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There will be there sections:

Probability measures of interest:
— 1 —é(u) —
/L(du) = Ze uo(du), 1o N(O, C’) (1)

We want to understand properties of probability measures which have a density with respect to a
Gaussian pg. The main objective is to understand what the form of ¢ is.

Measure preserving dynamics: ¢ = (—A) 7%, s > %.

du s dw
o = K(=(=2) u—ng(u))Jr\/ﬁE (2)
d?u
M + (=A)°u+ Do(u) =0

dt?
Two dynamical systems: Stochastic differential equation for the first equation and Hamiltonian
mechanics for the second. We are interested in choices of K and M. For example:

1. If we take s = 1 and K = 1 the first equation becomes the nonlinear stochastic heat equation.

2. If we take s = 1 and M = I then we have a wave equation with nonlinear forcing for the
second equation.

Measure preserving dynamics - discrete time (MCMC) We will show how these continuous
time dynamical systems play a role in a Monte-Carlo Markov Chain.

1 Probability measures of interest

1.1 Gaussian reference measure

(H,(-,-),] - |) separable Hilbert (sometimes |- | will be the Euclidean norm).
Mean: m € H.
Covariance: ¢ € L(H,H) trace-class in H, positive, self-adjoint.

cpj =Ajdj, M =A== 20,4 =0
{#;},en form a complete orthonormal system for H and pg = N (m, c)

Lemma 1.1 (Karshunen-Loeve) u ~ g < u = m+ > 22, §j1/A;j¢; where {&}jen @id &~
N(0,1).

N 2
Corollary 1.0.1 Let uj = (u —m, ¢;) then % > Z—j — 1 as N — 0o pg-a.s.
j=1

Example: H = L?(D;R), D c R? bounded and open.
Assumptions:




A self-adjoint, invertable, positive definite on H.

{65 }jeN be a complete orthonormal system (smooth) for H.
® Aqu = a;¢j, o eigenvalues.

e «; is upper and lower bounded by j%.

o supjen (5]l + ELin(6(7)) < o
If we take A = —A + I, D(A) = H?(T?) then these assumptions are satisfied. More generally:
Theorem 1.1 Let ¢ = A=, Then for u ~ g = N(0,¢) a.s., u € H ,u € =11 and t < s — %.
Example: Brownian Bridge d = 1 on I(0,1). Take A = —j—;,D(A) = H*(I) N HY(I),u €
H2, e CO12,

1.2 Measure of interest

(X, ]| - ||) a separable Banach Space and assume the Gaussian measure satisfies po(X) = 1 (this is
short for saying u € X, o — a.s.). Also assume ¢ : X — R satisfies
e ¢ >0.

e ¢ is locally Lipschitz.
e c?eL (X,R).

These conditions can (and will for a couple examples) be relaxed, but are sufficient for our under-
standing in the lectures.

Define 1
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Since p is absolutely continuous with respect to pug, the same things (corollary 1.0.1) holds for u
a.s.

1.3 Elliptic inverse problems
{ ~V-(kVp)=f, z€DCR?
p =0, x € 0D
Spaces:
o Z=L%(D;R)
o /T ={k € Z:essinfuepr >0}
e V = H}(D) (weak formulation)

Proposition 1.1 If k € ZT, then 3!p € V solving the equation. Thus we may write p = G(k) for
some G : Z+ — V. Furthermore, G is locally Lipschitz.




Inverse Problem: We have a collection of linear functions I; € V*, j =1,...,J. Our goal is to
J

find « from noisy measurements {l;(p)};_,.

Probability comes in because of the noisy data as well as noting that we are trying to reconstruct
a function k € L* from a finite set of observations.

Bayesian Inverse Problem: X = C(D;R), F: X — Z+.
(i) (first choice) F(u) = e" i.e. k = e".
(ii) (second choice) F(u) = kT 1,50 + £~ 1y<o where kT, k7 < 0.

Now F maps from the place where we will put Gaussians into the space of permabilities. From
permabilities, G will map us to p. Then we will map into the finite set of operators. Putting this
together:

y; = (Ij 0o G o F)(u) + nj, where n ~ N(0,4%) (i.i.d).
y=G(u)+n, n~(0,42I) where G : X — R’

(i) (for first choice) G is locally Lipschitz. (exponentiation is locally Lipschitz)

(ii) (for second choice) G is continuous pp-a.s.

