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Derivative NLS Equation on T
In this talk we consider the periodic DNLS and study the existence of invariant
measures and a.s global well posedness.

(DNLS)

{
ut − i uxx = (|u|2u)x

u(0, x) = u0(x), x ∈ T.

This is a Hamiltonian PDE which is completely integrable. In particular:

Mass: m(u) = 1
2π

∫
T |u(x , t)|2 dx

‘Energy’: E(u) =
∫
T |ux |2 dx + 3

2 Im
∫
T u2uux dx + 1

2

∫
T |u|

6 dx

Hamiltonian: H(u) = Im
∫
T uux dx + 1

2

∫
T |u|

4 dx (at Ḣ
1
2 level).

are conserved quantities of time.
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In looking for solutions to (DNLS) we face a derivative loss arising from the
nonlinear term and hence for low regularity data the key is to somehow make
up for this loss.

On R: the equation is scale invariant for data in L2, that is sc = 0.

I LWP in H
1
2 (R) by Takaoka (99’).

I GWP in Hs(R), s > 1
2 with small L2-norm (so that energy is positive by

Gagliardo-Nirenberg) by Colliander-Keel-Staffilani-Takaoka-Tao (02’).

I There is some form1 of ill-posedness for data in Hσ(R), σ < 1/2.

1data-sol map fails to be C3 or uniformly C0 (Biagioni-Linares).
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Deterministic Local Theory for DNLS on T

S. Herr (06’) showed LWP for initial data u(0) ∈ Hσ(T), if σ ≥ 1
2 .

I GWP for σ ≥ 1 and small L2 data; also in Hσ(T) for σ > 1/2 also holds (I-method).)

A. Grünrock and S. Herr (08’) showed showed LWP for initial data
u0 ∈ FLs,r (T) and 2 ≤ r < 4, s ≥ 1/2.

‖u0‖FLs,r (T) := ‖ 〈n 〉s û0 ‖`r
n(Z) r ≥ 2

These spaces scale like Sobolev Hσ(T), with σ = s + 1/r − 1/2 .

For example for s = 2/3− and r = 3 σ < 1/2.

All LWP results rely on studying an associated gauged equation.
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Periodic Gauged Derivative NLS Equation
Why do we need to gauge? Because the nonlinearity:

(|u|2u)x = u2 ux + 2 |u|2 ux hard to control.

Periodic Gauge Transformation (Herr, 06): For f ∈ L2(T)

G(f )(x) := exp(−iJ(f )(x)) f (x)

where

J(f )(x) :=
1

2π

∫ 2π

0

∫ x

θ

(
|f (y)|2 − 1

2π
‖f‖2

L2(T)

)
dy dθ

is the unique 2π-periodic mean zero primitive of the map2

x −→ |f (x)|2 − 1
2π
‖f‖2

L2(T).

Then, for u ∈ C([−T ,T ]; L2(T)) the (adapted) periodic gauge is defined as

G(u)(t , x) := G(u(t))(x − 2 t m(u))

2G(f ) is 2π-periodic since integrand has zero mean value.
Andrea R. Nahmod (UMass Amherst) Invariant measures for nonlinear PDE August 27th-28th, 2015 5 / 40



G : C([−T ,T ]; Hσ(T))→ C([−T ,T ]; Hσ(T)) is a homeomorphism.
G is locally bi-Lipschitz on subsets in C([−T ,T ]; Hσ(T)) with prescribed
L2-norm.
The same is true if we replace Hσ(T) by FLs,r , the Fourier-Lebesgue
spaces.

What is the gauged DNLS equation?

If u is a solution to DNLS and v := G(u) we have that v solves:

(GDNLS) vt − ivxx = −v2vx +
i
2
|v |4v−iψ(v)v − im(v)|v |2v

with initial data v(0) = G(u(0)) and where

m(u) = m(v) :=
1

2π

∫
T
|v |2(x , t)dx =

1
2π

∫
T
|v(x ,0)|2(x)dx

ψ(v)(t) := −1
π

∫
T

Im(vvx ) dx +
1

4π

∫
T
|v |4dx −m(v)2

Note both m(v) and ψ(v)(t) are real.
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Local well-posedness for (GDNLS) in Hσ gives local existence and
uniqueness for DNLS in Hσ; but don’t necessarily have all the auxiliary
estimates coming from the fixed point argument used to obtain LWP for
(GDNLS).
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Invariant weighted Wiener measures and a.s GWP

Since by Grünrock-Herr’s result we have have LWP at a ‘level of regularity’
below 1

2 , we can start thinking about weighted Wiener measures for the
periodic DNLS, constructed from the energy conservation E(u).

