# Wave Turbulence for the cubic Szegő equation and beyond

#### Patrick Gérard

Univ. Paris-Sud, Laboratoire de Mathématiques d'Orsay, CNRS, UMR 8628, and MSRI

New challenges in PDEs: Deterministic dynamics and randomness in high and infinite dimensional systems, Berkeley, October 19, 2015

# The problem

Let

 $\frac{\partial u}{\partial t} = X(u)$ 

be an infinite dimensional Hamiltonian system posed on spaces of functions on a Riemannian manifold (say the torus).

Assume the dynamics to be globally well defined on the Sobolev space  $H^s$  for *s* big enough (e.g. defocusing subcritical NLS, wave equation...)

# The problem

Let

 $\frac{\partial u}{\partial t} = X(u)$ 

be an infinite dimensional Hamiltonian system posed on spaces of functions on a Riemannian manifold (say the torus).

Assume the dynamics to be globally well defined on the Sobolev space  $H^s$  for *s* big enough (e.g. defocusing subcritical NLS, wave equation...)

Problem : describe long time dynamics.

# The problem

Let

 $\frac{\partial u}{\partial t} = X(u)$ 

be an infinite dimensional Hamiltonian system posed on spaces of functions on a Riemannian manifold (say the torus).

Assume the dynamics to be globally well defined on the Sobolev space  $H^s$  for *s* big enough (e.g. defocusing subcritical NLS, wave equation...)

In particular : do small characteristic scales appear as  $t \to \infty$  ?

# Turbulent solutions

#### Definition

A solution  $u \in C(\mathbb{R}, H^s)$  of

 $\frac{\partial u}{\partial t} = X(u)$ 

is said to be turbulent if, for some s,

 $\limsup_{t\to\infty}\|u(t,.)\|_{H^s}=+\infty \ .$ 

# A trivial example

Consider

$$H(u):=rac{1}{4}\int_{\mathbb{T}}\left|u(x)
ight|^{4}dx\;,$$

so that the Hamiltonian system reads

$$i\dot{u} = |u|^2 u$$
,  $u(0,x) = u_0(x)$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# A trivial example

Consider

$$H(u) := rac{1}{4} \int_{\mathbb{T}} |u(x)|^4 dx \; ,$$

so that the Hamiltonian system reads

$$i\dot{u} = |u|^2 u , \ u(0,x) = u_0(x) .$$

Explicit solution

$$u(t,x) = u_0(x) e^{-it|u_0(x)|^2}$$
.

# A trivial example

Consider

$$H(u) := rac{1}{4} \int_{\mathbb{T}} |u(x)|^4 dx \; ,$$

so that the Hamiltonian system reads

$$i\dot{u} = |u|^2 u \;,\; u(0,x) = u_0(x) \;.$$

Explicit solution

$$u(t,x) = u_0(x) e^{-it|u_0(x)|^2}$$
.

If  $|u_0|^2$  is not a constant function,

$$\|u(t)\|_{H^s}\simeq |t|^s$$
,  $|t|\to\infty$ .

Cubic NLS, d = 1,  $H(u) = \int_{\mathbb{T}} \left(\frac{1}{2} |\partial_x u(x)|^2 + \frac{1}{4} |u(x)|^4\right) dx$ ,

$$i\frac{\partial u}{\partial t} = -\frac{\partial^2 u}{\partial x^2} + |u|^2 u$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cubic NLS, d = 1,  $H(u) = \int_{\mathbb{T}} \left(\frac{1}{2} |\partial_x u(x)|^2 + \frac{1}{4} |u(x)|^4\right) dx$ ,

$$i\frac{\partial u}{\partial t} = -\frac{\partial^2 u}{\partial x^2} + |u|^2 u$$

Zakharov-Shabat (1974) : this equation admits a Lax pair.  $\forall p \in \mathbb{N}, \exists F_p = F_p(u, \overline{u}, \dots, u^{(p-1)}, \overline{u^{(p-1)}})$  polynomial s. t.

