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Plan for the Lectures

In these lectures, I will try to convey the main ideas behind Bourgain’s
approach to invariant measures –after the works of Lebowitz-Rose-Speer and
of Zhidkov – and to almost sure global well-posedness for dispersive PDE.

I will not be able to go over all details or precise definitions but rather intend to give you the main flavors of

what’s involved.

In these lectures we will focus on three prototypes:
The focusing quintic nonlinear Schrödinger equation (NLS) on T.

The derivative NLS equation (DNLS) on T.

The defocusing cubic NLS on T2.
I If time permits, will discuss some further questions on Lecture 3.

Much work has been done in recent years by many people for a variety of nonlinear wave and
dispersive equations and systems and in different contexts. I will try to point to a few references.
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The NLS on Td

Td := (R/Z)d , the square d-dimensional torus of periodic functions and p > 1

(p-NLS)
{

iut + ∆u = ±|u|p−1u,
u(0, x) = φ(x) ∈ Hs, x ∈ Td ,

We are working on the square torus. Many interesting problems on irrational tori:

Λd (β) := (R/β1Z)× (R/β2Z)× · · · × (R/βdZ)

where β := (β1, β2, . . . , βd ), βj > 0, j = 1, . . . d and at least one of the ratios
βj
βj′

/∈ Q, j 6= j ′.

Irrational tori come up naturally experimentally, as well as in KAM theory and Hamiltonian chaos
(Bourgain 2007).
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Conserved quantities

Mass:

M(u(t)) :=

∫
|u(t , x)|2 dx

Hamiltonian:

H(u(t)) :=
1
2

∫
|∇u(t , x)|2 dx ± 1

p + 1

∫
|u(t , x)|p+1dx

are both constant in time.

The + case is called defocusing.
The Hamiltonian and the mass give a global in time bound for the H1

norm of u(t , x).

The − is called focusing. The energy could be negative and blow up may
occur.

Andrea R. Nahmod (UMass Amherst) Invariant measures for nonlinear PDE August 27th-28th, 2015 4 / 42



Local well posedness (deterministic)

We say that the Cauchy IVP is LWP in Hs if for any ball B in Hs there exists a
time τ > 0 and a Banach space X s ⊂ C([−τ, τ ]; Hs), s.t. for each initial data
φ ∈ B there exists a unique u ∈ X s ∩ C([−τ, τ ]; Hs) of the integral equation
(Duhamel pple.):

u(x , t) = S(t)φ(x) + cλ
∫ t

0
S(t − t ′) |u(t ′, x)|p−1u(t ′, x) dt ′.

Moreover, the map φ 7−→ u is continuous from Hs into C([−τ, τ ]; Hs). If
τ > 0 can be taken arbitrarily large, then we say that the initial value problem
is globally well posed.

Note uniqueness is on X s ∩ C([−τ, τ ]; Hs). Proving uniqueness on C([−τ, τ ]; Hs) requires
additional work and when it holds, the local well posedness is said to be unconditional.
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Small detour: scaling symmetry on Rd

φ(x) 7−→ µ−
2

(p−1)φ(
x
µ

) =: φµ(x)

u(t , x) 7−→ µ−
2

(p−1) u(
t
µ2 ,

x
µ

), µ > 0

Then if φ ∈ Ḣsc where sc := d
2 −

2
p−1 , we have

‖φµ‖Ḣsc = ‖φ‖Ḣsc

and the equation is scale invariant. sc is called the critical scaling regularity.

Relative to scaling, data in Hs is said to be

subcritical if s > sc (large data local well posedness)
critical if s = sc (hard/ small data well posedness)
supercritical if s < sc (scaling against us/ small data might lead to ‘bad’

behavior in short times)

p-NLS also enjoys time-reversibility: φ(x)→ φ(x), u(t , x)→ u(−t , x),
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To prove local well posedness for p-NLS one needs to find a suitable
Banach space X s on which to prove that the map

Φ : u 7−→ S(t)φ+ c
∫ t

0
S(t − t ′) |u(t ′, x)|p−1u(t ′, x) dt ′

is a contraction, whence its fixed point is the solution u(t , x).

