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The defocusing cubic NLS on T2

(NLS)
{

iut + ∆u = |u|2u
u(x ,0) = φ ∈ Hs(T2)

Mass: M(u(t)) :=

∫
|u(t , x)|2 dx

Hamiltonian: H(u(t)) :=
1
2

∫
|∇u(t , x)|2 dx +

1
4

∫
|u(t , x)|4dx

are both constant in time.

The equation is L2 critical (sc = 0).
Bourgain (93’) proved LWP for s > 0 and GWP in H1(T2).

I Recall that in the first lecture we discussed the ε-loss of derivatives in the
L4

xt(T2 × T) Strichartz estimate for the linear evolution. This accounts for the
need of s > 0 to close the fixed point argument.
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Some Issues ...

We are interested in the existence and invariance of the Gibbs measure for
the defocusing cubic NLS on T2, formally given by

”dµ = Z−1e−H(φ)
∏

x∈T2

dφ(x) ”

= ” Z−1e−
∫
|φ|4 dx e−

1
2

∫
|∇φ|2 dx

∏
x∈T2

dφ(x)︸ ︷︷ ︸
Gaussian measure dρ

”

= ” e−
∫
|φ|4 dx dρ ”

and in the almost sure global well posedness on its support.

Recall from the first lecture that in 2D, the Gaussian measure ρ on Hs(T2) is
countably additive if and only if Bs := (1−∆)s−1 on T2 is of trace class; i.e. if
and only if s < 0.
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Recall also that in 2D, ρ yields for φ the distribution of a random (Fourier)
series

φ = φω =
∑
n∈Z2

gn(ω)√
1 + |n|2

ein·x .

which defines a.s. a distribution -not a function- in Hs(T), s < 0.

Hence, unlike the 1D case, in 2D for the typical φ the expression e−
∫
T2 |φ|4 dx

is unbounded a.s.; i.e

lim
N→∞

∫
T2
|PN(φω)|4 dx = ∞ a.s. in ω

where as before PN(φω) =
∑
|n|≤N

gn(ω√
1+|n|2

ein·x =: φωN .

To overcome this problem Bourgain considers the Wick ordering1 of |φN |4.

1as in QFT
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Let
aN := E(|φωN |2) ∼

∑
|n|≤N

1
1 + |n|2

∼ log N (2D).

After renormalizing by aN the Wick ordering of |φN |4 (complex) is given by:

: |φN |4 : = |φN |4 − 4aN |φN |2 + 2a2
N .

Proposition (Bourgain 96’)

(1)
∫
T2 : |φωN |4 : dx converges a.s. in ω to a finite limit as N →∞.

(2) The measures dµN := e−
∫

:|φN |4: dx dρN converge to a weighted Wiener
measure with density in Lr (dρ), r <∞. Call this measure µ
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Very roughly: In the real case, Wick ordering consists in associating to a monomial xn a Hermite
polynomial Hen(x) obtained by orthogonalization of the monomials w.r.t Gaussian measure on R.

Hen(x) := 2−n/2Hn(
x
√

2
),

where

Hn(x) :=

[ n
2 ]∑

m=0

(−1)mn!

m!2m(n − 2m)!
xn−2m

Note the recursion relation

Hen+1(x) = xHen(x)− nHen−1(x).

So for example we have

He0(x) = 1,He1(x) = x , He2(x) = x2 − 1, He3(x) = x3 − 3x , He4(x) = x4 − 6x2 + 3, etc.

In the complex case and the notation above

: |φN |2k : = ak
NH2k (

φN√
aN

)

(c.f. Bourgain’s IAS/Park City Lecture Notes Vol 5, 1999).
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The Wick ordering above leads to a modified Hamiltonian:

HN(φN) :=

∫
|∇φN |2dx +

1
2

∫
T2

: |φN |4 : dx

=

∫
|∇φN |2dx +

1
2

∫
T2
|φN |4 dx − 2aN

∫
|φN |2 + a2

N ,

whence we obtain the Wick ordered NLS equation (WNLS):

i ∂tuN =
∂HN

∂uN

i ∂tuN = −∆uN + PN(|uN |2uN)− 2aNuN

or equivalently

i ∂tuN + ∆uN + 2(aN −
∫
|uN |2 dx)uN − PN

(
uN |uN |2 − 2uN

∫
|uN |2 dx

)
= 0
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Using the L2 conservation,∫
|uN |2 dx − aN =

∫
: |φN |2 : dx = cN(ω)︸ ︷︷ ︸

independent of time

−→N→∞ c(ω), a.s. in ω,

whence we get

i ∂tuN + ∆uN + 2cNuN − PN
(
uN |uN |2 − 2uN

∫
|uN |2 dx

)
= 0

and the linear term maybe simply removed by letting vN := e2icN tuN satisfying

(FWNLS) i ∂tvN + ∆vN − PN
(
vN |vN |2 − 2vN

∫
|vN |2 dx

)
= 0,

which is the truncated or finite dimensional approximation to:

(WNLS) i ∂tv + ∆v −
(
v |v |2 − 2v

∫
|v |2 dx

)
= 0,

the Wick ordered cubic NLS equation.
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The measures dµN = e−HN (φN )Πd2φN = e−
∫

:|φN |4: dxdρN are invariant under
the flow of (FWNLS).