 $\int_{\mathbb{T}} \left[ |u^{(p)}(x)|^2 + F_p(u(x), \overline{u}(x), \ldots, u^{(p-1)}(x), \overline{u^{(p-1)}}(x)) \right] dx$ 

is a conservation law.

Cubic NLS, d = 1,  $H(u) = \int_{\mathbb{T}} \left(\frac{1}{2} |\partial_x u(x)|^2 + \frac{1}{4} |u(x)|^4\right) dx$ ,

$$i\frac{\partial u}{\partial t} = -\frac{\partial^2 u}{\partial x^2} + |u|^2 u$$

Zakharov-Shabat (1974) : this equation admits a Lax pair.  $\forall p \in \mathbb{N}, \exists F_p = F_p(u, \overline{u}, \dots, u^{(p-1)}, \overline{u^{(p-1)}})$  polynomial s. t.

 $\int_{\mathbb{T}} \left[ |u^{(p)}(x)|^2 + F_p(u(x), \overline{u}(x), \ldots, u^{(p-1)}(x), \overline{u^{(p-1)}}(x)) \right] dx$ 

is a conservation law. No turbulent solution !

Majda–Mc Laughlin–Tabak (1997, 2001) introduced the following family of Hamiltonian evolutions on  $\mathbb{T}$ ,

Majda–Mc Laughlin–Tabak (1997, 2001) introduced the following family of Hamiltonian evolutions on  $\mathbb{T}$ ,

$$H(u) = \int_{\mathbb{T}} \left( \frac{1}{2} |D|^{\alpha} u(x) \overline{u(x)} + \frac{1}{4} ||D|^{-\beta} u(x)|^4 \right) dx , D := -i\partial_x ,$$

Majda–Mc Laughlin–Tabak (1997, 2001) introduced the following family of Hamiltonian evolutions on  $\mathbb{T}$ ,

$$\begin{aligned} H(u) &= \int_{\mathbb{T}} \left( \frac{1}{2} |D|^{\alpha} u(x) \overline{u(x)} + \frac{1}{4} ||D|^{-\beta} u(x)|^4 \right) \, dx \,, \, D := -i\partial_x \,, \\ i \frac{\partial u}{\partial t} &= |D|^{\alpha} u + |D|^{-\beta} \left( ||D|^{-\beta} u|^2 |D|^{-\beta} u \right) \end{aligned}$$

Majda–Mc Laughlin–Tabak (1997, 2001) introduced the following family of Hamiltonian evolutions on  $\mathbb{T}$ ,

$$H(u) = \int_{\mathbb{T}} \left( \frac{1}{2} |D|^{\alpha} u(x) \overline{u(x)} + \frac{1}{4} ||D|^{-\beta} u(x)|^4 \right) dx , D := -i\partial_x ,$$
$$i \frac{\partial u}{\partial t} = |D|^{\alpha} u + |D|^{-\beta} \left( ||D|^{-\beta} u|^2 |D|^{-\beta} u \right)$$

for assessing the validity of weak turbulence theory for random waves (  $\alpha <$  1).

Majda–Mc Laughlin–Tabak (1997, 2001) introduced the following family of Hamiltonian evolutions on  $\mathbb{T}$ ,

$$H(u) = \int_{\mathbb{T}} \left( \frac{1}{2} |D|^{\alpha} u(x) \overline{u(x)} + \frac{1}{4} ||D|^{-\beta} u(x)|^4 \right) dx , D := -i\partial_x ,$$
$$i \frac{\partial u}{\partial t} = |D|^{\alpha} u + |D|^{-\beta} \left( ||D|^{-\beta} u|^2 |D|^{-\beta} u \right)$$

for assessing the validity of weak turbulence theory for random waves ( $\alpha < 1$ ).

Here we shall focus on the limit case  $\alpha = 1$ ,  $\beta = 0$ .