Determining a good choice of X s is part of the problem... It is dictated by
being able to prove good estimates for v := S(t)φ = eit∆φ the solution to
the linear evolution, {

ivt + ∆v = 0
v(0, x) = φ(x).

on such space so that then, at least in the subcritical regime one can
show that Φ(u) - hence the solution u- satisfy similar estimates (locally in
time).
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More precisely, to prove the contraction we then need to show:

‖Φ(u)‖X s ≤ c‖φ‖Hs + τα‖u‖p
X s

‖Φ(u)− Φ(v)‖X s ≤ τα(‖u‖X s + ‖v‖X s )p−1‖u− v‖X s

Then on the ball in X s of radius -say- R ∼ 2c‖φ‖Hs we have a contraction
provided we choose τ > 0 small enough, i.e.

τ ∼
cs,p

‖φ‖Cs,p
Hs

,
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Strichartz estimates on tori
The most basic and important space-time estimates that v = S(t)φ the
solution to the linear problem satisfy are the so called Strichartz estimates:

Theorem (Bourgain-Demeter)
For N ≥ 1, let φ ∈ L2(Td ) be a smooth function such that the
supp φ̂ ⊂ [−N,N]d ⊂ Zd . Then for any ε > 0 the following estimates hold:

‖S(t)φ‖Lq
t Lq

x (Td+1) . Cq‖φ‖L2
x (Td ) if q <

2(d + 2)

d

‖S(t)φ‖Lq
t Lq

x (Td+1) � Nε‖φ‖L2
x (Td ) if q =

2(d + 2)

d

‖S(t)φ‖Lq
t Lq

x (Td+1) . CqN
d
2−

d+2
q ‖φ‖L2

x (Td ) if q >
2(d + 2)

d

In the periodic setting, proving these was highly nontrivial and required new ideas than those
used on Rd . They were introduced by Bourgain for the rational torus as a conjecture.

Bourgain proved some and then recently Bourgain-Demeter (14’) obtained
the full range for rational and irrational tori as well (see also Killip-Visan).
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d = 1, q < 6; we have for ex. ‖S(t)φ‖L4
xt (T×T) . C‖φ‖L2

x (T)

d = 1, q = 6 gives ‖S(t)φ‖L6
xt (T×T) � Nε‖φ‖L2

x (T)

d = 2, q = 4 gives ‖S(t)φ‖L4
xt (T2×T) � Nε‖φ‖L2

x (T2)

Bourgain showed that dispersion is indeed weaker in the periodic setting.
He proved that in 1D, the L6 estimate with constant independent of N is
false ( (log N)1/6 growth ).

These ε-loss will prevent us to close the estimates in L2(Td ) for the
quintic NLS in 1D and the cubic in 2D. Need s > 0.
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Well-posedness for p-NLS on T and T2 (Bourgain 93’)

Theorem (d = 1,p = 3)
The cubic NLS on T (either focusing or defocusing) is GWP in L2(T). Also in
Hs(T), s ≥ 0 (preservation of regularity).

Theorem (d = 1,p = 5)
The quintic NLS on T (either focusing or defocusing) is LWP in Hs(T), s > 0
(time of existence depends on ‖φ‖−C

Hs ).

Theorem (d = 2,p = 3)
The defocusing cubic NLS on T2 is LWP in Hs(T2), s > 0.

In the last two theorems and for the defocusing case one gets GWP for s ≥ 1.
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Invariant Measures and almost sure GWP.
J. Bourgain’s (90’s) studied dynamics of periodic dispersive equations (NLS,
KdV, mKdV, Zakharov system) through

the introduction and use of the Gibbs measure derived from the PDE
viewed as an infinite dimensional Hamiltonian system.

Global in time existence was studied in the almost sure sense in rather low
regularity regimes via the existence and invariance of the associated Gibbs
measure (cf. Lebowitz, Rose and Speer’s and Zhidkov’s works).

Let µ be a probability measure on the space of initial data Hs.

Informal Definition- Almost sure global well-posedness
There exists Σ ⊂ Hs, with µ(Σ) = 1 and such that for any u0 ∈ Σ the IVP with
data u0 is globally wellposed.

In other words, well posedness in the support of the measure, supp µ ⊂ Hs

and hence almost surely in Hs.
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Why invariant Gibbs measures are effective in gwp?