The weighted Wiener measure µ to which the invariant measures µN
converge -according to the Proposition above- should be the invariant Gibbs
measure associated to (WNLS). To conclude this –just as we have seen for
the 1D quintic NLS– the main two outstanding issues are:

1 Some form of local well-posedness below L2(T2) for (WNLS).
I Recall ρ necessitates the flow to be well-posed in Hs(T2), s < 0.
I s < 0 corresponds to the supercritical regime where even some small data

could -in principle- lead to ‘bad’ behavior in short times.

2 An approximation lemma (uniform convergence of vN to v .)
I This approximation lemma is similar but a bit more delicate than in 1D

because of the form of the solution in the a.s. LWP result below. ( c.f.
A.N-Staffilani, arXiv:1507.07320 [Prop 3.5]).
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Then relying on (2) above and the invariance of µN one can prove the almost
sure global well posedness for WNLS in H−ε(T2) (as in the 1D case) and
the invariance of the Gibbs measure µ under the WNLS flow.
(Bourgain 96’).

The main issue to address then is (1) above since we do not have a
deterministic LWP in Hs(T2), s < 0 in place (as it was the case in 1D).

I At present, we do not even have a deterministic well-posedness in L2(T2) !

The main point however is that one only needs local well-posedness in the
support of the measure. That is, it is enough to prove almost sure local
well-posedness in Hs(T2), s < 0 of WNLS.
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Theorem ( a.s LWP Bourgain(96’))
The Cauchy initial value problem

(WNLS)

{
ivt + ∆v = |v |2v − 2(

∫
|v |2dx) v

v(x ,0) = φω =
∑

n
gn(ω)√
1+|n|2

eix·n, x ∈ T2,

is locally well-posed on a time interval [0, τ ] except for ω in a set Ωc
τ of

measure at most e−
1
τ

The solution v is the distributional limit of vN , the solution to (FWNLS) with
initial data vN(0) = PN(φω).
Furthermore, almost surely in ω the nonlinear part

w : = v − S(t)φω ∈ C([0, τ ]; Hα(T2)), α > 0.

i.e. is smoother than the linear part.

Here S(t)φω is the solution to the linear problem with data φω.
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Randomization does not improve regularity in terms of derivatives!
The initial data,

φω(x) =
∑ gn(ω)

|n|
ei〈x,n〉,

defines almost surely in ω a function in H−ε; but not in Hs, s ≥ 0. In other
words, it is as regular as

φ(x) =
∑ 1
|n|

ei〈x,n〉.

Why does randomization help ?

Key Point: The linear flow S(t)φω(x) of rough but randomized data
enjoys almost surely improved Lp bounds.

I Results of Rademacher, Kolmogorov, Paley and Zygmund show that
random series enjoy better Lp bounds than deterministic ones.

I Randomness has classically been introduced into Fourier series as a tool for
answering deterministic questions (Paley and Zygmund 30’s)

I Phenomena akin to how Kintchine inequality is used in Littlewood-Paley
theory.
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Classical Example
Consider Rademacher Series :

f (y) :=
∞∑

n=0

an rn(y) y ∈ [0,1), an ∈ C

where

rn(y) := sign sin(2n+1π y)

We have:

If an ∈ `2 the sum f (y) converges a.e.

Classical Theorem
If an ∈ `2 then the sum f (y) belongs to Lp([0,1)) for all p ≥ 2. More precisely,

(

∫ 1

0
|f |p dy )1/p ≈p ‖an ‖`2

Ex. an = cnei nθ, cn ∈ `2.
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These a.s. improved Lp bounds on the linear evolution in turn yield
improved nonlinear estimates almost surely in the analysis of

w(t , x) = v(t , x)− S(t)φω(x),

where v is the solution of the equation at hand and as a consequence w
solves a difference equation:

(DE)
{

iwt + ∆w = N (w + S(t)φω)
w(x ,0) = 0

where N (f ) = (|f |2f − 2f
∫
|f |2)

Remark (Important)
The difference equation that w solves is not back to merely being at a
‘smoother’ level but rather it is a hybrid equation with nonlinearity =
= supercritical (but random) + deterministic (smoother).
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Randomization techniques have now been used in several contexts and
regimes to improve the LWP almost surely. How to pass from LWP to
global is a separate issue which depends on the equation, the dimension,
and the regime (invariant measures, energy methods, probabilistic
adaptations of Bourgain’s high-low/I-method, etc.)