Goal 1: Construct an associated invariant weighted Wiener measure and
establish GWP for data living in its support. In particular almost surely for
data living in a Fourier-Lebesgue space scaling like H

1
2−(T)

( A.N–, T. Oh, L. Rey-Bellet, G. Staffilani).

Goal 2: Show that the ungauged invariant Wiener measure associated
DNLS obtained above is absolutely continuous with respect to the
weighted Wiener measure for DNLS constructed by Thomann and
Tzvetkov directly. In particular we thus prove the invariance of the latter.
We prove a general result on absolute continuity of Gaussian measures
under certain gauge transformations.
(A.N–, L. Rey-Bellet, S. Sheffield, G. Staffilani).
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Bourgain’s Method

Let’s review Bourgain’s framework to prove almost surely GWP and the
invariance of a measure from LWP.
Consider a dispersive nonlinear Hamiltonian PDE with a k -linear nonlinearity
possibly with derivative.

(PDE)

{
ut = Lu +N (u)

u|t=0 = u0

where L is a (spatial) differential operator like i∂xx , ∂xxx , etc. (systems). Let
H(u) denote the Hamiltonian of (PDE). Then, (PDE) can also be written as

ut = J
dH
du

if u is real-valued, ut = J
∂H
∂u

if u is complex-valued.
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Let µ denote a measure on the distributions on T, whose invariance we’d like
to establish. We assume that µ is a weighted Gaussian measure (formally)
given by

” dµ = Z−1e−F (u)
∏
x∈T

du(x) ”

where F (u) is conserved3 under the flow of (PDE) and the leading term of
F (u) is quadratic and nonnegative.

Now, suppose that there exist a Banach space B of distributions on T and a
space X ⊂ C([−τ, τ ];B) of space-time distributions in which to prove local
well-posedness by a fixed point argument with a time of existence τ
depending on ‖u0‖B, say τ ∼ ‖u0‖−αB for some α > 0.

3F (u) could be the Hamiltonian, but not necessarily!
Andrea R. Nahmod (UMass Amherst) Invariant measures for nonlinear PDE August 27th-28th, 2015 10 / 40



In addition, suppose that the Dirichlet projections PN – the projection onto the
spatial frequencies ≤ N – act boundedly on these spaces, uniformly in N.

Consider the finite dimensional approximation to (PDE)

(FDA)

{
uN

t = LuN + PN
(
N (uN)

)
uN |t=0 = uN

0 := PNu0(x) =
∑
|n|≤N û0(n)einx .

Then, for ‖u0‖B ≤ K one can see (FDA) is also LWP on [−τ, τ ] with τ ∼ K−α,
independent of N.
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Two more important assumptions on (FDA):

(1) (FDA) is Hamiltonian with H(uN) i.e.

uN
t = J

dH(uN)

duN

(2) F (uN) is still conserved under the flow of (FDA)

Note: (1) holds for example when the symplectic form J commutes with the
projection PN . (e.g. J = i or ∂x .).

In general however (1) and (2) are not guaranteed and may not necessarily
hold! (more later).
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By Liouville’s theorem and (1) above the Lebesgue measure∏
|n|≤N

dandbn,

where ûN(n) = an + ibn, is invariant under the flow of (FDA).
Then, using (2) - the conservation of F (uN)- we have that the finite
dimensional version µN of µ:

dµN = Z−1
N e−F (uN )

∏
|n|≤N

dandbn

is also invariant under the flow of (FDA)

One still needs to prove that µN converges weakly to µ (assume it).
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One also needs the following:

Lemma [Fernique-type tail estimate]
For K suff. large, we have

µN
(
{‖uN

0 ‖B > K}) < e−cK 2
, indep of N.