I The invariance of the Gibbs measure, just like the usual conserved
quantities, can be used to control the growth in time of those solutions in
its support and extend the local in time solutions to global ones almost
surely.

I In some cases, failure to show global existence might come from certain
‘exceptional’ initial data set, and the virtue of the Gibbs measure lies in that it
would not see ‘exceptional sets’ of initial data (capturing ‘generic behaviour’.)

I Invariant measures for infinite dimensional Hamiltonian system are also
important in their own right. Given an invariant measure, we can view the
system on phase space as a dynamical system with a measure preserving
transformation Φ=solution map u0(·) −→ u(1, ·) for which the Poincaré
recurrence theorem follows. A very interesting but quite hard question is
whether one can prove the ergodicity of the (nonlinear) system?
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What are the limitations of this approach to gwp ?

I The difficulty lies in the actual construction of the associated Gibbs or
weighted Wiener measures and in showing both, its invariance under the
flow and the almost sure global well-posedness.

I Measures are easier to construct on bounded domains (Td , the ball,
compact Riemannian manifolds, etc.)

F For existence of invariant measures on R see Bourgain 00’ (NLS);
McKean-Vaninsky 95’ (NLW). Also Burq-Thomann-Tzvetkov 10’ and Y. Deng
(11’) (NLS with potential 1D and 2D radial resp.), S. Xu 14’ (3D radial NLW).

I Not available in higher dimensions (no symmetry assumptions on
manifold).
The standard construction is not normalizable and the support would
live in very rough spaces (estimates are not available).

I If the PDE is not Hamiltonian? Not clear....
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After Bourgain’s work in 94-96’, the approach to a.s GWP via invariant
measures was re-taken again in 07-08’ (Tzvetkov, Burq-Tzvetkov, T. Oh). Lots
of activity:

Schrödinger Equations: Bourgain, Tzvetkov, Thomann,
Thomann-Tzvetkov, A.N.-Oh-Rey-Bellet-Staffilani, A.N.-Rey-Bellet-
Sheffield-Staffilani, Burq-Thomann-Tzevtkov, Y. Deng, Burq-Lebeau,
Bourgain-Bulut,

NLW and NLKG Equations: Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut,
S. Xu

gKdV Equations: Bourgain, Oh-Quastel-Valko, T. Oh, Richards ( cf. also
Quastel-Valko, Cambronero-McKean)

Benjamin-Ono Equations: Y. Deng, Tzvetkov-Visciglia. and Y.
Deng-Tzvetkov-Visciglia.

Others . . .
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The 5-NLS on T: invariant Gibbs measure and a.s gwp

(NLS)
{

iut + ∆u = ±|u|4u,
u(0, x) = φ(x) ∈ Hs, x ∈ T,

We will be particularly interested in the focusing case when the construction
of the measure as a weighted Wiener measure is more delicate ( [LRS, B]).

Before getting down to the details we review some basic facts.
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Gaussian measures in Hilbert spaces
Let H, real separable Hilbert space

B : H → H, linear, positive, self-adjoint operator

{en}∞n=1, eigenvectors of B forming an O.N. basis of H

{λn}∞n=1, corresponding eigenvalues

Define

ρN(M) = (2π)−
N
2

( N∏
n=1

λ
− 1

2
n

)∫
F

e−
1
2
∑N

n=1 λ
−1
n x2

n

N∏
n=1

dxn

where M is a cylindrical set in H: i.e. there exists N and a Borel set F in RN

s.t.

{
M = {x ∈ H : (x1, · · · , xN) ∈ F},
xn := 〈x ,en〉H = n-th coordinate of x .

i.e. ρN is a Gaussian measure on EN = span{e1, · · · ,eN}.

Note A := {M : M ⊂ H is cylindrical } then A is a field.
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Define ρ on H by ρ
∣∣
EN

= ρN .

Facts
(1) ρ is countably additive on A if and only if B is of trace class, i.e.∑

λn <∞.

(2) ρN ⇀ ρ as N →∞.

Also if (1) holds, the minimal σ-fieldM containing A is the Borel σ-field on H.