Schrödinger Equations: Bourgain, Tzvetkov, Thomann-Tzvetkov,
A.N.-Oh-Rey-Bellet-Staffilani, A.N.-Rey-Bellet- Sheffield-Staffilani, Colliander-Oh,
Burq-Thomann-Tzevtkov, Y. Deng, Burq-Lebeau, Bourgain-Bulut, A.N.- Staffilani,
Poiret-Robert-Thomann, Bényi- Oh- Pocovnicu (conditional), . . .

KdV Equations: Bourgain, Oh, Richards.

NLW/NLKG Equations: Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut,
Luehrmann-Mendelson, S. Xu, Pocovnicu, Oh-Pocovincu, Mendelson.

Benjamin-Ono Equations: Y. Deng, Tzvetkov-Visciglia. and Y. Deng-Tzvetkov-Visciglia.

Navier-Stokes Equations: A.N.-Pavlovic-Staffilani: infinite ‘energy’ global (weak) sols in
T2,T3, global energy bounds, uniqueness in T2. Also work by Deng-Cui and Zhang-Fang
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Heart of the matter. The difference equation
One proceeds via a fixed point argument on a suitable Banach space
X s ⊂ C([0, τ ]; Hα(T2)).

To set up a contraction, the main estimate one needs is essentially:

‖
∫ t

0
S(t − t ′)N (w + S(t)φω) dt ′‖X s . τγ(1 + ‖w‖3

X s )

for some γ > 0 and ω ∈ Ωτ

Recall φω belongs only H−ε(T2).

The heart of the matter is to prove suitable estimates for N (w + S(t)φω).

N (w + S(t)φω) consists essentially of cubic terms which may be all
random (R), all deterministic (D), or mixed.

The Wick ordering of the Hamiltonian crucially removed certain bad
resonant frequencies!

Andrea R. Nahmod (UMass Amherst) Invariant measures for nonlinear PDE August 27th-28th, 2015 16 / 26



Large Deviation-type result
Let k be the number of random terms in the multilinear estimate at hand.

Let d ≥ 1 and c(n1, . . . ,nk ) ∈ C. Let {gn}1≤n≤d ∈ NC(0,1) be complex
centered L2 normalized independent Gaussians. For k ≥ 1 denote by

A(k ,d) := {(n1, . . . ,nk ) ∈ {1, . . . ,d}k , n1 ≤ · · · ≤ nk}

and
Fk (ω) =

∑
A(k,d)

c(n1, . . . ,nk )gn1 (ω) . . . gnk (ω).

Then for p ≥ 2
‖Fk‖Lp(Ω) .

√
k + 1(p − 1)

k
2 ‖Fk‖L2(Ω).

If L := ∆− x · ∇, the Hartree-Fock operator defined as the self adjoint realization on
L2(Rd , exp(−|x |2/2)dx), Dom = {u : u(x) = e|x|

2/4v(x), v ∈ Hα,β , |α|+ |β| ≤ 2}. The
hyper-contractivity property of the Ornstein-Uhlenbeck semigroup e−tL gives Lp-Lq estimates for
the heat flow. Write gn = hn + i`n where {h1, . . . , hd , `1, . . . `d} ∈ NR(0, 1) are real centered
independent Gaussian random variables with the same variance and re-express as Hermite
polynomial, hence an eigenvector for semigroup (c.f. Tzvetkov)
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As a consequence from Chebyshev’s inequality for every λ > 0,

P({ω : |Fk (ω)| > λ }) ≤ exp

 −C λ
2
k

‖Fk (ω)‖
2
k
L2(Ω)

.

Given τ > 0, the large deviation result above with -say -

λ = τ−
3
2 ‖Fk (ω)‖L2(Ω)

so that in a set Ωτ with P(Ωc
τ ) < e−

1
τ we can replace |Fk (ω)|2 by ‖Fk (ω)‖2

L2(Ω).
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An Explicit Estimate

Let us assume, that N1 � N2 ≥ N3 are dyadic numbers, that have been fixed.

Let us consider the all random case R1R2R3 in the nonlinear term; ie. Rj is
the linear evolution of the random data.

Thanks to the Wick ordering we know that n1,n2 6= n3 where nj is the spatial
frequency of Rj .

Let us also assume that we have perform a LP decomposition and that Rj is
frequency localized to Nj .

