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The problem

Let
ou

3t = X(uv)

be an infinite dimensional Hamiltonian system posed on
spaces of functions on a Riemannian manifold (say the torus).

Assume the dynamics to be globally well defined on the
Sobolev space H* for s big enough (e.g. defocusing subcritical
NLS, wave equation...)

In particular : do small characteristic scales appear as t — oo ?



Turbulent solutions

A solution v € C(R, H®) of

ou
i X(u)

is said to be turbulent if, for some s,

limsup ||u(t,.)]

t—00

Hs — +00 .
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A trivial example

Consider L
HEu) = [ a0l o
4 Jr
so that the Hamiltonian system reads
it =|ulu, u(0,x) = up(x) .
Explicit solution
u(t, x) = ug(x) e WP

If |up|? is not a constant function,

lu(t)lpe = 1¢[*, [t] = o0
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A muchless trivial example

Cubic NLS, d =1, H(u) = [ (5]0xu(x)] + F|u(x)|*) dx,
-@7_@_’_| |2
o 5 Tl

Zakharov-Shabat (1974) : this equation admits a Lax pair.
Vp € N,IF, = Fp(u,d, ..., uP=Y ulP-1)) polynomial s. t.

/T WO + Fyu). 5(x). ... uP ™ (x), w0 (x))| di

is a conservation law. No turbulent solution !
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A family of 1D models

Majda—Mc Laughlin—-Tabak (1997, 2001) introduced the
following family of Hamiltonian evolutions on T,

(@) = [ (FID1°u)ata + FIDIu(l) o, D = i

Ou - _ .

=2 = |DI*u+ D" (|D]""ul|D|""u)
for assessing the validity of weak turbulence theory for
random waves (a < 1).

Here we shall focus on the limit case « =1, § = 0.
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The cubic half-wave equation

The cubic half-wave equation,

can be written as

—8t2u + 8§u = 2\u\2|D|u — ule\u + \D|(|u|2u) + |u)*u

or as a system of coupled transport equations,

i(Oeuy + Ocuy) = My fluy + u-(uy +u-)], Ny = 1pxo ,
i(Opu_ —Ou)=N_[luy +u_*(us +u)], N_:=1p .
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The resonance analysis

System in Fourier coefficients

I'l'Jki‘k|Uk+ E U, Uy Ujs keZ,
ki—ko+ks=k

Introduce v, (t) := ey (t)

v, = E e*'t(|k1\*\k2|+\k3\*|k\)Vklvk2vk3 . keZ,
ki—ko+ks=k

Main trend : only keep resonant quartets :

kl—k2+k3—k4:0, ’kly—‘k2’+’k3|—’k4’:0



The degeneracy of resonant quartets

(ki, ko, ks, k) is a resonant quartet if and only if
@ either {/(17 k3} — {kg, k4}

@ or ki, ko, k3, ks have the same sign



The degeneracy of resonant quartets

(ki, ko, ks, k) is a resonant quartet if and only if
@ either {/(17 k3} — {kg, k4}

@ or ki, ko, k3, ks have the same sign

Resonant system is decoupled :

i(Oeuy + Oxuy) = My (lupPus) , My = 1pso
i(Ou_ —Ou)=T_(Ju_|Pu), N_:=1p .
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The cubic Szeg6 equation

Consider 1 : =T, = 1p-y,

We are led to studying the long time dynamics of

Ou 5
i = N (Julfu) .

Phase space : range of I intersected with H/2(T)
= { holomorphic functions u = u(z) on the unit disc D :

‘/D|u’(z)2dL(z) < 400}
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The main theorem

Theorem (PG, S.Grellier, 2010-2015)
For every uy € M (C>(T, C)),

Vt € R, |Ju(t)||iory < Cuo), Vs, |Ju(t)|lws < Cs(up)eSlt]

3 dense Gs subset of initial data in I (C*=(T,C)) such that
the corresponding solution u satisfies

Vs, liminf ||u(t)||ps < 400 .
t—o0

1 t)|| b
Vs > E,VMZL IimsupM:

+00
t—o00 |t|M
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d
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The Lax pair structure

Consider the Hilbert—-Schmidt Hankel operator
H, : h € N(L%) + N(uh)

If u= u(t) solves iir = MN(|ul?u), then

d
7Hu - BuaHu

y Bt
Bu(h) = —iN(|ul*h) + ~H3(h) .

2

The eigenvalues of the trace class operators H? and
K2 := H? — (.|u)u are conservation laws.
(prowdes the L estimate ).



Special quasiperiodic solutions

Theorem (PG, S.Grellier, 2015)

Asd>1,s1 >8> -->54>0, (¢1,¢27~~7¢d) ETd, the
following defines a dense set of solutions in (C*>),

1 1
u(t,z) = <‘€(t,z)_1 N A > :
1 1

CNxCN
. 2 »
ngflel(w2’7l+ts2j*1) _ 52ke’(71’2k+t522k)z

C(t,z)x = ;

) 2
Syi-1 T Sk

with N =[], sp :=0if d =2N — 1.
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Instability H*, s > 1. Hani (2013) for resonant NLS on T?.
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Exporting turbulent solutions to other equations

@ From Szegd to the half—wave equation.

@ From Szegb to a Schrodinger/half-wave equation on
T x R.

@ From Szegd on the line to the focusing half-wave on the
line.



From Szego to the half-wave

Theorem (S. Grellier-PG, 2012 ; O. Pocovnicu, 2013)
Let s > 1. For every o > 0, there exists c, s > 0 such that, if

Mup = up = O(e) in H®,
the solutions of

iOiu = |Dlu+|ulPu, i(O:v + 0,v) =N(|v|*v)
u(0) = v(0) = u

b

satisfy V't < c,se ?|loge| , u(t) = v(t) + O(e37®) in H* .