Remark
We will see that in fact in many instances in PDE we need to realize this measure as a measure
supported on a suitable Banach space. This needs some extra work but it is possible by relying
on L. Gross 65’ and H. Kuo 75’ theory of abstract Wiener spaces. More later!
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A concrete example on Hs(Td)

Consider

dρN = Z−1
N exp

(
− 1

2

∑
|n|≤N

(1 + |n|2)|φ̂n|2
) ∏
|n|≤N

dandbn

where φ̂n = an + ibn.
We may view ρN as an induced probability measure on C2N+1 ≡ R4N+2 under
the map

ω 7−→
{

gn(ω)√
1 + |n|2

}
|n|≤N

.

where {gn(ω)}|n|≤N are i.i.d complex Gaussian random variables (centered)
on a probability space (Ω,F ,P).

Question: As N →∞ where does ρ, the (weak) limit of ρN make sense as
a countably additive probability measure?
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Consider the operator Bs := (1−∆)s−1 on Td then∑
n∈Zd

(1 + |n|2)|φ̂n|2 = 〈φ, φ〉H1 = 〈B−1
s φ, φ〉Hs .

The operator Bs : Hs → Hs has eigenvalues {(1 + |n|2)(s−1)}n∈Zd .

Their eigenvectors {(1 + |n|2)−s/2ein·x}n∈Zd form an o.n basis of Hs(Td ).

For ρ to be countably additive we need Bs to be of trace class which is
true if and only if

s < 1− d
2

.

In 1D, ρ is a countably additive measure on Hs(T) for any s < 1/2, but
not for s ≥ 1/2.

In 2D, ρ is a countably additive measure on Hs(T2) for any s < 0, but
not for s ≥ 0.

. . . . . .
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We also view ρ as the induced probability measure under the map

ω 7→

{
gn(ω)√
1 + |n|2

}
n∈Zd

.

ρ yields for φ the distribution of a random (Fourier) series

φ = φω =
∑
n∈Zd

gn√
1 + |n|2

ein·x .

which defines almost surely a function (if d = 1) or a distribution (when
d ≥ 2) in Hs(Td ), s < 1− d

2 . (φ̂n = gn√
1+|n|2

on the support of ρ. )

Lemma [Fernique-type tail estimate]
There exists C > 0, s.t. for all K suff. large, and s < 1− d

2 we have

ρ
(
{‖φ‖Hs > K}) < e−cK 2

.
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The Gibbs measure: finite dimension

Hamilton’s equations of motion have the antisymmetric form

(HE) q̇i =
∂H(p,q)

∂pi
, ṗi = −∂H(p,q)

∂qi

the Hamiltonian H(p,q) being a first integral:

dH
dt

:=
∑

i

∂H
∂qi

q̇i +
∂H
∂pi

ṗi =
∑

i

∂H
∂qi

∂H
∂pi

+
∂H
∂pi

(−∂H
∂qi

) = 0

And by defining y := (q1, . . . ,qk ,p1, . . . ,pk )T ∈ R2k (2k = d) we can rewrite

dy
dt

= J∇H(y), J =

[
0 I
−I 0

]
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Liouville’s Theorem: Let a vector field f : Rd → Rd be divergence free then
the flow map Φt of a system is a volume preserving map (for all t).
The flow map satisfies:

d
dt

Φt (y) = f (Φt (y)).

In particular if f is associated to a Hamiltonian system then automatically
div f = 0. Indeed

div f =
∂

∂q1

∂H
∂p1

+
∂

∂q2

∂H
∂p2

+. . .
∂

∂qk

∂H
∂pk
− ∂

∂p1

∂H
∂q1
− ∂

∂p2

∂H
∂q2
−. . . ∂

∂pk

∂H
∂qk

= 0

by equality of mixed partial derivatives.
The Lebesgue measure on R2k is invariant under the Hamiltonian flow (HE).
Consequently from conservation of Hamiltonian H the Gibbs measures,

dµ := e−βH(p,q)
d∏

i=1

dpi dqi

with β > 0 are invariant under the flow of (HE); ie. for A ⊂ Rd ,

µ(Φt (p0,q0) ∈ A) = µ((p0,q0) ∈ A)
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Infinite Dimension Hamiltonian PDEs
Consider the focusing p-NLS on T for p ≤ 5

iut + uxx + |u|p−1u = 0

with Hamiltonian

H(u) :=
1
2

∫
|ux |2 −

1
p + 1

∫
|u|p+1 =

1
2

∫
|ux |2 −N (u).

