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The problem

Let
∂u

∂t
= X (u)

be an infinite dimensional Hamiltonian system posed on
spaces of functions on a Riemannian manifold (say the torus).

Assume the dynamics to be globally well defined on the
Sobolev space H s for s big enough (e.g. defocusing subcritical
NLS, wave equation...)



The problem

Let
∂u

∂t
= X (u)

be an infinite dimensional Hamiltonian system posed on
spaces of functions on a Riemannian manifold (say the torus).

Assume the dynamics to be globally well defined on the
Sobolev space H s for s big enough (e.g. defocusing subcritical
NLS, wave equation...)

Problem : describe long time dynamics.



The problem

Let
∂u

∂t
= X (u)

be an infinite dimensional Hamiltonian system posed on
spaces of functions on a Riemannian manifold (say the torus).

Assume the dynamics to be globally well defined on the
Sobolev space H s for s big enough (e.g. defocusing subcritical
NLS, wave equation...)

In particular : do small characteristic scales appear as t →∞ ?



Turbulent solutions

Definition

A solution u ∈ C (R,H s) of

∂u

∂t
= X (u)

is said to be turbulent if, for some s,

lim sup
t→∞

‖u(t, .)‖Hs = +∞ .



A trivial example

Consider

H(u) :=
1

4

∫
T
|u(x)|4 dx ,

so that the Hamiltonian system reads

i u̇ = |u|2u , u(0, x) = u0(x) .

Explicit solution

u(t, x) = u0(x) e−it|u0(x)|2 .

If |u0|2 is not a constant function,

‖u(t)‖Hs ' |t|s , |t| → ∞ .
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A muchless trivial example

Cubic NLS , d = 1, H(u) =
∫
T

(
1
2
|∂xu(x)|2 + 1

4
|u(x)|4

)
dx ,

i
∂u

∂t
= −∂

2u

∂x2
+ |u|2u

Zakharov-Shabat (1974) : this equation admits a Lax pair.

∀p ∈ N,∃Fp = Fp(u, u, . . . , u(p−1), u(p−1)) polynomial s. t.∫
T

[
|u(p)(x)|2 + Fp(u(x), u(x), . . . , u(p−1)(x), u(p−1)(x))

]
dx

is a conservation law. No turbulent solution !
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A family of 1D models

Majda–Mc Laughlin–Tabak (1997, 2001) introduced the
following family of Hamiltonian evolutions on T,

H(u) =

∫
T

(
1

2
|D|αu(x)u(x) +

1

4
||D|−βu(x)|4

)
dx , D := −i∂x ,

i
∂u

∂t
= |D|αu + |D|−β

(
||D|−βu|2|D|−βu

)
for assessing the validity of weak turbulence theory for

random waves (α < 1).
Here we shall focus on the limit case α = 1 , β = 0.
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The cubic half–wave equation

The cubic half-wave equation,

i
∂u

∂t
= |D|u + |u|2u

can be written as

−∂2
t u + ∂2

xu = 2|u|2|D|u − u2|D|u + |D|(|u|2u) + |u|4u

or as a system of coupled transport equations,{
i(∂tu+ + ∂xu+) = Π+[|u+ + u−|2(u+ + u−)] , Π+ := 1D≥0 ,

i(∂tu− − ∂xu−) = Π−[|u+ + u−|2(u+ + u−)] , Π− := 1D<0 .
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The resonance analysis

System in Fourier coefficients

i u̇k = |k |uk +
∑

k1−k2+k3=k

uk1uk2uk3 , k ∈ Z ,

Introduce vk(t) := eit|k|uk(t)

i v̇k =
∑

k1−k2+k3=k

e−it(|k1|−|k2|+|k3|−|k|)vk1v k2vk3 , k ∈ Z ,

Main trend : only keep resonant quartets :

k1 − k2 + k3 − k4 = 0 , |k1| − |k2|+ |k3| − |k4| = 0
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The degeneracy of resonant quartets

(k1, k2, k3, k4) is a resonant quartet if and only if

either {k1, k3} = {k2, k4}
or k1, k2, k3, k4 have the same sign

Resonant system is decoupled :{
i(∂tu+ + ∂xu+) = Π+(|u+|2u+) , Π+ := 1D≥0 ,

i(∂tu− − ∂xu−) = Π−(|u−|2u−) , Π− := 1D<0 .
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The cubic Szegő equation

Consider Π := Π+ = 1D≥0,

Π

(∑
k∈Z

cke
ikx

)
:=
∑
k≥0

cke
ikx .