Consequence : norm inflation

Combining this approximation result with the existence of
turbulent solutions and a scaling argument (O.Pocovnicu),



Consequence : norm inflation

Combining this approximation result with the existence of
turbulent solutions and a scaling argument (O.Pocovnicu),

Corollary

For every § > 0, for every K > 0 there exists a solution u to
the half-wave equation and T > 0 such that

[u(O) [ <65 [Ju(T)|[r = K.

Similar to Colliander—Keel-Staffilani-Takaoka—Tao (2010) for
cubic NLS on T2.



Schrodinger /half-wave on the cylinder

Following Hani-Pausader—Tzvetkov—Visciglia (2013), consider
the equation

i0¢u = = u+ |Dylu+ |ufPu, (x,y) e TXR.
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Schrodinger /half-wave on the cylinder

Following Hani-Pausader—Tzvetkov—Visciglia (2013), consider
the equation

i0¢u = = u+ |Dylu+ |ufPu, (x,y) e TXR.

Idea : the dispersion in the variable y helps in discarding the
non resonant terms in the variable x.
For s > 20, introduce the following norms,

lulls = llullne +lly ull.2
[uls+ lulls + 111 = 05)*ulls + lly ulls



A modified scattering result

Theorem (Haiyan Xu, 2015)

Assume that vo(x + m,y) = —wo(x,y) and ||vl/s+ < & small
enough. Consider the solution v = v(t,x,y) of the system

iato—‘r(tvxvn) - I—|+(‘O+|2V+)7 A+(0>X7”’7):n+(A0(w77))(X)-
00 (¢, x,m) = M-(0-Pro) 90, ,m) = M-(96( ) (x).

Then there exists a unique solution u of the
Schrédinger/half-wave equation such that

it(| Dy ~02)

I u(t) — v(mrlogt)||s T 0.




Turbulent solutions of the Schrédinger/half-wave

equation

Corollary (H. Xu, 2015)
For every s, there exist solutions of

i0pu = —05u+ |Delu+ ulPu, (x,y) €T xR.
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Turbulent solutions of the Schrédinger/half-wave

equation

Corollary (H. Xu, 2015)
For every s, there exist solutions of

i0pu = —05u+ |Delu+ ulPu, (x,y) €T xR.
such that

G
Vo>0, VN>1, limsup -

t—+00 (|Og t)N B




Turbulent solutions of the Schrédinger/half-wave

equation

Corollary (H. Xu, 2015)
For every s, there exist solutions of

i0pu = —05u+ |Delu+ ulPu, (x,y) €T xR.
such that

R TCTY
Vo>0,VN>1, limsup———"—— = +00
t—-+00 (|og t)

liminf [|u(t)||ns < +o0.

t—+00
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Denote again by I1 the operator 1559 on L?(R). The equation
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admits a Lax pair too (O. Pocovnicu, 2011).



The cubic Szeg6 equation on the line

Denote again by I1 the operator 1559 on L?(R). The equation
i0;u = N(|ul?u)

admits a Lax pair too (O. Pocovnicu, 2011). Furthermore, it
admits explicit turbulent solutions with

1 2s—1

Vs>§,|u(t)HHS:t , t— 00



Soliton interaction for Szego on the line

Theorem (O. Pocovnicu, 2011)
The fonction

X + é '
is, up to symmetries, the only non trivial solution of

—i0,Q +Q =N(QI”Q) .

Furthermore, there exists solutions of the form

u(t, x) = aa(t)Q (Xxl(t)> + (1)@ <Xx2(t)

Fu'l(t) l{2(t)

such that k1(t) = A >0, ro(t) = t2, t — +oo.




Solitons for the focusing half—wave on the line

Krieger-Lenzmann—Raphaél (2013) found solitons for
i0pu — |D|u+ |ulPu =0

by minimizing, for every velocity 5 € (—1,1),

_ Nlullz=((1D] — BD)u, u),-

Js(u) =
[ullfs
Minimizers Qg satisfy, after rescaling,
D| — gD
|1{jQﬁ + Qs = Qsl* Qs
—

so that the focusing half-wave equation is satisfied by

Uﬁ(t./X) — eith <)1__i;>



The photonic limit of Qg

Main observation : for 5* < 1 close enough to 1, there exists a
smooth mapping [ € (5*,1) — Qs € H>(RR) such that

Qﬂ _> Q
B—1

in H* for every s.
Notice that

lusllz =~ /11— 0.



Soliton interaction for the focusing half-wave

Theorem (PG, E. Lenzmann, O. Pocovnicu, P. Raphaél, 2015)
For every § > 0, K > 0, there exists T > 0 and a solution u of

i0;u — |Dlu+ |ulPu=0

such that ||u(0)||m <9, VE> T, JJu(t)|lm > K .




Soliton interaction for the focusing half-wave

Theorem (PG, E. Lenzmann, O. Pocovnicu, P. Raphaél, 2015)
For every § > 0, K > 0, there exists T > 0 and a solution u of

i0;u — |Dlu+ |ulPu=0

such that ||u(0)||m <9, VE> T, JJu(t)|lm > K .

Ansatz (Buslaev—Perelman, Merle, Martel, Raphaél, Krieger,
Schlag, Tataru, ...)

ei'Yj(t) X — Xj(t)

0= 0 @ () <
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Perspectives

@ Turbulent solutions of the half-wave equation 7
Genericity 7

@ Random data for the cubic Szegé equation ? For the
half-wave equation ?





