Invariant measures for nonlinear PDE

Andrea R. Nahmod

University of Massachusetts Amherst

August 27th-28th, 2015

Introductory Workshop at MSRI

 QQQ

 $4 \oplus 14 \oplus 14$

4 0 8

The defocusing cubic NLS on \mathbb{T}^2

(NLS)
$$
\begin{cases} iu_t + \Delta u = |u|^2 u \\ u(x, 0) = \phi \in H^{s}(\mathbb{T}^2) \end{cases}
$$

$$
\begin{array}{rcl}\n\text{Mass:} & M(u(t)) & := & \int |u(t,x)|^2 \, dx \\
\text{Hamiltonian:} & H(u(t)) & := & \frac{1}{2} \int |\nabla u(t,x)|^2 \, dx + \frac{1}{4} \int |u(t,x)|^4 \, dx\n\end{array}
$$

are both constant in time.

- The equation is L^2 critical ($s_c = 0$).
- Bourgain (93') proved LWP for $s > 0$ and GWP in $H^1(\mathbb{T}^2)$.
	- Recall that in the first lecture we discussed the ϵ -loss of derivatives in the $L_{xt}^4(\mathbb{T}^2\times\mathbb{T})$ Strichartz estimate for the linear evolution. This accounts for the need of *s* > 0 to close the fixed point argument.

 Ω

Some Issues ...

We are interested in the existence and invariance of the Gibbs measure for the defocusing cubic NLS on T 2 , *formally* given by

$$
d\mu = Z^{-1}e^{-H(\phi)} \prod_{x \in \mathbb{T}^2} d\phi(x)
$$

=
$$
Z^{-1}e^{-\int |\phi|^4 dx} e^{-\frac{1}{2}\int |\nabla \phi|^2 dx} \prod_{x \in \mathbb{T}^2} d\phi(x)
$$

=
$$
C^{-1}e^{-\int |\phi|^4 dx} d\rho
$$

$$
d\rho
$$

and in the almost sure global well posedness on its support.

Recall from the first lecture that in 2D, the Gaussian measure ρ on $H^s(\mathbb{T}^2)$ is countably additive if and only if $B_{\rm s} := (1-\Delta)^{{\rm s}-1}$ on ${\mathbb T}^2$ is of trace class; i.e. if and only if $s < 0$.

つひひ

Recall also that in 2D, ρ yields for ϕ the distribution of a random (Fourier) series

$$
\phi = \phi^{\omega} = \sum_{n \in \mathbb{Z}^2} \frac{g_n(\omega)}{\sqrt{1 + |n|^2}} e^{in \cdot x}.
$$

which defines a.s. a distribution -not a function- in $H^s(\mathbb{T})$, $s < 0$.

Hence, **unlike the 1D case**, in 2D for the typical φ the expression $e^{-\int_{\mathbb{T}^2} |\phi|^4\,dx}$ is unbounded a.s.; i.e

$$
\lim_{N\to\infty}\int_{\mathbb{T}^2}|P_N(\phi^\omega)|^4\,dx\,=\,\infty\qquad\text{a.s. in }\omega
$$

where as before $P_N(\phi^\omega) = \sum_{|\eta| \leq N} \frac{g_\eta(\omega)}{\sqrt{1+|\eta|}}$ $\frac{g_n(\omega)}{1+|n|^2}e^{in\cdot x}=:\phi_N^\omega.$

To overcome this problem Bourgain considers the *Wick ordering*¹ of $|\phi_N|^4$.