After further decomposing the frequency annulus of R1 by boxes C of
sidelength N2 and using LP again, we need to estimate:

‖PCR1R2R3‖L2
xt

for ω ∈ Ωτ . We would like to obtain decay in N1 so as to absorb a derivative of
order α > 0.
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By Plancherel we reduce the estimate to

‖PCR1R2R3‖2
L2 =

∑
m,n∈Z2

∣∣∣∣∣∣∣∣∣∣∣
∑

n=n1+n2−n3
n1 6=n3;n2 6=n3, n1∈C

m=|n1|2+|n2|2−|n3|2

gn1
(ω)

|n1|
gn2

(ω)

|n2|
gn3 (ω)

|n3|

∣∣∣∣∣∣∣∣∣∣∣

2

= |F3(ω)|2

There are two cases
Case A0: The frequencies ni , i = 1,2,3 are all different from each other.
Case A1: n1 = n2.
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Case A0: We first remark that the variation for the time frequency m is

∆m ∼ N1N2.

Then we use the large deviation-type result with

λ ∼ τ− 3
2 ‖F3(ω)‖L2(Ω)

so that in a set Ωτ with P(Ωc
τ ) < e−

1
τ we can replace |F3(ω)|2 by ‖F3(ω)‖2

L2(Ω).
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Then we write

‖F3(ω)‖2
L2(Ω) =

∑
S(n,m)

∑
S(n,m)

χC(n1)
3∏

i=1

1
|ni |

χC(n′1)
3∏

j=1

1
|n′j |

×
∫

Ω

gn1
(ω)gn2

(ω)gn3 (ω)gn′
1
(ω)gn′

2
(ω)gn′

3
(ω) dp(ω)

where S(n,m) is the set of triplets

{(n1,n2,n3) : n = n1 + n2 − n3, n1,n2 6= n3, m = |n1|2 + |n2|2 − |n3|2}.
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Using the independence and normalization of gn(ω), everything contracts to

‖F3(ω)‖2
L2(Ω) =

∑
S(n,m)

χC(n1)
3∏

i=1

1
|ni |3

and we proceed to obtain

‖PCR1R2R3‖2
L2 . N1N2

∑
n

|F3(ω)|2 . τ−
3
2 N1N2N−2

1 N−2
2 N−2

3 sup
m

#S(m)

where

Sm := {(n,n1,n2,n3) /n = n1 + n2 − n3 ; m = |n1|2 + |n2|2 − |n3|2,n1 ∈ C}.

Since
#Sm . N2

3 N2
2 Nε

1

we then obtain in Case A0 the bound:

‖PCR̄1R̄2R3‖2
L2 . τ−

3
2 N−1

1 N2.
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For Case A1: now we have n1 = n2 and,

‖PCR1R2R3‖2
L2 :=

∑
m,n∈Z2

∣∣∣∣∣∣∣∣∣∣∣
∑

n=2n1−n3
n1 6=n3;

m=2|n1|2−|n3|2

(gn1 (ω))2

|n1|2
gn3

(ω)

|n3|

∣∣∣∣∣∣∣∣∣∣∣

2

=
∑

m,n∈Z2

∣∣∣∣∣∣∣∣
∑

n1 6=n;

m=2|n1|2−|2n1−n|2

(gn1 (ω))2

|n1|2
g2n1−n(ω)

|2n1 − n|

∣∣∣∣∣∣∣∣
2

We can continue in this case by Cauchy Schwarz to obtain:
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∑
m,n∈Z3

∣∣∣∣∣∣∣∣
∑

n1 6=n;

m=2|n1|2−|2n1−n|2

(gn1 (ω))2

|n1|2
g2n1−n(ω)

|2n1 − n|

∣∣∣∣∣∣∣∣
2

.
∑

m,n∈Z
#S̃(n,m)

∑
n1; m=2|n1|2−|2n1−n|2

|gn1 (ω)|4

|n1|4
|g2n1−n(ω)|2

|2n1 − n|2

where
S̃(n,m) = {n1 /m = 2|n1|2 − |2n1 − n|2}.

Since #S̃(n,m) . Nε
1 and we can show that |gn1 (ω)| . Nε

1 , we obtain a much
better decay in this case than in Case A0.
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Final Remarks

Brydges and Slade showed it is not possible to carry over the canonical
construction of Gibbs measures for the focusing cubic NLS on T2.

Invariant measures for Hamiltonian PDE in higher dimensions remain a
challenge ....

Little is known about ergodicity of (nonlinear) Hamiltonian PDE’s.

I Lebowitz and Lanford 74’ (eg. linear wave equation and more general linear
PDE)

I Jaksic and Pillet 90’ ( PDE coupled to a finite dimensional ODE)

I McKean 95’ ( hyperbolic sine-Gordon)
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