first choice) $F(u) = e^u$ i.e. $\kappa = e^u$.
- (ii) (second choice) $F(u) = \kappa^+ 1_{u \geq 0} + \kappa^- 1_{u < 0}$ where $\kappa^+, \kappa^- < 0$.

Now F maps from the place where we will put Gaussians into the space of permabilities. From permabilities, G will map us to p . Then we will map into the finite set of operators. Putting this together:

 $y_j = (l_j \circ G \circ F)(u) + \eta_j$, where $\eta \sim N(0, \gamma^2)$ (i.i.d). $y = \mathcal{G}(u) + \eta, \ \eta \sim (0, \gamma^2 I) \text{ where } \mathcal{G}: X \to \mathbb{R}^J$

- (i) (for first choice) $\mathcal G$ is locally Lipschitz. (exponentiation is locally Lipschitz)
- (ii) (for second choice) $\mathcal G$ is continuous μ_0 -a.s.

Now $\phi(u; y) = \frac{1}{2\gamma^2} |y - \mathcal{G}|^2$ and $\phi: X \times \mathbb{R}^J \to \mathbb{R}^+$.

We will use two distance in these talks:

$$
d_{Hell}(\mu, \nu)^2 = \int_x \left| \sqrt{\frac{d\mu}{d\mu_0}(u)} - \sqrt{\frac{d\nu}{d\mu_0}(u)} \right|^2 \mu_0(du)
$$

 $u \sim \mu_0$ satisfying above assumptions. (Prior) $y|u \sim N(\mathcal{G}(u), \gamma^2 I)$ - Likelihood $u|y \sim \mu^y$ (Posterior)

Theorem 1.2 $\mu^y \ll \mu_0$. Furthermore, $\forall |y_1|, |y_2| < r$, $d_{Hell}(\mu^{y_1}, \mu^{y_2}) \leq C(r)|y_1 - y_2|$.

Lecture 2 begins below:

1.4 Navier-Stokes equation

First we will start with another construction of ϕ . Below we have Navier-Stokes in two dimensions on a Torus:

$$
\begin{cases} \n\partial_t v + v \cdot \nabla v = \nu \Delta v - \nabla p, & x \in \mathbb{T}^2, t > 0 \\ \n\text{div } v = 0, & x \in \mathbb{T}^2, t > 0 \\ \n v = u, & x \in \mathbb{T}^2, t > 0 \n\end{cases}
$$

Two examples of data from which we would like to recover the initial condition:

Problem 1 "Weather-forcasting"

$$
y_{j,k} = v(x_j, t_k) + \nu_{j,k}, \ \eta_{j,k} \sim N(0, \gamma^2 I)
$$

$$
y = \mathcal{G}(u) + \eta, \ \eta \sim N(0, \gamma^2 I).
$$

Problem 2 "Oceanography"

$$
\frac{dz_j}{dt} = v(z_j, t), z_j(0) = z_{j,0}
$$

$$
y_{j,k} = z_j(t_k) + \eta_{j,k}
$$

$$
y = \mathcal{G}(u) + \eta
$$

In both cases we can define the misfit function :

$$
\phi(u; y) = \frac{1}{2\gamma^2}|y - \mathcal{G}(u)|^2
$$

$$
u \sim \mu_0 = N(0, C) \quad \text{(Prior)}
$$

\n
$$
C = (-\Delta_{\text{stokes}})^{-s}, s > 1
$$

\n
$$
y|u \sim N(\mathcal{G}(u), \gamma^2 I)
$$

\n
$$
u|y \sim \mu^y \text{ in (1)}
$$

Theorem 1.3 $\mu^y \ll \mu_0$ given by [\(1\)](#page-0-0), then $d_{Hell}(\mu^{y_1}, \mu^{y_2}) \leq c(y_1, y_2)|y_1 - y_2|$. **Comments:** In Problem 1, $\mathcal{G} \in C^1(H; \mathbb{R}^J)$ and in Problem 2, $\mathcal{G} \in C^1(H^t; \mathbb{R}^J), t > 0$.

1.5 Getting information about μ

Can we find a point estimate to maximize μ ?

1.5.1 Map Estimators

 $\mu_0(x) = 1$ and $\phi \in C(X;\mathbb{R})$. E a Hilbert space is compact in X. Inner product $\langle \cdot, \cdot \rangle_E =$ $\langle C^{-\frac{1}{2}} \cdot, C^{-\frac{1}{2}} \cdot \rangle$ and norm $|\cdot|_E = |C^{-\frac{1}{2}} \cdot |$. Note $u \notin E$ μ_0 -a.s. Pretend $H = \mathbb{R}^N$, then to maximize the quantity below, we would minimize $-\frac{1}{2}$ $\frac{1}{2}|u|_E^2$:

$$
\mu(du) \propto e^{-\phi(u) - \frac{1}{2}|u|_E^2} du.
$$

Consider

$$
B_{\delta}(z) = \{u \in X : ||u - z||_{x} < \delta\}
$$

$$
J^{\delta}(z) = \mu(B_{\delta}(z))
$$

We are looking for the z value that maximizes $J^{\delta}(z)$.