 QQ

¹as in QFT

Let

$$
a_N:=\mathbb{E}(|\phi_N^{\omega}|^2)\sim \sum_{|n|\leq N}\frac{1}{1+|n|^2}\sim \log N\quad \text{(2D)}.
$$

After renormalizing by a_N the Wick ordering of $|\phi_N|^4$ (complex) is given by:

$$
: |\phi_N|^4 : = |\phi_N|^4 - 4a_N |\phi_N|^2 + 2a_N^2.
$$

Proposition (Bourgain 96')

 (1) $\quad \int_{\mathbb{T}^2} : |\phi^\omega_\mathsf{N}|^4 : \mathsf{d} \mathsf{x}$ converges a.s. in ω to a finite limit as $\mathsf{N} \to \infty.$

(2) The measures $d\mu_N := e^{-\int 1: |\phi_N|^4 : \, dx} d\rho_N$ converge to a weighted Wiener *measure with density in L^r*($d\rho$), $r < \infty$. Call this measure μ

 QQQ

Very roughly: In the real case, Wick ordering consists in associating to a monomial *x ⁿ* a Hermite polynomial $He_n(x)$ obtained by orthogonalization of the monomials w.r.t Gaussian measure on \mathbb{R} .

$$
He_n(x):=2^{-n/2}H_n(\frac{x}{\sqrt{2}}),
$$

where

$$
H_n(x) := \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^m n!}{m! 2^m (n-2m)!} x^{n-2m}
$$

Note the recursion relation

$$
He_{n+1}(x)=xHe_n(x)-nHe_{n-1}(x).
$$

So for example we have

$$
He_0(x) = 1, He_1(x) = x, He_2(x) = x^2 - 1, He_3(x) = x^3 - 3x, He_4(x) = x^4 - 6x^2 + 3, etc.
$$

In the complex case and the notation above

$$
: |\phi_N|^{2k} := a_N^k H_{2k}(\frac{\phi_N}{\sqrt{a_N}})
$$

(c.f. Bourgain's IAS/Park City Lecture Notes Vol 5, [19](#page-4-0)[99](#page-6-0)[\).](#page-4-0)

Andrea R. Nahmod (UMass Amherst) [Invariant measures for nonlinear PDE](#page-0-0) August 27th-28th, 2015 6/26

 QQ

The Wick ordering above leads to a modified Hamiltonian:

$$
\mathcal{H}_N(\phi_N) \quad := \quad \int |\nabla \phi_N|^2 dx \, + \, \frac{1}{2} \, \int_{\mathbb{T}^2} :|\phi_N|^4 : \, dx
$$
\n
$$
= \quad \int |\nabla \phi_N|^2 dx \, + \, \frac{1}{2} \, \int_{\mathbb{T}^2} |\phi_N|^4 \, dx - 2a_N \int |\phi_N|^2 \, + \, a_N^2,
$$

whence we obtain the Wick ordered NLS equation (WNLS):

$$
i \partial_t u_N = \frac{\partial H_N}{\partial \overline{u_N}}
$$

$$
i \partial_t u_N = -\Delta u_N + P_N(|u_N|^2 u_N) - 2a_N u_N
$$

or equivalently

$$
i \,\partial_t u_N + \Delta u_N + 2(a_N - \int |u_N|^2 \,dx) u_N - P_N(u_N |u_N|^2 - 2u_N \int |u_N|^2 \,dx) = 0
$$

THE NA

 QQ

Using the *L* ² conservation,

$$
\int |u_N|^2 dx - a_N = \int :|\phi_N|^2 : dx = \underbrace{c_N(\omega)}_{\text{independent of time}} \longrightarrow_{N \to \infty} c(\omega), \text{ a.s. in } \omega,
$$

whence we get

$$
i \partial_t u_N + \Delta u_N + 2c_N u_N - P_N(u_N|u_N|^2 - 2u_N \int |u_N|^2 dx) = 0
$$

and the linear term maybe simply removed by letting $v_N:=e^{2i c_N t} u_N$ satisfying

(FWNLS)
$$
i \partial_t v_N + \Delta v_N - P_N(v_N|v_N|^2 - 2v_N \int |v_N|^2 dx) = 0,
$$

which is the truncated or finite dimensional approximation to:

$$
(WNLS) \t\t\t i \partial_t v + \Delta v - (v|v|^2 - 2v \int |v|^2 dx) = 0,
$$

the *Wick ordered cubic NLS* equation.