This lemma + invariance of µN imply the following estimate controlling the
growth of solution uN to (FDA).

Main Proposition: Bourgain ’94

Given T <∞, ε > 0, there exists ΩN ⊂ B s.t.
I µN(Ωc

N) < ε

I for uN
0 ∈ ΩN , (FDA) is well-posed on [−T ,T ] with the growth estimate:

‖uN(t)‖B .
(

log
T
ε

) 1
2
, for |t | ≤ T .
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Essentially as a corollary of the Main Proposition one can then prove:
(a) The uniform convergence lemma:

‖u − uN‖C([−T ,T ];B′) → 0

as N →∞ uniformly where B′ ⊃ B (for good data).

(b) Given ε > 0, there exists Ωε ⊂ B with µ(Ωc
ε) < ε such that for u0 ∈ Ωε,

(PDE) is globally well-posed with the growth estimate:

‖u(t)‖B .

(
log

1 + |t |
ε

) 1
2

, for all t ∈ R.

Note (b) implies that (PDE) is a.s. GWP, since Ω̃ :=
⋃
ε>0 Ωε has

probability 1.

Finally, putting all the ingredients together, we obtain the invariance µ:
If Φ(t) is the flow map associated to the nonlinear equation; then for
reasonable F ∫

F (Φ(t)(φ))µ(dφ) =

∫
F (φ)µ(dφ)
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Back to the DNLS. Goal 1
Because the necessary local in time estimates are obtained for the
GDNLS, we proceed to construct an invariant weighted Wiener measure
for the its flow and prove GWP for data in its support (à la Bourgain).

What’s a conserved energy for GDNLS? For v the solution (GDNLS) define

E(v) :=

∫
T
|vx |2 dx − 1

2
Im
∫
T

v2v vx dx +
1

4π

(∫
T
|v(t)|2 dx

)(∫
T
|v(t)|4 dx

)
.

H(v) := Im
∫
T

vvx −
1
2

∫
T
|v |4 dx + 2πm(v)2

Ẽ(v) := E(v) + 2m(v)H(v)− 2πm(v)3

We prove:
d Ẽ(v)

dt
= 0.

In fact one can show that E(u) = Ẽ(v).

We refer to Ẽ(v) from now on as the energy of (GDNLS).
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Finite dimensional approximation of (GDNLS)

We consider the dimensional approximation (FGDNLS):

vN
t = ivN

xx − PN((vN)2vN
x ) +

i
2

PN(|vN |4vN)− iψ(vN)vN − im(vN)PN(|vN |2vN)

with initial data vN
0 = PN v0.

Here,

ψ(vN)(t) := −1
π

∫
T

Im(vNvN
x ) dx +

1
4π

∫
T
|vN |4dx −m(vN)2

and
m(vN)(t) :=

1
2π

∫
T
|vN(x , t)|2dx .

Note m(vN)(t) is also conserved under the flow of (FGDNLS).
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Grünrock-Herr’s LWP estimates for GNLS yield:

Lemma [Local well-posedness]
Let 2 < r < 4 and s ≥ 1

2 . Then for every

vN
0 ∈ BR := {vN

0 ∈ FLs,r (T)/‖vN
0 ‖FLs,r (T) < K}

and τ ∼ K−α, for some α > 0, there exists a unique solution

vN ∈ X s,r ⊂ C([−τ, τ ];FLs,r (T))

of (FGDNLS) with initial data vN
0 .

Furthermore, by similar arguments as for the 1D NLS, we can prove:
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Let v0 ∈ FLs,r (T), s ≥ 1
2 , r ∈ (2,4) as in LWP.

Lemma [Approximation lemma]
Assume the solution vN of (FGDNLS) with initial data vN

0 (x) = PNv0 satisfies
the a priori bound

‖vN(t)‖FLs,r (T) ≤ A, for all t ∈ [−T ,T ],

for some given T > 0. Then the IVP (GDNLS) with initial data v0 is well-posed
on [−T ,T ] and there exists C0,C1 > 0, such that its solution v(t) satisfies the
following estimate:

‖v(t)− vN(t)‖FLs1,r (T) . exp[C0(1 + A)C1T ]Ns1−s,

for all t ∈ [−T ,T ],0 < s1 < s.