## The cubic half-wave equation

The cubic half-wave equation,

$$i\frac{\partial u}{\partial t} = |D|u + |u|^2 u$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

can be written as

### The cubic half-wave equation

The cubic half-wave equation,

$$i\frac{\partial u}{\partial t} = |D|u + |u|^2 u$$

can be written as

 $-\partial_t^2 u + \partial_x^2 u = 2|u|^2 |D|u - u^2 \overline{|D|u} + |D|(|u|^2 u) + |u|^4 u$ 

### The cubic half-wave equation

The cubic half-wave equation,

$$i\frac{\partial u}{\partial t} = |D|u + |u|^2 u$$

can be written as

 $-\partial_t^2 u + \partial_x^2 u = 2|u|^2 |D|u - u^2 \overline{|D|u} + |D|(|u|^2 u) + |u|^4 u$ 

or as a system of coupled transport equations,

$$\begin{cases} i(\partial_t u_+ + \partial_x u_+) = \Pi_+[|u_+ + u_-|^2(u_+ + u_-)], \ \Pi_+ := \mathbf{1}_{D \ge 0}, \\ i(\partial_t u_- - \partial_x u_-) = \Pi_-[|u_+ + u_-|^2(u_+ + u_-)], \ \Pi_- := \mathbf{1}_{D < 0}. \end{cases}$$

#### The resonance analysis

System in Fourier coefficients

$$i\dot{u}_k = |k|u_k + \sum_{k_1-k_2+k_3=k} u_{k_1}\overline{u}_{k_2}u_{k_3}, \ k \in \mathbb{Z},$$

(ロ)、(型)、(E)、(E)、 E) の(の)

#### The resonance analysis

System in Fourier coefficients

$$i\dot{u}_k = |k|u_k + \sum_{k_1-k_2+k_3=k} u_{k_1}\overline{u}_{k_2}u_{k_3} , \ k \in \mathbb{Z} ,$$

Introduce  $v_k(t) := e^{it|k|} u_k(t)$ 

$$i\dot{v}_k = \sum_{k_1-k_2+k_3=k} e^{-it(|k_1|-|k_2|+|k_3|-|k|)} v_{k_1} \overline{v}_{k_2} v_{k_3} \ , \ k \in \mathbb{Z} \ ,$$

#### The resonance analysis

System in Fourier coefficients

$$i\dot{u}_k = |k|u_k + \sum_{k_1-k_2+k_3=k} u_{k_1}\overline{u}_{k_2}u_{k_3} , \ k \in \mathbb{Z} ,$$

Introduce  $v_k(t) := e^{it|k|} u_k(t)$ 

$$i\dot{v}_k = \sum_{k_1-k_2+k_3=k} e^{-it(|k_1|-|k_2|+|k_3|-|k|)} v_{k_1} \overline{v}_{k_2} v_{k_3} \ , \ k \in \mathbb{Z} \ ,$$

Main trend : only keep resonant quartets :

$$k_1 - k_2 + k_3 - k_4 = 0$$
,  $|k_1| - |k_2| + |k_3| - |k_4| = 0$ 

#### The degeneracy of resonant quartets

 $(k_1, k_2, k_3, k_4)$  is a resonant quartet if and only if

- either  $\{k_1, k_3\} = \{k_2, k_4\}$
- or  $k_1, k_2, k_3, k_4$  have the same sign

#### The degeneracy of resonant quartets

 $(k_1, k_2, k_3, k_4)$  is a resonant quartet if and only if

- either  $\{k_1, k_3\} = \{k_2, k_4\}$
- or  $k_1, k_2, k_3, k_4$  have the same sign

Resonant system is decoupled :

$$\begin{cases} i(\partial_t u_+ + \partial_x u_+) = \Pi_+(|u_+|^2 u_+) , \ \Pi_+ := \mathbf{1}_{D \ge 0} ,\\ i(\partial_t u_- - \partial_x u_-) = \Pi_-(|u_-|^2 u_-) , \ \Pi_- := \mathbf{1}_{D < 0} . \end{cases}$$

Consider  $\Pi := \Pi_+ = \mathbf{1}_{D \ge 0}$ ,

$$\Pi\left(\sum_{k\in\mathbb{Z}}c_k\mathrm{e}^{ikx}
ight):=\sum_{k\geq0}c_k\mathrm{e}^{ikx}\;.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider  $\Pi := \Pi_+ = \mathbf{1}_{D \ge 0}$ ,

$$\Pi\left(\sum_{k\in\mathbb{Z}}c_k\mathrm{e}^{ikx}\right):=\sum_{k\geq 0}c_k\mathrm{e}^{ikx}\;.$$

We are led to studying the long time dynamics of

$$i\frac{\partial u}{\partial t} = \Pi\left(|u|^2 u
ight)$$
 .