 QQQ

The measures $d\mu_N=e^{-{\cal H}_N(\phi_N)}\Pi d^2\phi_N=e^{-\int :|\phi_N|^4\cdot\,d\chi}d\rho_N$ are invariant under the flow of (FWNLS).

The weighted Wiener measure μ to which the invariant measures μ_N converge -according to the Proposition above- **should be** the invariant Gibbs measure associated to (WNLS). To conclude this –just as we have seen for the 1D quintic NLS– the main two outstanding issues are:

- **Some form of local well-posedness below** $L^2(\mathbb{T}^2)$ for (WNLS).
	- **•** Recall ρ necessitates the flow to be well-posed in $H^s(\mathbb{T}^2)$, $s < 0$.
	- $s < 0$ corresponds to the supercritical regime where even some small data could -in principle- lead to 'bad' behavior in short times.
- 2 An approximation lemma (uniform convergence of v_N to *v*.)
	- \triangleright This approximation lemma is similar but a bit more delicate than in 1D because of the form of the solution in the a.s. LWP result below. (c.f. A.N-Staffilani, arXiv:1507.07320 [Prop 3.5]).

 Ω

Then relying on (2) above and the invariance of μ_N one can prove the **almost sure global well posedness for WNLS in** $H^{−ε}(\mathbb{T}^2)$ (as in the 1D case) and the **invariance of the Gibbs measure** μ **under the WNLS flow.** (Bourgain 96').

- The main issue to address then is (1) above since we **do not have** a deterministic LWP in $H^s(\mathbb{T}^2), s < 0$ in place (as it was the case in 1D).
	- At present, we do not even have a deterministic well-posedness in $L^2(\mathbb{T}^2)$!

The main point however is that one only needs local well-posedness in the support of the measure. That is, it is enough to prove almost sure local well-posedness in $H^s(\mathbb{T}^2)$, $s < 0$ of WNLS.

 Ω

Theorem (a.s LWP **Bourgain**(96'))

The Cauchy initial value problem

$$
\text{(WNLS)} \qquad \begin{cases} \begin{array}{l} \text{ } i v_t + \Delta v = |v|^2 v - 2(\int |v|^2 dx) v \\ \text{ } v(x,0) = \phi^{\omega} = \sum_n \frac{g_n(\omega)}{\sqrt{1+|n|^2}} e^{j x \cdot n}, \end{array} \end{cases} x \in \mathbb{T}^2,
$$

is locally well-posed on a time interval $[0, \tau]$ *except for* ω *in a set* $\Omega_{\tau}^{\mathsf{c}}$ *of measure at most e^{− 1}*

The solution v is the distributional limit of v^N, the solution to (FWNLS) with initial data $v^N(0) = P_N(\phi^\omega)$ *.*

Furthermore, almost surely in ω *the nonlinear part*

 $w := v - S(t) \phi^{\omega} \in C([0, \tau]; H^{\alpha}(\mathbb{T}^{2})), \ \alpha > 0.$

i.e. is **smoother** *than the linear part.*

Here $S(t)\phi^\omega$ is the solution to the linear problem with data ϕ^ω .

 QQQ

イロメ イ母メ イヨメ イヨメ

Randomization does not improve regularity in terms of derivatives! The initial data,

$$
\phi^{\omega}(x) = \sum \frac{g_n(\omega)}{|n|} e^{i\langle x, n \rangle},
$$

defines almost surely in ω a function in *H* − ; **but not** in *H s* , *s* ≥ 0. In other words, it is as regular as

$$
\phi(x) = \sum \frac{1}{|n|} e^{i\langle x,n\rangle}.
$$

- Why does randomization help ?
- **Key Point:** The linear flow $S(t) \phi^{\omega}(x)$ of rough but randomized data enjoys *almost surely* improved L^p bounds.
	- \triangleright Results of Rademacher, Kolmogorov, Paley and Zygmund show that **random series** enjoy better L^p bounds than deterministic ones.
	- \blacktriangleright Randomness has classically been introduced into Fourier series as a tool for answering deterministic questions (Paley and Zygmund 30's)
	- \triangleright Phenomena akin to how Kintchine inequality is used in Littlewood-Paley theory.