How about the measure?
At this stage we do not know that vN can be globally extended (ie. unlike 1D
NLS we do not know the a priori bound above.
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Construction of the Weighted Wiener Measure
To construct the measure: use of the conserved quantity Ẽ(v) and the mass.
Hence weighted Wiener rather than Gibbs.

In fact, use the conservation of L2-norm to slightly modify Ẽ(v) and consider
instead the quantity

χ{‖v‖L2≤B}e−
β
2N (v)e−

β
2

∫
(|v |2+|vx |2)dx

where N (v) is the nonlinear part of the energy Ẽ(v), i.e.

N (v) = −1
2

Im
∫
T

v2vvx dx − 1
4π

(∫
T
|v |2 dx

)(∫
T
|v |4 dx

)
+

+
1
π

(∫
T
|v |2 dx

)(
Im
∫
T

vvx dx
)

+
1

4π2

(∫
T
|v |2 dx

)3

.

and B is a (suitably small) constant.

Then we would like to construct the measure (with v(x) = vr (x) + ivi (x))

“ dµβ = Z−1χ{‖v‖L2≤B}e−
β
2N (v)e−

β
2

∫
(|v |2+|vx |2)dx

∏
x∈T

dvr (x)dvi (x) ”
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As before, we have that the associated Gaussian/Wiener measure ρ is a
countably additive measure on Hs for any s < 1/2 (but not for s ≥ 1/2.).
Unfortunately, (GDNLS) is locally well-posed in Hs(T) only for s ≥ 1

2 .

In view of the local well-posedness result by Grünrock-Herr we need to
construct ρ as a measure supported on a Banach space B. This can
be done thanks to the theory of abstract Wiener spaces (Gross and Kuo).

B = FLs,r for suitable (s, r).
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Indeed we prove that for 2 ≤ r <∞ and (s − 1)r < −1:

(1) (i ,H1,FLs,r ) is an abstract Wiener space.
B can be realized as the completion of H; i : H ↪→ B, inclusion map

(2) The measure ρ can be realized as a countably additive measure
supported on FLs,r and

(3) Have an exponential tail estimate : there exists c > 0 (with c = c(s, r))
such that

ρ(‖v‖FLs,r > K ) ≤ e−cK 2
.

For (r , s) as above FLs,r scales like Hσ, σ < 1
2 .

We will fix s = 2
3− and r = 3 and work on this F-L space.

This pair (s, r) satisfies both the conditions for LWP s ≥ 1
2 , 2 < r < 4 and the conditions for holding the

support of the measure (s − 1)r < −1 above.
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More about the construction of the weighted measure
Let

R(v) := χ{‖v‖L2≤B}e−
1
2N (v) , RN(v) := R(vN)

where N (v) is the nonlinear part of the energy Ẽ .

We abuse a bit the notation and this of vN as PN(v) for some generic
function v in our F-L spaces.

After a nontrivial amount of work we obtain the weighted Wiener measure:

dµ = Z−1R(v)dρ ,

for sufficiently small B, as is the weak limit of the finite dimensional weighted
Wiener measures µN on R4N+2 given by

dµN = Z−1
N RN(v)dρN

= Ẑ−1
N χ{‖v̂N‖L2≤B}e

− 1
2 (E(v̂N )+‖v̂N‖L2 )

∏
|n|≤N

dandbn

for suitable normalizations ZN , ẐN . More precisely we have:
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Lemma [Convergence]
RN(v) converges in measure to R(v).

The proof is probabilistic. Need to rely on Standard Deviation type estimates.
All in all we have:

Proposition [Existence of weighted Wiener measure]
(a) For sufficiently small B > 0, we have R(v) ∈ L2(dρ). In particular, the
weighted Wiener measure µ is a probability measure, absolutely continuous
with respect to the Wiener measure ρ.