Consider  $\Pi := \Pi_+ = \mathbf{1}_{D \ge 0}$ ,

$$\Pi\left(\sum_{k\in\mathbb{Z}}c_k\mathrm{e}^{ikx}
ight):=\sum_{k\geq0}c_k\mathrm{e}^{ikx}\;.$$

We are led to studying the long time dynamics of

$$i\frac{\partial u}{\partial t} = \Pi\left(|u|^2 u\right)$$
 .

Phase space : range of  $\Pi$  intersected with  $H^{1/2}(\mathbb{T})$ 

Consider  $\Pi := \Pi_+ = \mathbf{1}_{D \ge 0}$ ,

$$\Pi\left(\sum_{k\in\mathbb{Z}}c_k\mathrm{e}^{ikx}
ight):=\sum_{k\geq0}c_k\mathrm{e}^{ikx}\;.$$

We are led to studying the long time dynamics of

$$irac{\partial u}{\partial t} = \Pi\left(|u|^2 u
ight)$$
 .

Phase space : range of  $\Pi$  intersected with  $H^{1/2}(\mathbb{T})$ = { holomorphic functions u = u(z) on the unit disc  $\mathbb{D}$  :

$$\int_{\mathbb{D}} |u'(z)|^2 \, dL(z) < +\infty\}$$

Theorem (PG, S.Grellier, 2010-2015)

For every  $u_0 \in \Pi(C^{\infty}(\mathbb{T},\mathbb{C}))$ ,

 $\forall t \in \mathbb{R} \ , \ \|u(t)\|_{L^\infty(\mathbb{T})} \leq C(u_0) \ , \ \forall s \ , \ \|u(t)\|_{H^s} \leq C_s(u_0)\mathrm{e}^{C_s(u_0)|t|}$ 

Theorem (PG, S.Grellier, 2010-2015)

For every  $u_0 \in \Pi(C^{\infty}(\mathbb{T},\mathbb{C}))$ ,

 $\forall t \in \mathbb{R} \ , \ \|u(t)\|_{L^{\infty}(\mathbb{T})} \leq C(u_0) \ , \ \forall s \ , \ \|u(t)\|_{H^s} \leq C_s(u_0)\mathrm{e}^{C_s(u_0)|t|}$ 

 $\exists$  dense  $G_{\delta}$  subset of initial data in  $\Pi(C^{\infty}(\mathbb{T},\mathbb{C}))$  such that the corresponding solution u satisfies

Theorem (PG, S.Grellier, 2010-2015)

For every  $u_0 \in \Pi(C^{\infty}(\mathbb{T},\mathbb{C}))$ ,

 $\forall t \in \mathbb{R} \ , \ \|u(t)\|_{L^{\infty}(\mathbb{T})} \leq C(u_0) \ , \ \forall s \ , \ \|u(t)\|_{H^s} \leq C_s(u_0)\mathrm{e}^{C_s(u_0)|t|}$ 

 $\exists$  dense  $G_{\delta}$  subset of initial data in  $\Pi(C^{\infty}(\mathbb{T},\mathbb{C}))$  such that the corresponding solution u satisfies

 $\forall s \ , \ \liminf_{t\to\infty} \|u(t)\|_{H^s} < +\infty \ .$ 

Theorem (PG, S.Grellier, 2010-2015)

For every  $u_0 \in \Pi(C^{\infty}(\mathbb{T},\mathbb{C}))$ ,

 $\forall t \in \mathbb{R} \ , \ \|u(t)\|_{L^{\infty}(\mathbb{T})} \leq C(u_0) \ , \ \forall s \ , \ \|u(t)\|_{H^s} \leq C_s(u_0)\mathrm{e}^{C_s(u_0)|t|}$ 