We are led to studying the long time dynamics of

i
∂u

∂t
= Π

(
|u|2u

)
.

Phase space : range of Π intersected with H1/2(T)
= { holomorphic functions u = u(z) on the unit disc D :∫

D
|u′(z)|2 dL(z) < +∞}
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The main theorem

Theorem (PG, S.Grellier, 2010-2015)

For every u0 ∈ Π (C∞(T,C)),

∀t ∈ R , ‖u(t)‖L∞(T) ≤ C (u0) , ∀s , ‖u(t)‖Hs ≤ Cs(u0)eCs(u0)|t| .

∃ dense Gδ subset of initial data in Π (C∞(T,C)) such that
the corresponding solution u satisfies

∀s , lim inf
t→∞

‖u(t)‖Hs < +∞ .

∀s >
1

2
, ∀M ≥ 1 , lim sup

t→∞

‖u(t)‖Hs

|t|M
= +∞ .
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The Lax pair structure

Consider the Hilbert–Schmidt Hankel operator

Hu : h ∈ Π(L2) 7→ Π(uh)

If u = u(t) solves i u̇ = Π(|u|2u), then

d

dt
Hu = [Bu,Hu]

Bu(h) := −iΠ(|u|2h) +
i

2
H2

u (h) .

The eigenvalues of the trace class operators H2
u and

K 2
u := H2

u − (.|u)u are conservation laws.
(provides the L∞ estimate ).
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Special quasiperiodic solutions

Theorem (PG, S.Grellier, 2015)

As d ≥ 1, s1 > s2 > · · · > sd > 0, (ψ1, ψ2, . . . , ψd) ∈ Td , the
following defines a dense set of solutions in Π(C∞),

u(t, z) :=

〈
C (t, z)−1

1
.
1

 ,

1
.
1

〉
CN×CN

,

C (t, z)jk :=
s2j−1e

i(ψ2j−1+ts2
2j−1) − s2ke

i(ψ2k+ts2
2k )z

s2
2j−1 − s2

2k

,

with N :=
[
d+1

2

]
, s2N := 0 if d = 2N − 1.
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1
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−1
1−ε

)−1(
1
1

)
,

(
1
1
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2z(1− ε2)− 3ε

2− εz

〈(
1+ε−z

(1+ε)2−1
1
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1
1−ε
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1
1

)
,

(
1
1

)〉
C2×C2

=
2 + ε2 − 2z(1− ε2)

2− (2− ε2)z

1 → 2 within time interval of length

t =
π

(1 + ε)2 − (1− ε)2
=

π

4ε

Instability H s , s > 1
2
. Hani (2013) for resonant NLS on T2.
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Exporting turbulent solutions to other equations

From Szegő to the half–wave equation.
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From Szegő on the line to the focusing half–wave on the
line.
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From Szegő to a Schrödinger/half–wave equation on
T× R.
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From Szegő to the half–wave

Theorem (S. Grellier-PG, 2012 ; O. Pocovnicu, 2013)

Let s > 1. For every α > 0, there exists cα,s > 0 such that, if

Πu0 = u0 = O(ε) in H s ,

the solutions of

i∂tu = |D|u + |u|2u , i(∂tv + ∂xv) = Π(|v |2v) ,

u(0) = v(0) = u0

satisfy ∀t ≤ cα,sε
−2| log ε| , u(t) = v(t) + O(ε3−α) in H s .



Consequence : norm inflation

Combining this approximation result with the existence of
turbulent solutions and a scaling argument (O.Pocovnicu),

Corollary

For every δ > 0, for every K > 0 there exists a solution u to
the half–wave equation and T > 0 such that

‖u(0)‖H1 ≤ δ , ‖u(T )‖H1 ≥ K .

Similar to Colliander–Keel–Staffilani–Takaoka–Tao (2010) for
cubic NLS on T2.
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Schrödinger/half–wave on the cylinder

Following Hani–Pausader–Tzvetkov–Visciglia (2013), consider
the equation

i∂tu = −∂2
yu + |Dx |u + |u|2u , (x , y) ∈ T× R .