1
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du dv
\/d,uo(u) - \/d,uo(u)

u ~ o satisfying above assumptions. (Prior)
ylu ~ N(G(u),¥?I) - Likelihood u|y ~ p¥ (Posterior)

We will use two distance in these talks:

2
pio(du)

dpen(p,v)? = /

Theorem 1.2 p¥ < pg. Furthermore, ¥|y1|, ly2| < r, dgen(p¥*, p¥2) < C(r)|y1 — y2l.

Notes for lecture 2 begins below:

1.4 Navier-Stokes equation

First we will start with another construction of ¢. Below we have Navier-Stokes in two dimensions
on a Torus:

ov+v-Vo=vAv—Vp, ze€T?t>0

divov =0, zeT?t>0

v =u, xeT?t>0

Two examples of data from which we would like to recover the initial condition:
Problem 1 “Weather-forcasting”

Yik = v(Tj, tk) + Vjg, njx ~ N(0,~41)
y=G(u)+n, n~ N(0,7I).




Problem 2 “Oceanography”
de
dt
Yik = 2i(tk) + njk
y=G(u)+n

= v(zj,1),2;(0) = zj0

In both cases we can define the misfit function :

o(usy) = Q;\y — G(u)?

u~ pp=N(0,C) (Prior)

C = (—Agtokes) 58 >1

ylu ~ N(G(u),7*I)

uly ~ p¥ in (1)
Theorem 1.3 p¥ < pg given by , then dien(p¥t, 1¥?) < c(y1,y2)|ly1 — vl
Comments: In Problem 1, G € C'(H;R”) and in Problem 2, G € C'(H%;R”7),t > 0.

1.5 Getting information about u

Can we find a point estimate to maximize pu?

1.5.1 Map Estimators

uo(z) = 1 and ¢ € C(X;R). E a Hilbert space is compact in X. Inner product (-,-)p =
<C_%~,C_%-> and norm |- |gp = \C_% -|. Note u ¢ F pg-a.s. Pretend H = RY, then to max-
imize the quantity below, we would minimize —J|u%:
p(du) o e ¢ =3hulE gy,

Consider

Bs(z) ={ue X :||u—zl: < d}

J*(2) = n(Bs(2))
We are looking for the z value that maximizes J°(z).

Definition 1.1 Z is a MAP estimator if

J°(z)
lim L =1
530 J0(29)

Such points exists and can be characterized by:

I(z) = %|2|% + ¢(2) Onsager-Machlup Functional.




Theorem 1.4 (Dosht, Law, Stuart, Voss)
(i) Any MAP estimator is a minimizer of I.

(i) Any z* € E which minimizes I is a map estimator.

1.5.2 Variational characterization

Work by (Pinski, Simpson, Stuart, Weber):

We want to generalize the previous minimization problem. To do this we minimize over Gaussians
instead.

Dicp(vllm) = B log (12)).
P will be a probability measure on H and
C;LM — le—¢(u)

z

Next we will define a functional J:
J:P—Rand J(v) = Drr(v||pmo) + EY¢(u)

Theorem 1.5 arg inf J(v) = p
veP

Sketch of proof: J(v) = Dk (v|p) + constant . Next notice Dy, (v| i) > 0, Dir(p||e) = 0. Thus
the min is attained by setting v = u.

Remark 1.1 Now minimize J(v) over A C P. For the Gaussian case,
A=UN(m,X) and N(z,X) equivalent to pg

The J(v) within this class can be written as

1 - 1 _ det C'
J(v) = §\z\2E +ESNOR (2 +6) + S IS~ 1)+ <det2)

1.5.3 MCMC

Idea is to create a Markov Chain {u(”)}neN which is p-ergodic. Then we have a method (see
Jonathan Mattingly’s lectures) to show

1 N
L3 6u) - o)
n=1

2 pu-preserving dynamics

Goal for the rest of this lecture is to describe the basic ideas of u-preserving dynamics so we can
explain how they relate Markov Chains.




2.1 SDE on R"
Start with p(du) o< E=%du and ¥ : R” — R. We assume e~ Y e L2(R;R™T).

du dw
o = hVU(u) + @E (3)

RNXN

k > 0, symmetric matrix.

Theorem 2.1 is p-invariant a-ergodic. (there are more conditions needed, but not listed in
lecture)

Sketch of proof:

Invariance:

Lo =

L=V (J(¢))

Get the equation:

g(@ =kVU¥(u)p+ V- (ko)

L =L

If poae=¥® then J(p) =

Ergodicity:

L$=¢— EFo.

Apply the Ito’s formula to get d¢ = Eqb + (Vo(u), %’).
Iy o(t)dt = B'o+ £(6(T) = 6(0) — 4 [y (Vo(u), vVZEE).
Notes for lecture 3 starts below

Recall we are interested in measures given by as well as inverse problems.