 $\exists$  dense  $G_{\delta}$  subset of initial data in  $\Pi(C^{\infty}(\mathbb{T},\mathbb{C}))$  such that the corresponding solution u satisfies

 $\forall s \ , \ \liminf_{t\to\infty} \|u(t)\|_{H^s} < +\infty \ .$ 

$$orall s > rac{1}{2}, orall M \geq 1 \;, \; \limsup_{t o \infty} rac{\|u(t)\|_{H^s}}{|t|^M} = +\infty \;.$$

#### The Lax pair structure

Consider the Hilbert-Schmidt Hankel operator

 $H_u$ :  $h \in \Pi(L^2) \mapsto \Pi(u\overline{h})$ 

#### The Lax pair structure

Consider the Hilbert-Schmidt Hankel operator

 $H_u : h \in \Pi(L^2) \mapsto \Pi(u\overline{h})$ If u = u(t) solves  $i\overline{u} = \Pi(|u|^2 u)$ , then  $\frac{d}{dt}H_u = [B_u, H_u]$  $B_u(h) := -i\Pi(|u|^2 h) + \frac{i}{2}H_u^2(h) .$ 

#### The Lax pair structure

Consider the Hilbert-Schmidt Hankel operator

 $H_u$ :  $h \in \Pi(L^2) \mapsto \Pi(u\overline{h})$ 

If u = u(t) solves  $i\dot{u} = \prod(|u|^2 u)$ , then

$$\frac{d}{dt}H_u = [B_u, H_u]$$
  
$$B_u(h) := -i\Pi(|u|^2h) + \frac{i}{2}H_u^2(h)$$

The eigenvalues of the trace class operators  $H_u^2$  and  $K_u^2 := H_u^2 - (.|u)u$  are conservation laws. (provides the  $L^{\infty}$  estimate ).

#### Special quasiperiodic solutions

#### Theorem (PG, S.Grellier, 2015)

As  $d \ge 1$ ,  $s_1 > s_2 > \cdots > s_d > 0$ ,  $(\psi_1, \psi_2, \ldots, \psi_d) \in \mathbb{T}^d$ , the following defines a dense set of solutions in  $\Pi(C^{\infty})$ ,

$$\begin{split} u(t,z) &:= \left\langle \mathscr{C}(t,z)^{-1} \begin{pmatrix} 1\\ \cdot\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ \cdot\\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^N \times \mathbb{C}^N}, \\ \mathscr{C}(t,z)_{jk} &:= \frac{s_{2j-1} \mathrm{e}^{i(\psi_{2j-1} + ts_{2j-1}^2)} - s_{2k} \mathrm{e}^{i(\psi_{2k} + ts_{2k}^2)} z}{s_{2j-1}^2 - s_{2k}^2} \end{split}$$

with  $N := \left[\frac{d+1}{2}\right]$ ,  $s_{2N} := 0$  if d = 2N - 1.

 $\left\langle \left( \begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{-(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{-1}{1-\varepsilon} \end{array} \right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2z(1-\varepsilon^2)-3\varepsilon}{2-\varepsilon z}$ 

$$\left\langle \left( \begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{-(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{-1}{1-\varepsilon} \end{array} \right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2z(1-\varepsilon^2)-3\varepsilon}{2-\varepsilon z}$$

$$\left\langle \left( \begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{1}{1-\varepsilon} \end{array} \right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2+\varepsilon^2-2z(1-\varepsilon^2)}{2-(2-\varepsilon^2)z}$$

$$\left\langle \left( \begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{-(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{-1}{1-\varepsilon} \end{array} \right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2z(1-\varepsilon^2)-3\varepsilon}{2-\varepsilon z}$$

$$\left\langle \left( \begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{1}{1-\varepsilon} \end{array} \right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2+\varepsilon^2-2z(1-\varepsilon^2)}{2-(2-\varepsilon^2)z}$$