Idea : the dispersion in the variable y helps in discarding the
non resonant terms in the variable x .
For s ≥ 20, introduce the following norms,

‖u‖S := ‖u‖Hs + ‖y u‖L2

‖u‖S+ := ‖u‖S + ‖(1− ∂2
y )4u‖S + ‖y u‖S
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A modified scattering result

Theorem (Haiyan Xu, 2015)

Assume that v0(x + π, y) = −v0(x , y) and ‖v0‖S+ ≤ ε small
enough. Consider the solution v = v(t, x , y) of the system

i∂t v̂+(t, x , η) = Π+(|v̂+|2v+) , v̂+(0, x , η) = Π+(v̂0(., η))(x).

i∂t v̂−(t, x , η) = Π−(|v̂−|2v−) , v̂−(0, x , η) = Π−(v̂0(., η))(x).

Then there exists a unique solution u of the
Schrödinger/half–wave equation such that

‖eit(|Dx |−∂2
y )u(t)− v(π log t)‖S −→

t→+∞
0 .



Turbulent solutions of the Schrödinger/half-wave

equation

Corollary (H. Xu, 2015)

For every s, there exist solutions of

i∂tu = −∂2
yu + |Dx |u + |u|2u , (x , y) ∈ T× R .

such that

∀δ > 0 , ∀N ≥ 1 , lim sup
t→+∞

‖u(t)‖
L2
yH

1
2 +δ
x

(log t)N
= +∞

lim inf
t→+∞

‖u(t)‖Hs < +∞.
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The cubic Szegő equation on the line

Denote again by Π the operator 1D≥0 on L2(R). The equation

i∂tu = Π(|u|2u)

admits a Lax pair too (O. Pocovnicu, 2011).

Furthermore, it
admits explicit turbulent solutions with

∀s >
1

2
, |u(t)‖Hs ' t2s−1 , t →∞ .
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Soliton interaction for Szegő on the line

Theorem (O. Pocovnicu, 2011)

The fonction

Q(x) :=
1

x + i
2

.

is, up to symmetries, the only non trivial solution of

−i∂xQ + Q = Π(|Q|2Q) .

Furthermore, there exists solutions of the form

u(t, x) = α1(t)Q

(
x − x1(t)

κ1(t)

)
+ α2(t)Q

(
x − x2(t)

κ2(t)

)
such that κ1(t)→ λ > 0 , κ2(t) ' t−2 , t → +∞.



Solitons for the focusing half–wave on the line

Krieger–Lenzmann–Raphaël (2013) found solitons for

i∂tu − |D|u + |u|2u = 0

by minimizing, for every velocity β ∈ (−1, 1),

Jβ(u) :=
‖u‖2

L2((|D| − βD)u, u)L2

‖u‖4
L4

Minimizers Qβ satisfy, after rescaling,

|D| − βD

1− β
Qβ + Qβ = |Qβ|2Qβ

so that the focusing half–wave equation is satisfied by

uβ(t, x) = eitQβ

(
x − βt

1− β

)



The photonic limit of Qβ

Main observation : for β∗ < 1 close enough to 1, there exists a
smooth mapping β ∈ (β∗, 1) 7−→ Qβ ∈ H∞(R) such that

Qβ −→
β→1

Q

in H s for every s.
Notice that

‖uβ‖L2 '
√

1− β .



Soliton interaction for the focusing half–wave

Theorem (PG, E. Lenzmann, O. Pocovnicu, P. Raphaël, 2015)

For every δ > 0,K > 0, there exists T > 0 and a solution u of

i∂tu − |D|u + |u|2u = 0

such that ‖u(0)‖H1 ≤ δ , ∀t ≥ T , ‖u(t)‖H1 ≥ K .

Ansatz (Buslaev–Perelman, Merle, Martel, Raphaël, Krieger,
Schlag, Tataru, . . . )

u(t, x) =
2∑

j=1

e iγj (t)

λ
1
2
j (t)

Qβj (t)

(
x − xj(t)

λj(t)(1− βj(t))

)
+ ε(t, x)
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Perspectives

Turbulent solutions of the half–wave equation ?
Genericity ?

Random data for the cubic Szegő equation ? For the
half–wave equation ?
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