 QQ

イロメ イ母メ イヨメ イヨメ

Classical Example

Consider *Rademacher Series* :

$$
f(y) := \sum_{n=0}^{\infty} a_n r_n(y) \qquad y \in [0,1), \quad a_n \in \mathbb{C}
$$

where

$$
r_n(y):=\operatorname{sign} \operatorname{sin}(2^{n+1}\pi y)
$$

We have:

• If
$$
a_n \in \ell^2
$$
 the sum $f(y)$ converges a.e.

.

Classical Theorem

If $a_n \in \ell^2$ then the sum $f(y)$ belongs to $L^p([0,1))$ for all $p \geq 2$. More precisely,

$$
\big(\int_0^1 |f|^p\,dy\big)^{1/p}\approx_p \|a_n\|_{\ell^2}
$$

$$
Ex. a_n = c_n e^{in\theta}, \quad c_n \in \ell^2
$$

4 0 8

 QQ

These a.s. improved L^p bounds on the linear evolution in turn yield improved nonlinear estimates *almost surely* in the analysis of

$$
w(t,x)=v(t,x)-S(t)\phi^{\omega}(x),
$$

where *v* is the solution of the equation at hand and as a consequence *w* **solves a difference equation:**

$$
\begin{cases}\n\quad w_t + \Delta w = \mathcal{N}(w + S(t)\phi^{\omega}) \\
w(x, 0) = 0\n\end{cases}
$$

where $\mathcal{N}(f) = (|f|^2 f - 2f \int |f|^2)$

Remark (Important)

The difference equation that w solves is not back to merely being at a 'smoother' level but rather it is a hybrid equation with nonlinearity = = *supercritical (but random)* + *deterministic (smoother).*

 Ω

- Randomization techniques have now been used in several contexts and regimes to **improve the LWP almost surely**. How to pass from LWP to global is a separate issue which depends on the equation, the dimension, and the regime (invariant measures, energy methods, probabilistic adaptations of Bourgain's high-low/I-method, etc.)
- Schrödinger Equations: Bourgain, Tzvetkov, Thomann-Tzvetkov, A.N.-Oh-Rey-Bellet-Staffilani, A.N.-Rey-Bellet- Sheffield-Staffilani, Colliander-Oh, Burq-Thomann-Tzevtkov, Y. Deng, Burq-Lebeau, Bourgain-Bulut, A.N.- Staffilani, Poiret-Robert-Thomann, Bényi- Oh- Pocovnicu (conditional), ...
- **KdV Equations: Bourgain, Oh, Richards.**
- NLW/NLKG Equations: Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut, Luehrmann-Mendelson, S. Xu, Pocovnicu, Oh-Pocovincu, Mendelson.
- **Benjamin-Ono Equations: Y. Deng, Tzvetkov-Visciglia. and Y. Deng-Tzvetkov-Visciglia.**
- Navier-Stokes Equations: A.N.-Pavlovic-Staffilani: infinite 'energy' global (weak) sols in $\mathbb{T}^2, \mathbb{T}^3$, global energy bounds, uniqueness in \mathbb{T}^2 . Also work by Deng-Cui and Zhang-Fang