 $1 \rightarrow 2$  within time interval of length

$$t = \frac{\pi}{(1+\varepsilon)^2 - (1-\varepsilon)^2} = \frac{\pi}{4\varepsilon}$$

$$\left\langle \left( \begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{-(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{-1}{1-\varepsilon} \end{array} \right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2z(1-\varepsilon^2)-3\varepsilon}{2-\varepsilon z}$$

$$\left\langle \left( \begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{1}{1-\varepsilon} \end{array} \right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2+\varepsilon^2-2z(1-\varepsilon^2)}{2-(2-\varepsilon^2)z}$$

 $1 \rightarrow 2$  within time interval of length

$$t = \frac{\pi}{(1+\varepsilon)^2 - (1-\varepsilon)^2} = \frac{\pi}{4\varepsilon}$$

Instability  $H^s$ ,  $s > \frac{1}{2}$ . Hani (2013) for resonant NLS on  $\mathbb{T}^2$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• From Szegő to the half-wave equation.

- From Szegő to the half-wave equation.
- From Szegő to a Schrödinger/half–wave equation on  $\mathbb{T} \times \mathbb{R}$ .

- From Szegő to the half-wave equation.
- From Szegő to a Schrödinger/half–wave equation on  $\mathbb{T} \times \mathbb{R}$ .
- From Szegő on the line to the focusing half-wave on the line.

### From Szegő to the half-wave

#### Theorem (S. Grellier-PG, 2012 ; O. Pocovnicu, 2013)

Let s > 1. For every  $\alpha > 0$ , there exists  $c_{\alpha,s} > 0$  such that, if

 $\Pi u_0 = u_0 = O(\varepsilon) \quad \text{in } H^s,$ 

the solutions of

 $i\partial_t u = |D|u + |u|^2 u, \quad i(\partial_t v + \partial_x v) = \Pi(|v|^2 v),$  $u(0) = v(0) = u_0$ 

satisfy  $\forall t \leq c_{\alpha,s} \varepsilon^{-2} |\log \varepsilon|$ ,  $u(t) = v(t) + O(\varepsilon^{3-\alpha})$  in  $H^s$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Combining this approximation result with the existence of turbulent solutions and a scaling argument (O.Pocovnicu),

Combining this approximation result with the existence of turbulent solutions and a scaling argument (O.Pocovnicu),

#### Corollary

For every  $\delta > 0$ , for every K > 0 there exists a solution u to the half–wave equation and T > 0 such that

 $||u(0)||_{H^1} \leq \delta , ||u(T)||_{H^1} \geq K .$ 

Similar to Colliander–Keel–Staffilani–Takaoka–Tao (2010) for cubic NLS on  $\mathbb{T}^2.$ 

# Schrödinger/half-wave on the cylinder

Following Hani–Pausader–Tzvetkov–Visciglia (2013), consider the equation

 $i\partial_t u = -\partial_y^2 u + |D_x|u + |u|^2 u$ ,  $(x, y) \in \mathbb{T} \times \mathbb{R}$ .

# Schrödinger/half-wave on the cylinder

Following Hani–Pausader–Tzvetkov–Visciglia (2013), consider the equation

 $i\partial_t u = -\partial_y^2 u + |D_x|u + |u|^2 u$ ,  $(x, y) \in \mathbb{T} \times \mathbb{R}$ .

Idea : the dispersion in the variable y helps in discarding the non resonant terms in the variable x.

# Schrödinger/half-wave on the cylinder

Following Hani–Pausader–Tzvetkov–Visciglia (2013), consider the equation

 $i\partial_t u = -\partial_y^2 u + |D_x|u + |u|^2 u$ ,  $(x, y) \in \mathbb{T} \times \mathbb{R}$ .