(b) We have the following tail estimate. Let 2 ≤ r <∞ and (s − 1)r < −1;
then there exists a constant c such that

µ(‖v‖FLs,r > K ) ≤ e−cK 2

for sufficiently large K > 0.
(c) The finite dim. weighted Wiener measure µN converges weakly to µ.
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a.s GWP : analysis of the (FGDNLS)
Next, the key step is to prove the analogue of Bourgain’s Main Proposition
above controlling the growth of solutions vN to (FGDNLS).

Is µN invariant ? ...

Obstacles we have to face:

The symplectic form associated to the periodic gauged derivative
nonlinear Schrödinger equation GDNLS does not commute with Fourier
modes truncation and so the truncated finite-dimensional systems are not
necessarily Hamiltonian. This entails two problems:

I (1) A mild one: need to show the invariance of Lebesgue measure
associated to (FGDNLS) (‘Liouville’s theorem’) by hand directly .

I (2) A more serious one and at the heart of this work. The energy Ẽ(vN) is
no longer conserved. In other words, the finite dimensional weighted Wiener
measure µN is NOT invariant any longer4 .

4Zhidkov faced a similar problem but unlike his work on KdV, we do not have a priori
knowledge of global well posedness.
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Almost conserved energy

We prove that µN is almost invariant in the sense that we can control the
growth in time of the energy Ẽ of the solution vN to the finite dimensional
approximation equation.

More precisely, we have the following estimate controlling the growth of
Ẽ(vN)(t)

Theorem [Energy Growth Estimate]
Let vN(t) be a solution to (FGDNLS) in [−τ, τ ], and let K > 0 be such that
‖vN‖X 2

3−,3
≤ K . Then there exists β > 0 such that

|Ẽ(vN(τ))− Ẽ(vN(0))| =
∣∣∣ ∫ τ

0

d
dt
Ẽ(vN)(t)dt

∣∣∣ . C(τ)N−β max(K 6,K 8).
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d
dt
Ẽ(vN) =−2Im

∫
vNvNvN

x P⊥N ((vN)2vN
x ) + Re

∫
vNvNvN

x P⊥N (|vN |4vN)

− 2m(vN)Re
∫

vNvNvN
x P⊥N (|vN |2vN)

+ 2m(vN)Re
∫

vNvN
2
P⊥N ((vN)2vN

x )

+ m(vN)Im
∫

vNvN
2
P⊥N (|vN |4vN)

− 2m(vN)2Im
∫

vNvN
2
P⊥N (|vN |2vN) + . . . . . . ,

The first term is the worst term since it has two derivatives.

Take away: We now have that µN is almost invariant.
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Growth of solutions to (FGDNLS)

Armed with the Energy Growth Estimate we count on the almost invariance of
the finite-dimensional measure µN under the flow of (FGDNLS) to control the
growth of its solutions (our analogue of Bourgain’s Main Proposition)

Proposition [Growth of solutions to FGDNLS]

For any given T > 0 and ε > 0 and N large there exist sets Ω̃N = Ω̃N(ε,T ) in
FL

2
3−,3 such that:

(a) µN

(
Ω̃N

)
≥ 1− ε .

(b) For any initial condition vN
0 ∈ Ω̃N , (FGDNLS) is well-posed on [−T ,T ] and

its solution vN(t) satisfies the bound

sup
|t|≤T

‖vN(t)‖
FL

2
3−,3

.

(
log

T
ε

) 1
2

.
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A.S GWP of solution to (GDNLS)

Combining the Approximation Lemma of v by vN with the previous Proposition
on the growth of solutions to (FGDNLS) we can prove a similar result for
solutions v to (GDNLS):

Proposition [‘Almost almost ’ sure GWP for (GDNLS)]
For any given T > 0 and ε > 0 there exists a set Ω(ε,T ) such that
(a) µ (Ω(ε,T )) ≥ 1− ε .
(b) For any initial condition v0 ∈ Ω(ε,T ) the IVP (GDNLS) is well-posed on
[−T ,T ] with the bound

sup
|t|≤T

‖v(t)‖
FL

2
3−,3

.

(
log

T
ε

) 1
2

.
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All in all we now have:

Theorem 1 [Almost sure global well-posedness of (GDNLS)]
There exists a set Ω, µ(Ωc) = 0 such that for every v0 ∈ Ω the IVP (GDNLS)
with initial data v0 is globally well-posed.