• Think of u(t) as the infinite dimension vector given by its Fourier coefficients
(an(t) + ibn(t))n∈Z. The equation above becomes an infinite dimension
Hamiltonian system for the vector (an(t),bn(t))n∈Z.

• Lebowitz, Rose and Speer (1988) considered the Gibbs measure formally
given by

‘dµ = Z−1 exp (−βH(u))
∏
x∈T

du(x)′

and showed that µ is a well-defined probability measure on Hs(T), s < 1
2

but not for s = 1
2 .

Andrea R. Nahmod (UMass Amherst) Invariant measures for nonlinear PDE August 27th-28th, 2015 24 / 42



The definition of µ above - although suggestive – is a purely formal
expression:

I It is impossible to define the Lebesgue measure as a countably additive
measure on an infinite-dimensional space.

I Moreover as it’ll turn out,
∫
|ux |2 =∞, µ-almost surely.

I In fact all three factors are infinite.

The result only holds with an L2-cutoff χ‖u‖L2≤B ( needed to normalize the
measure) where:

I If p < 5 any B > 0 works.

I If p = 5 need suff. small B > 0.

Recall the L2 norm is conserved.
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Invariance of µ

Bourgain (96’) showed the almost sure global well-posedness and the
invariance of the Gibbs measure µ

If Φ(t) denotes the flow map associated to our nonlinear Hamiltonian
PDE. Suppose Φ(t) is defined for all t ∈ R, µ almost surely.

We say µ is invariant if for all f ∈ L1(H, µ) and all t ∈ R,∫
f (Φ(t)(φ))µ(dφ) =

∫
f (φ)µ(dφ).

In short,

µ(Φ(−t)(A)) = µ(A) for all t

and all measurable sets A in H.
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How is µ defined? Idea.

One uses a Gaussian measure as reference measure.

Then the weighted measure µ is constructed in two steps:

First one constructs a Gaussian measure ρ as the limit of the
finite-dimensional measures on R4N+2 given by

dρN = Z−1
N exp

(
− β

2

∑
|n|≤N

(1 + |n|2)|ûn|2
) ∏
|n|≤N

dandbn

where ûn = an + ibn.
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Once ρ has been constructed one constructs µ as a measure which is
absolutely continuous with respect to ρ and whose Radon-Nikodym
derivative is

dµ
dρ

= R(v) := Z̃−1χ{‖v‖2
L≤B}e

β
2N (v)

where N (v) is the potential energy.

For this measure to be normalizable one needs the L2 cutoff.

For different constants β > 0, the measures will all be invariant and are all
mutually singular.

1
β = temperature in statistical physics.

We fix β = 1 (no role).
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The details for focusing 5-NLS on T
Let us denote by H = Hs(T), s < 1

2 fixed.

Let PN be the Fourier/Dirichlet projection onto the spatial frequencies ≤ N.

Consider the finite dimensional approximation to NLS: :

(FDA)

{
iuN

t + ∆uN + PN
(
|uN |4uN

)
= 0

uN(0, x) = φN(x) := PNφ(x) =
∑
|n|≤N φ̂(n)einx , x ∈ T.

Then, for by the deterministic local theory we have that for initial data
‖φ‖H ≤ K , the (FDA) is LWP on [−τ, τ ] with τ ∼ K−C , independent of N.

Crucial Fact:
FDA is still a Hamiltonian system: iuN

t = dH(uN )

duN
with Hamiltonian

H(uN)(t) =
1
2

∫
|uN

x |2dx − 1
6

∫
|uN |6dx

which is still conserved under the FDA flow.
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By Liouville’s theorem the Lebesgue measure∏
|n|≤N

dandbn,

where ûN(n) = an + ibn, is invariant under the flow of (FDA).
Then, using the conservation of H(uN)- we have that the finite
dimensional version of µ:

dµN = Z̃−1
N e−H(uN )

∏
|n|≤N

dandbn

is an invariant measure under the flow of (FDA)
One still needs to prove that µN converges weakly to µ and that µ is an
invariant measure on H.

However it is the invariance of µN what allow us to extend local in time
solutions to global ones.
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Extending uN globally in time

Main Proposition [Growth of solutions to FDA] Bourgain ’94
Given T <∞, ε > 0, there exists ΩN ⊂ H s.t.