 QQ

Heart of the matter. The difference equation

- One proceeds via a fixed point argument on a suitable Banach space $X^s \subset C([0,\tau];H^{\alpha}(\mathbb{T}^2)).$
- To set up a contraction, the main estimate one needs is essentially:

$$
\|\int_0^t S(t-t')\mathcal{N}(w+S(t)\phi^\omega)\,dt'\|_{X^s}\lesssim \tau^\gamma(1+\|w\|_{X^s}^3)
$$

for some $\gamma > 0$ and $\omega \in \Omega_{\tau}$

- Recall ϕ^{ω} belongs only $H^{-\varepsilon}(\mathbb{T}^2)$.
- The heart of the matter is to prove suitable estimates for $\mathcal{N}(w + \mathcal{S}(t) \phi^\omega).$
- $\mathcal{N}(w + \mathcal{S}(t) \phi^\omega)$ consists essentially of cubic terms which may be all random (*R*), all deterministic (*D*), or mixed.
- The Wick ordering of the Hamiltonian crucially removed certain bad *resonant* frequencies! イロメ イ母メ イヨメ イヨメ

Andrea R. Nahmod (UMass Amherst) [Invariant measures for nonlinear PDE](#page-0-0) August 27th-28th, 2015 16/26

 QQQ

Large Deviation-type result

Let *k* be the number of random terms in the multilinear estimate at hand.

Let *d* \geq 1 and *c*(n_1, \ldots, n_k) $\in \mathbb{C}$. Let $\{g_n\}_{1 \leq n \leq d} \in \mathcal{N}_{\mathbb{C}}(0, 1)$ be complex centered *L* ² normalized independent Gaussians. For *k* ≥ 1 denote by

$$
A(k, d) := \{ (n_1, \ldots, n_k) \in \{1, \ldots, d\}^k, n_1 \leq \cdots \leq n_k \}
$$

and

$$
F_k(\omega)=\sum_{A(k,d)}c(n_1,\ldots,n_k)g_{n_1}(\omega)\ldots g_{n_k}(\omega).
$$

Then for $p > 2$

$$
||F_k||_{L^p(\Omega)} \lesssim \sqrt{k+1} (p-1)^{\frac{k}{2}} ||F_k||_{L^2(\Omega)}.
$$

If $L := \Delta - x \cdot \nabla$, the Hartree-Fock operator defined as the self adjoint realization on *L*²(ℝ^{*d*}, exp(−|*x*|²/2)*dx*), Dom = {*u* : *u*(*x*) = *e*^{|*x*|²/4}*v*(*x*), *v* ∈ *H*^{α,β}, |α| + |β| ≤ 2}. The hyper-contractivity property of the Ornstein-Uhlenbeck semigroup *e*−*tL* gives *L p* -*L ^q* estimates for the heat flow. Write $g_n = h_n + i\ell_n$ where $\{h_1, \ldots, h_d, \ell_1, \ldots, \ell_d\} \in \mathcal{N}_{\mathbb{R}}(0, 1)$ are real centered independent Gaussian random variables with the same variance and re-express as Hermite **polynomial, hence an eigenvector for semigroup (c.f. Tzvetkov)** QQ

As a consequence from Chebyshev's inequality for every λ > 0**,**

$$
\mathbb{P}(\{\omega:|F_k(\omega)|>\lambda\})\leq \exp\left(\frac{-C\,\lambda^{\frac{2}{k}}}{\|F_k(\omega)\|_{L^2(\Omega)}^{\frac{2}{k}}}\right).
$$

Given $\tau > 0$, the large deviation result above with -say -

 $\lambda = \tau^{-\frac{3}{2}}\|F_{k}(\omega)\|_{L^{2}(\Omega)}$

so that in a set Ω_τ with $\mathbb{P}(\Omega_\tau^c)< e^{-\frac{1}{\tau}}$ we can replace $| \mathcal{F}_k(\omega)|^2$ by $\| \mathcal{F}_k(\omega)\|_{L^2(\Omega)}^2.$

 QQQ

An Explicit Estimate

Let us assume, that $N_1 \gg N_2 \geq N_3$ are dyadic numbers, that have been fixed.