We start today with two new p-reversible dynamical systems. One stochastic and one not:

U — k(e + Do) + VR (4)
‘% 0 ‘;%’ = MO M+ do(u)) (5)

2.2 Lift to H

In the Hilbert setting, (1) can be written as

1
p(du) = e 1™y
z
where ]
1
Iw) = Slul} + o), |5 =075
Using this gives us . As in the finite dimensional case, we get the theorem:

Theorem 2.2 (Hairer, Stuart, Voss) For k = I,C it follows that 1s p-reversible, p-ergodic.




Recall all the physics is embedded in ¢ so we can pick K however we want.

Comments on the proof for the case (K = C).

du dw

—=—-u—-C-D V2C—

at — ow) + V20

From the point of algorithms this equation is very nice. If we ignore the ¢-term, then all of the
time scales and modes of this equation are the same. In fact we can solve

% =—-u+V QC%
which gives
u(t) = N (e7"u(0), (1 - e_2t) 0)

Call this measure p'(ug). If we let t — oo, we get the measure u> = N(0,C).
Asymptotics Strong Feller:

1t (up) is singular with respect to u> and

pt(ug) is singular with respect to uf(uf) unless ug — uf, € E.

Now we will go on to Hamiltonian mechanics.
2.3 u(du) = e ?*®dy in R”

H(u,p) = () + 5|Mpf?

du 1 dp
—=M"p, — =-VY(u
dt P ()
Since the last two equations conserve the Hamiltonian, it’s a simple calculation via the Louisville
Theorem to show that any function of the Hamiltonian will also be a conserved density for the

flow. In particular,

(6)

v(du, dp) = e 7P qudp
From here, it is fairly straightforward to show
Theorem 2.3 v(du,dp) is an invariant measure for the dynamical system @

Now we introduce velocity v = M ~!p and so @ becomes

du dv
— =0y, — =-M"'VU

at ~ U ar V(u)
The relevant conserved measure:

v(du, dv) = e~ H0w0) qudy

where

1
H(u,v) = W(u) + 5[M 0]

We can lift this up to the Hilbert space setting.




2.4 Hamiltonian on H

v(du, dv) = %e“z’(“)ug(du)uo(dv) provided M = C~1. X = C([0,T]; X).

Theorem 2.4 (Beskos, Pinskii, Sanz-Serra, Stuart) There exists a unique solution to m
the space X x X. Furthermore, this solution preserves v(du,dv).

Next notice [, 7(A,dv) = p(A). If we introduce the flow for this Hamiltonian,

for % =, % = —u — CD¢(u). If ¢ drops out, then this is just a trivial oscillator.

Now we would like an interesting Markov Chain:
u™

(n+l) _ p=
u —P~< £)

> , €~ N(0,0) iid. (7)

Corollary 2.4.1 This Markov chain {u(")}nez+ 1s p-reversible.

This is proved by finite-dimensionalization and passage to the limit.

3 MCMC

3.1 Connect to SDE

w=(1- 52)%u + B¢, £ ~ N(0,C). Notice this is a formula for the exact solution of the Ornstein-
Uhlenbeck process.

Now we will construct a Markov chain {u(")}n cz+ as follows:

Let w™ = (1 - 3%)2u™ + 8¢ and €M ~ N(0,0) i.d.d.
Set o™ = 1 min of e(¢™)—e(w™)),

(n)
Set w1 = 4 My 1 (1 — ()™ where 4 = { o othern

0 otherwise °

From the output of the Markov chain a piecewise-linear function with input ¢ and output ug is
constructed. Think of the time step as being 5%/2.

Theorem 3.1 (Pillai, Stuart, Theiry) ug converges weakly to u solving the Ornstein- Uhlenbeck
process in C([0,T]; X).

Theorem 3.2 (Haire, Stuart, Vollmer) The spectral gap for {u(")}z .

n)
Another Markov chain (using ) similar to the previous one: Let w( = Pzt ( U ) and
€ ~ N(0,C) i.d.d.

Set a(™ = 1 min of e“H(“(n)’5(n))_H(w(n)")”.




. Here’s the inverse problem

(n)
Set w1 =AMy + (1 — 4M)u() where { 0 othorm

0 otherwise
which will appear in the simulations:

d—u—u—u3+d—w
dt dt

y(t) = /0 u(s)ds + B(t)

where w, B are standard unit Brownian motions which are independent of each other. The goal is
to find P(uly).

Several simulations are presented next in the lecture which should be viewed in the video.
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