Theorem 2 [Invariance of µ]
The measure µ is invariant under the flow Φ(t) of (GDNLS)

Finally: The last step is going back to the ungauged (DNLS) equation. By
pulling back the gauge, it follows easily from Theorems 1 and 2 that we have:
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The ungauged DNLS equation
Recall, µ is a measure on Ω and G−1 : Ω→ Ω measurable. Define the
measure ν = µ ◦ G by

ν(A) := µ(G(A)) = µ({v : G−1(v) ∈ A}) .

for all measurable sets A or equivalently - for integrable F - by∫
Fdν =

∫
F ◦ ϕdµ

Theorem 3 [Almost sure global well-posedness of (DNLS)]

There exists a subset Σ of the space FL
2
3−,3 with ν(Σc) = 0 such that for

every u0 ∈ Σ the IVP (DNLS) with initial data u0 is globally well-posed.

Finally we show that the measure ν is invariant under the flow map of DNLS.

Theorem 4 [Invariance of measure under (DNLS) flow]
The measure ν = µ ◦ G is invariant under the (DNLS) flow.
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Goal 2
What is ν = µ ◦ G really? Is it absolutely continuous with respect to the
measure that can be naturally constructed for DNLS by using its energy E ,

E(u) =

∫
T
|ux |2 dx +

3
2

Im
∫
T

u2uux dx +
1
2

∫
T
|u|6 dx

=:

∫
T
|ux |2 dx +K(u)

as done by Thomann-Tzevtkov?

We know ν is invariant and that the ungauged (DNLS) equation is GWP a.s
with respect to ν. Treating the weight is easy. The problem is ungauging the
Gaussian measure ρ.
Question: What is ρ̃ := ρ ◦ G? Is (its restriction to a sufficiently small ball in
L2) absolutely continuous with respect to ρ? If so, what is its Radon-Nikodym
derivative?

We would like to compute ρ̃ explicitly. This turns out to be an intricate problem
that requires tools from stochastic analysis and probability.
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Absolute continuity of Brownian bridges under gauge
transformations

There is an analytic theory on Gaussian measures under nonlinear
transformations both of non-anticipative and anticipative type (see eg.
Bogachev’s book and references therein).

This theory is fairly well understood for transformations of the form
x + F (x) with F a transformation from a Banach space (associated to the
support of the measure) into a Hilbert space H, known as the
Cameron-Martin space (associate to the construction of measure;
H = Ḣ1 in the case of DNLS above) and whose (Fréchet) derivative F ′ in
the direction of H exists and is ‘nice’, for example F ′|H is Hilbert-Schmidt.

But this framework does not fit (directly) the gauge transformations as
the one above. Gauge transformations as the ones used above are L2

unitary transformations which do not have this I + F form.

The work of Cambronero-McKean on the periodic KdV and the Miura gauge transformation- exploited by

Quastel and Valkó- is not directly applicable either.
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The ungauged measure: absolute continuity
In order to finish this step one should stop thinking about the solution v as a
infinite dimension vector of Fourier modes and start thinking instead about v
as a (periodic) complex Brownian path in T (Brownian bridge) solving a
certain stochastic process.

We recall that to ungauge we need to define

G−1(v)(x) := exp(iJ(v)) v(x)

where

J(v)(x) :=
1

2π

∫ 2π

0

∫ x

θ

|v(y)|2 − 1
2π
‖v‖2

L2(T) dy dθ

It will be important later that J(v)(x) = J(|v |)(x). Then, if v satisfies

dv(x) = dB(x)︸ ︷︷ ︸
Brownian motion

+ b(x)dx︸ ︷︷ ︸
drift terms

by Ito’s calculus and since exp(iJ(v)) is differentiable we have:

dG−1v(x) = exp(iJ(v)) dv + iv exp(iJ(v))

(
|v(x)|2 − 1

2π
‖v‖2

L2

)
dx + . . .
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What one may think it saves the day...
Substituting above one has

dG−1v(x) = exp(iJ(v)) [dB(x) + a(v , x , ω)) dx ] + . . .

where

a(v , x , ω) = iv
(
|v(x)|2 − 1

2π
‖v‖2

L2

)
.