Let us consider the all random case $R_1R_2R_3$ in the nonlinear term; ie. R_j is the linear evolution of the random data.

Thanks to the Wick ordering we know that $n_1, n_2 \neq n_3$ where n_j is the spatial frequency of *R^j* .

Let us also assume that we have perform a LP decomposition and that *R^j* is frequency localized to *N^j* .

After further decomposing the frequency annulus of *R*¹ by boxes *C* of sidelength N_2 and using LP again, we need to estimate:

$$
\|P_C P_1 P_2 \overline{P}_3\|_{L^2_{xt}}
$$

for $\omega \in \Omega_{\tau}$. We would like to obtain decay in N_1 so as to absorb a derivative of order $\alpha > 0$.

KEL KALK LELKEL KARA

By Plancherel we reduce the estimate to

$$
||P_{C}R_{1}R_{2}\overline{R}_{3}||_{L^{2}}^{2} = \sum_{m,n\in\mathbb{Z}^{2}} \left|\sum_{\substack{n=n_{1}+n_{2}-n_{3} \\ n_{1}\neq n_{3}; n_{2}\neq n_{3}, n_{1}\in C \\ m=|n_{1}|^{2}+|n_{2}|^{2}-|n_{3}|^{2}} \frac{\overline{g}_{n_{1}}(\omega)}{|n_{1}|} \frac{\overline{g}_{n_{2}}(\omega)}{|n_{2}|} \frac{g_{n_{3}}(\omega)}{|n_{3}|} \right|^{2} = |F_{3}(\omega)|^{2}
$$

There are two cases

- **Case** A_0 : The frequencies n_i , $i = 1, 2, 3$ are all different from each other.
- Case $A_1: n_1 = n_2$.

 QQ

K ロ ト K 伺 ト K ヨ ト K

Case *A*0**:** We first remark that the **variation for the time frequency** *m* is

∆*m* ∼ *N*1*N*2.

Then we use the **large deviation-type** result with

 $\lambda \sim \tau^{-\frac{3}{2}} \|F_3(\omega)\|_{L^2(\Omega)}$

so that in a set Ω_τ with $\mathbb{P}(\Omega_\tau^c)< e^{-\frac{1}{\tau}}$ we can replace $| \mathcal{F}_3(\omega)|^2$ by $\| \mathcal{F}_3(\omega)\|_{L^2(\Omega)}^2.$

 QQQ

Then we write

$$
||F_3(\omega)||^2_{L^2(\Omega)} = \sum_{S_{(n,m)}} \sum_{S_{(n,m)}} \chi_C(n_1) \prod_{i=1}^3 \frac{1}{|n_i|} \chi_C(n_1') \prod_{j=1}^3 \frac{1}{|n_j'|}
$$

$$
\times \int_{\Omega} \overline{g}_{n_1}(\omega) \overline{g}_{n_2}(\omega) g_{n_3}(\omega) \overline{g}_{n_1'}(\omega) \overline{g}_{n_2'}(\omega) g_{n_3'}(\omega) d\rho(\omega)
$$

where $\mathcal{S}_{(n,m)}$ is the set of triplets

 $\{(n_1, n_2, n_3) : n = n_1 + n_2 - n_3, n_1, n_2 \neq n_3, m = |n_1|^2 + |n_2|^2 - |n_3|^2\}.$

 QQ

Using the independence and normalization of $g_n(\omega)$, everything contracts to

$$
||F_3(\omega)||^2_{L^2(\Omega)} = \sum_{S_{(n,m)}} \chi_C(n_1) \prod_{i=1}^3 \frac{1}{|n_i|^3}
$$

and we proceed to obtain

$$
||P_{C}P_{1}P_{2}\overline{P}_{3}||^{2}_{L^{2}} \lesssim N_{1}N_{2} \sum_{n} |F_{3}(\omega)|^{2} \lesssim \tau^{-\frac{3}{2}} N_{1}N_{2}N_{1}^{-2}N_{2}^{-2}N_{3}^{-2} \sup_{m} \#S(m)
$$

where

$$
S_m:=\{(n, n_1, n_2, n_3)/n=n_1+n_2-n_3; m=|n_1|^2+|n_2|^2-|n_3|^2, n_1\in C\}.
$$