Definition 1.1 \overline{z} is a MAP estimator if

$$
\lim_{\delta \to 0} \frac{J^{\delta}(\overline{z})}{J^{\delta}(z^{\delta})} = 1
$$

Such points exists and can be characterized by:

 $I(z) = \frac{1}{2} |z|_E^2 + \phi(z)$ Onsager-Machlup Functional.

Theorem 1.4 (Dosht, Law, Stuart, Voss)

- (i) Any MAP estimator is a minimizer of I .
- (ii) Any $z^* \in E$ which minimizes I is a map estimator.

1.5.2 Variational characterization

Work by (Pinski, Simpson, Stuart, Weber):

We want to generalize the previous minimization problem. To do this we minimize over Gaussians instead.

 $D_{KL}(\nu||\mu) = E^{\nu} \log \left(\frac{d\nu}{d\mu}\right).$ P will be a probability measure on H and $d\mu = 1 e^{-\phi(u)}$ $\frac{d\mu}{d\mu_0}=\frac{1}{z}$ $\frac{1}{z}e^{-\phi(u)}$. Next we will define a functional J : $J: P \to \mathbb{R}$ and $J(\nu) = D_{KL}(\nu||\mu_0) + \mathbb{E}^{\nu} \phi(u)$

Theorem 1.5 arg $\inf_{\nu \in P} J(\nu) = \mu$

Sketch of proof: $J(\nu) = D_{KL}(\nu||\mu) + \text{constant}$. Next notice $D_{KL}(\nu||\mu) \geq 0, D_{KL}(\mu||\mu) = 0$. Thus the min is attained by setting $\nu = \mu$.

Remark 1.1 Now minimize $J(\nu)$ over $\mathcal{A} \subset \mathcal{P}$. For the Gaussian case,

 $A = \cup N(m, \Sigma)$ and $N(z, \Sigma)$ equivalent to μ_0

The $J(\nu)$ within this class can be written as

$$
J(\nu) = \frac{1}{2}|z|_E^2 + \mathbb{E}^{\xi \sim N(0,\Sigma)} \phi(z+\xi) + \frac{1}{2}tr|C^{-1}\Sigma - I\rangle + \ln\left(\frac{\det C}{\det \Sigma}\right)
$$

1.5.3 MCMC

Idea is to create a Markov Chain $\{u^{(n)}\}_{n\in\mathbb{N}}$ which is μ -ergodic. Then we have a method (see Jonathan Mattingly's lectures) to show

$$
\frac{1}{N} \sum_{n=1}^{N} \phi(u^{(n)}) \to \mathbb{E}^{\mu} \phi(u)
$$

2 μ -preserving dynamics

Goal for the rest of this lecture is to describe the basic ideas of μ -preserving dynamics so we can explain how they relate Markov Chains.

2.1 SDE on \mathbb{R}^n

Start with $\mu(du) \propto E^{-\Psi} du$ and $\Psi : \mathbb{R}^n \to \mathbb{R}$. We assume $e^{-\Psi(u)} \in L^2(\mathbb{R}; \mathbb{R}^+)$.

$$
\frac{du}{dt} = -k\nabla\Psi(u) + \sqrt{2k}\frac{dw}{dt}
$$
\n(2)

 $k > 0$, symmetric $\mathbb{R}^{N \times N}$ matrix.

Theorem 2.1 [\(2\)](#page-5-0) is μ -invariant α -ergodic. (there are more conditions needed, but not listed in lecture)

Sketch of proof: Invariance: $\mathcal{L}\phi =$ $\mathcal{L}^*\phi = \nabla \cdot (J(\phi))$ Get the equation: $J(\phi) = k \nabla \Psi(u) \phi + \nabla \cdot (k \phi)$
 $\frac{d\rho}{dt} = \mathcal{L}^* \rho.$ If $\rho \alpha e^{-\Psi(u)}$ then $J(\rho) = 0$. Ergodicity: $\mathcal{L}\phi = \phi - E^{\mu}\phi.$ Apply the Ito's formula to get: $\frac{d\phi}{dt} = \mathcal{L}\phi + \langle \nabla \phi(u), \phi(u) \rangle$ √ Apply the Ito's formula to get: $\frac{d\phi}{dt} = \mathcal{L}\phi + \langle \nabla \phi(u), \sqrt{2k} \frac{dw}{dt} \rangle$.
 $\frac{1}{2} \int_{0}^{T} \phi(t) dt = \mathbb{E} \mu \phi + \frac{1}{2} (\phi(T) - \phi(0)) = \frac{1}{2} \int_{0}^{T} \langle \nabla \phi(u), \sqrt{2k} \frac{dw}{dt} \rangle$ $\frac{1}{T} \int_0^T \phi(t) dt = \mathbb{E}^{\mu} \phi + \frac{1}{T}$ $\frac{1}{T}(\phi(T) - \phi(0)) - \frac{1}{T}$ $\frac{1}{T} \int_0^T \langle \nabla \phi(u), \rangle$ √ $\overline{2k}\frac{dw}{dt}\rangle.$