µN((ΩN)c) < ε

for φN ∈ ΩN , (FDA) is well-posed on [−T ,T ] with the growth estimate:

‖uN(t)‖H .
(

log
T
ε

) 1
2
, for |t | ≤ T .

In other words, we have that provided the data is in ΩN the solutions to the
FDA extend globally in time.
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Proof.
Let ΦN(t) = flow map of (FDA), and define the ‘good set’ of data:

ΩN = ∩[T/τ ]
j=−[T/τ ]ΦN(jτ)({‖φN‖H ≤ K}).

By invariance of µN ,

µ(Ωc
N) =

∑[T/τ ]
j=−[T/τ ] µNΦN(jτ)({‖φN‖H > K}) = 2[T/τ ]µN({‖φN‖H > K})

=⇒ µ(Ωc
N) .

T
τ
µN({‖φN‖H > K}) ∼ TK Ce−cK 2

(Fernique-tail).

=⇒ By choosing K ∼
(

log T
ε

) 1
2 , we have µ(Ωc

N) < ε.

By its construction, ‖uN(jτ)‖H ≤ K for j = 0, · · · ,±[T/τ ].
=⇒ By local theory,

‖uN(t)‖H ≤ 2K ∼
(

log
T
ε

) 1
2

for |t | ≤ T .
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Extending u globally in time

Recall H = Hs(T), s < 1
2 fixed.

Lemma (Approximation Lemma)
Let uN be the solution to FDA with initial data φN = PN(φ), φ ∈ H. Assume the
a priori bound

‖uN(t)‖H ≤ A, for all t ∈ [0,T ].

Then the solution u to the NLS initial value problem with data φ satisfies for
any s1 < s,

‖u(t)− uN(t)‖Hs1 (T) < eCs,A T Ns1−s,

which tends to 0 as N →∞.

We use uN to walk u to its side pass the local time τ and up to time T .
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The proof is it is not hard but not entirely trivial because we cannot compare u
and uN directly on [0,T ]: after the first step on [0, τ ], u and uN may in principle
start becoming apart: we have no a priori bound on u on [0,T ] –which is the
whole point.

One considers as a stepping stone the solution u′ to:

(SS)

{
iu′t + ∆u′ + |u′|4u′ = 0
u′(0, x) = φN(x) := PNφ(x) =

∑
|n|≤N φ̂(n)einx , x ∈ T.

and compare u to u′ and u′ to uN -which have same truncated initial data– in
an iterative argument on each [jτ, (j + 1)τ ], j = 0, . . . [ T

τ ] and piecing them
together to obtain the desired bound.

Here τ is the local existence time for NLS with data bounded in Hs1 by A + 1;
ie.

τ ∼ Cs1

(1 + ‖φ‖Hs1 )cs1
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1

‖u(0)− u′(0)‖s1 < Ns1−sA

2 Assume that for t ≤ t0 we obtained

‖u(t)− uN(t)‖s1 < δ < 1

then

‖u(t0)‖s1 ≤ ‖uN(t0)‖s1 + δ < A + 1

by our a priori bound hypothesis.
3 From the local theory, the IVP for the NLS equation with data u(t0) at

t = t0 and for the SS equation with data u′(t0) = uN(t0) are well posed on
[t0, t0 + τ ]. Moreover, for t ≤ t0 + τ ,

‖u(t)− u′(t)‖s1 ≤ 2‖u(t0)− u′(t0)‖s1 < 2δ

by (2) above.
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Next, we want to compare u′(t) and uN(t) on [t0, t0 + τ ]. Since they have the
same initial data,

u′(t)− uN(t) = c
∫ t

0
S(t − t ′)Γ(t ′) dt ′

where

Γ(t ′) = |u′|4u′ − PN
(
|uN |4uN)

=
[
|u′|4u′ − PN

(
|u′|4u′

)]
+
[
PN
(
|u′|4u′

)
− PN

(
|uN |4uN

)]
Do a fix point argument on X s1 as in the local theory but now thanks to the
choice of τ , the a priori bound and the steps above we obtain:

‖u′(t)− uN(t)‖s1 < CANs1−s t ∈ [t0, t0 + τ ]

whence combining with (2) above gives that

‖u(t)− uN(t)‖s1 < 2δ + CANs1−s.
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At this point by the choice of τ we can iterate the argument on each time
subinterval

[jτ, (j + 1)τ ], j = 0, . . . [
T
τ

]

to obtain a recursive estimate

‖u(jτ)− uN(jτ)‖s1 < δj + CANs1−s,

δj < C j+1A Ns1−s

which yields the conclusion provided N is large enough so that C j+1Ns1−s < 1.
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So far: we have µN invariant =⇒ uN , u extends globally for ”good” data and
that uN converging uniformly to u.