What could help?
The fact that exp(iJ(v)) is a unitary operator
The fact that one can prove Novikov’s condition:

E
[
exp

(
1
2

∫
a2(v , x , ω)dx

)]
<∞.

In fact this last condition looks exactly like what we’d need for the following:

‘Theorem’ (Girsanov)
If we change the drift coefficient of a given Ito process in an appropriate way,
then the law of the process will not change dramatically. In fact the new
process law will be absolutely continuous with respect to the law of the
original process and we can compute explicitly the Radon-Nikodym derivative.
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Why Girsanov’s theorem doesn’t save the day

However, if one reads the theorem carefully one realizes that an important
condition is that a(v , x , ω) is non anticipative; in the sense that it only depends
on the BM v(x) up to “time” x and not further. This unfortunately is not true in
our case! The new drift term a(v , x , ω) involves the L2 norm of v(x) (periodic
case!) and hence it is anticipative. A different strategy is needed ...

Conformal invariance of complex BM comes to the rescue!

We use the well known fact that if W (t) = W1(t) + iW2(t) is a complex
Brownian motion, and φ is an analytic function then Z = φ(W ) is, after a
suitable time change, again a complex Brownian motion.

In what follows think of Z (t) to play the role of our complex BM v(x)

Next take the φ to be the exponential.
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For Z (t) = exp(W (s)) the time change is given by

t = t(s) =

∫ s

0
|eW (r)|2dr ,

dt
ds

= |eW (s)|2,

equivalently

s(t) =

∫ t

0

dr
|Z (r)|2

,
ds
dt

=
1

|Z (t)|2
.

We are interested in Z (t) for the interval 0 ≤ t ≤ 2π and thus we introduce the
stopping time

S = inf
{

s ;

∫ s

0
|eW (r)|2dr = 2π

}

Important: The stopping time S depends only on the real part W1(s) of
W (s) (or equivalently only |Z |).
If we write Z (t) in polar coordinate Z (t) = |Z (t)|eiΘ(t) we have

W (s) = W1(s) + iW2(s) = log |Z (t(s)|+ iΘ(t(s))

and W1 and W2 are real independent Brownian motions.
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If we define

W̃ (s) := W1(s) + i

[
W2(s) +

∫ t(s)

0
h(|Z |)(r)dr

]

= W1(s) + i

[
W2(s) +

∫ t(s)

0
h(eW1 )(r)dr .

]

In our case, essentially h(|Z |)(·) = |Z (·)|2 − ‖Z‖2
L2 .

We then have
eW̃ (s) = Z̃ (t(s)) = G−1(Z )(t(s)).
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In terms of W , the gauge transformation is now easy to understand. It
gives a complex process such that:

I The real part is left unchanged.

I The imaginary part is translated by the function J(Z )(t(s)) which depends
only on the real part (ie. on |Z |, which has been fixed) and in that sense is
deterministic.

I It is now possible to use Cameron-Martin-Girsanov’s theorem only for the
law of the imaginary part and conclude:
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Conclusion

Then if η denotes the probability distribution of W and η̃ the distribution of W̃
we have the absolute continuity of η̃ and η whence the absolute continuity
between ρ̃ and ρ follows with the same Radon-Nikodym derivative
(re-expressed back in terms of t).

All in all then we prove that our ungauged measure ν is in fact essentially (up
to normalizing constants) of the form

dν(u) = χ‖u‖L2≤Be−K(u)dρ,

the weighted Wiener measure associated to DNLS (constructed by
Thomann-Tzvetkov). In particular we prove its invariance.

The above needs to be done carefully for complex Brownian bridges
(periodic BM) by conditioning properly.

I W (s) is a BM conditioned to end up at the same place when the total
variation time t = t(s) reaches 2π. The time when this occurs is our S.

I Conditioned on ReW we have that ImW is just a regular real-valued BM
conditioned to end at the same place (up to multiple of 2π) where it started
at time S

I Conditioned on ReW and the total winding (multiple of 2π above) ImW is
regular real-valued BM bridge on [0,S].
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