Since

 $\#S_m \lesssim N_3^2N_2^2N_1^4$

we then obtain in Case A_0 the bound:

$$
\| \textit{P}_C \bar{\textit{R}}_1 \bar{\textit{R}}_2 \textit{R}_3 \|_{L^2}^2 \lesssim \tau^{-\frac{3}{2}} \textit{N}_1^{-1} \textit{N}_2.
$$

画

 QQQ

For **Case** A_1 : now we have $n_1 = n_2$ and,

$$
||P_{C}R_{1}R_{2}\overline{R}_{3}||_{L^{2}}^{2} := \sum_{m,n\in\mathbb{Z}^{2}} \left|\sum_{\substack{n=2n_{1}-n_{3} \\ n_{1}\neq n_{3} \\ m=2|n_{1}|^{2}-|n_{3}|^{2}}} \frac{(g_{n_{1}}(\omega))^{2}}{|n_{1}|^{2}} \frac{\overline{g}_{n_{3}}(\omega)}{|n_{3}|} \right|^{2}
$$

$$
= \sum_{m,n\in\mathbb{Z}^{2}} \left|\sum_{\substack{n_{1}\neq n_{3} \\ m=2|n_{1}|^{2}-|2n_{1}-n|^{2}}} \frac{(g_{n_{1}}(\omega))^{2}}{|n_{1}|^{2}} \frac{\overline{g}_{2n_{1}-n}(\omega)}{|2n_{1}-n|} \right|^{2}
$$

We can continue in this case by Cauchy Schwarz to obtain:

 QQ

$$
\sum_{m,n\in\mathbb{Z}^3}\left|\sum_{\substack{n_1\neq n_1\\ m\equiv 2|n_1|^2-|2n_1-n|^2}}\frac{(g_{n_1}(\omega))^2}{|n_1|^2}\frac{\overline{g}_{2n_1-n}(\omega)}{|2n_1-n|}\right|^2\\\lesssim \sum_{m,n\in\mathbb{Z}}\#\tilde{S}_{(n,m)}\sum_{n_1;\ m\equiv 2|n_1|^2-|2n_1-n|^2}\frac{|g_{n_1}(\omega)|^4}{|n_1|^4}\frac{|\overline{g}_{2n_1-n}(\omega)|^2}{|2n_1-n|^2}
$$

where

$$
\tilde{S}_{(n,m)}=\{n_1\,/\,m=2|n_1|^2-|2n_1-n|^2\}.
$$

Since $\#\tilde{\mathcal{S}}_{(n,m)}\lesssim \mathcal{N}_1^\epsilon$ and we can show that $|g_{n_1}(\omega)|\lesssim \mathcal{N}_1^\varepsilon,$ we obtain a much better decay in this case than in Case *A*0.

 QQ

 \sqrt{m}) \sqrt{m}) \sqrt{m})

4 D.K.

Final Remarks

- **Brydges and Slade showed it is not possible to carry over the canonical** construction of Gibbs measures for the focusing cubic NLS on \mathbb{T}^2 .
- Invariant measures for Hamiltonian PDE in higher dimensions remain a challenge
- Little is known about ergodicity of (nonlinear) Hamiltonian PDE's.
	- \blacktriangleright Lebowitz and Lanford 74' (eg. linear wave equation and more general linear PDE)
	- \blacktriangleright Jaksic and Pillet 90' (PDE coupled to a finite dimensional ODE)
	- \blacktriangleright McKean 95' (hyperbolic sine-Gordon)

 QQ