We turn then to µ, which we want to realize as a weighted Gaussian measure

” dµ = Z̃−1 χ‖φ‖L2≤B e
∫
|φ|6 dx dρ ”

and the weak limit of the finite dimensional µN .

Recall ρ yields for φ the distribution of a random (Fourier) series

(1.1) φ = φω =
∑
n∈Zd

gn(ω)√
1 + |n|2

ein·x .

which defines a.s. a function in Hs(T) for s < 1
2 .

(φ̂n = gn√
1+|n|2

on the support of ρ. )

The existence a.s. of
∫
|φω|6dx follows from the fact that

φω ∈ Hs(T), s < 1
2 a.s.
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Proposition (Lebowitz-Rose-Speer)
The weight

χ‖φ‖L2≤B e
∫
|φ|6 dx ∈ Lr (dρ)

for all 1 < r <∞ provided B = B(r) is sufficiently small.

Idea of Bourgain’s proof: For any λ > 0 fixed prove that

Pω
[
‖
∑ gn(ω)

〈n〉
einx‖L6 > λ,

(∑
|gn(ω)

〈n〉
|2
)1/2 ≤ B

]
. e−cλ2(λB )4

by a suitable Littlewood-Paley decomposition and a large deviation estimate
on each dyadic block. Then,

‖χ‖φ‖L2≤B e
∫
|φ|6 dx‖Lr (dρ)

≤
∫
‖φ‖L6≤λ

er
∫
|φ|6dxχ‖φ‖L2≤B dρ +

+
∞∑
j=1

∫
2jλ≤‖φ‖L6≤2j+1λ

er
∫
|φ|6dxχ‖φ‖L2≤B dρ
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The latter is less than or equal to

erλ6
+
∞∑
j=1

e(r2j+1λ)6
ρ
(
‖φ‖L6 ≥ 2jλ, ‖φ‖L2 ≤ B

)
which by Bourgain estimate above, is finite provided B is sufficiently small.

Something smaller than ( C
64r )1/4 would do.

We then have:

Theorem (Existence of Gibbs measure)
We now have that for small B, the measure µ is a probability measure which
is absolute continuous with respect to the Gaussian measure ρ and µN
converges weakly to µ.

If EN := span{einx : |n| ≤ N}, and U is an open in Hs(T), s < 1/2, one has:

ρ(U) = lim
N→∞

µN(U ∩ EN), µ(U) = lim
N→∞

µN(U ∩ EN).
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Almost sure GWP for NLS

Combining the results above we obtain:

Theorem
For any given T > 0 and ε > 0 there exists a set Ω(ε,T ) such that
(a) µ (Ω(ε,T )) ≥ 1− ε .
(b) For any initial condition φ ∈ Ω(ε,T ) the IVP for NLS is well-posed on
[−T ,T ] with the bound

sup
|t|≤T

‖u(t)‖
H

1
2−(T)

.

(
log

T
ε

) 1
2

.

Now, a standard argument, by which for fixed T > 0 we first take ε = 2−i , and
let ΩT := ∪i Ω(2−i ,T ), µ(ΩT ) ≥ 1− 2−i and then let T = 2j and Ω = ∩j Ω2j

gives:
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Theorem [Almost sure global well-posedness of NLS]

There exists a subset Ω of H
1
2−(T) with µ(Ωc) = 0 such that for every φ ∈ Ω,

the IVP for NLS with initial data φ is globally well-posed.

From here, now that we have a well defined global NLS flow on the support of
the Gibbs measure µ, its invariance follows from standard argument (Zhidkov,
Bourgain).

Theorem 2 [Invariance of µ]
The measure µ is invariant under the flow Φ(t) of (GDNLS)
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