Idea : the dispersion in the variable y helps in discarding the non resonant terms in the variable x. For s > 20, introduce the following norms,

> $\|u\|_{S} := \|u\|_{H^{s}} + \|y\,u\|_{L^{2}}$  $\|u\|_{S^{+}} := \|u\|_{S} + \|(1-\partial_{y}^{2})^{4}u\|_{S} + \|y\,u\|_{S}$

# A modified scattering result

#### Theorem (Haiyan Xu, 2015)

Assume that  $v_0(x + \pi, y) = -v_0(x, y)$  and  $||v_0||_{S^+} \le \varepsilon$  small enough. Consider the solution v = v(t, x, y) of the system

$$\begin{split} &i\partial_t \hat{v}_+(t,x,\eta) &= \Pi_+(|\hat{v}_+|^2 v_+) , \ \hat{v}_+(0,x,\eta) = \Pi_+(\hat{v}_0(.,\eta))(x). \\ &i\partial_t \hat{v}_-(t,x,\eta) &= \Pi_-(|\hat{v}_-|^2 v_-) , \ \hat{v}_-(0,x,\eta) = \Pi_-(\hat{v}_0(.,\eta))(x). \end{split}$$

Then there exists a unique solution u of the Schrödinger/half-wave equation such that

$$\|\mathrm{e}^{it(|D_x|-\partial_y^2)}u(t)-v(\pi\log t)\|_{\mathcal{S}} \stackrel{}{\longrightarrow} 0$$
 .

# Turbulent solutions of the Schrödinger/half-wave equation

#### Corollary (H. Xu, 2015)

For every s, there exist solutions of

$$i\partial_t u = -\partial_y^2 u + |D_x|u + |u|^2 u \;,\; (x,y) \in \mathbb{T} imes \mathbb{R} \;.$$

such that

# Turbulent solutions of the Schrödinger/half-wave equation

#### Corollary (H. Xu, 2015)

For every s, there exist solutions of

$$i\partial_t u = -\partial_y^2 u + |D_x|u + |u|^2 u \;,\; (x,y) \in \mathbb{T} imes \mathbb{R} \;.$$

such that

$$orall \delta > 0 \;,\; orall N \geq 1 \;,\; \limsup_{t o +\infty} rac{\|u(t)\|_{L^2_y H^{rac{1}{2}+\delta}_x}}{(\log t)^N} = +\infty$$

# Turbulent solutions of the Schrödinger/half-wave equation

#### Corollary (H. Xu, 2015)

For every s, there exist solutions of

$$i\partial_t u = -\partial_y^2 u + |D_x|u + |u|^2 u \;,\; (x,y) \in \mathbb{T} imes \mathbb{R} \;.$$

such that

$$egin{aligned} orall \delta > 0 \ , \ orall N \geq 1 \ , \ \limsup_{t o +\infty} rac{\|u(t)\|_{L^2_y H^{rac{1}{2}+\delta}_x}}{(\log t)^N} = +\infty \ \lim_{t o +\infty} \|u(t)\|_{H^s} < +\infty. \end{aligned}$$

### The cubic Szegő equation on the line

Denote again by  $\Pi$  the operator  $\mathbf{1}_{D\geq 0}$  on  $L^2(\mathbb{R})$ . The equation $i\partial_t u = \Pi(|u|^2 u)$ 

admits a Lax pair too (O. Pocovnicu, 2011).

Denote again by  $\Pi$  the operator  $\mathbf{1}_{D\geq 0}$  on  $L^2(\mathbb{R})$ . The equation

 $i\partial_t u = \Pi(|u|^2 u)$ 

admits a Lax pair too (O. Pocovnicu, 2011). Furthermore, it admits explicit turbulent solutions with

$$orall s>rac{1}{2}\;,\; |u(t)||_{H^s}\simeq t^{2s-1}\;,\; t
ightarrow\infty\;.$$

# Soliton interaction for Szegő on the line

Theorem (O. Pocovnicu, 2011)

The fonction

$$Q(x):=\frac{1}{x+\frac{i}{2}}.$$

is, up to symmetries, the only non trivial solution of

 $-i\partial_x Q + Q = \Pi(|Q|^2 Q)$ .

Furthermore, there exists solutions of the form

$$u(t,x) = \alpha_1(t)Q\left(\frac{x-x_1(t)}{\kappa_1(t)}\right) + \alpha_2(t)Q\left(\frac{x-x_2(t)}{\kappa_2(t)}\right)$$

such that  $\kappa_1(t) o \lambda > 0$ ,  $\kappa_2(t) \simeq t^{-2}$ ,  $t \to +\infty$ .

# Solitons for the focusing half-wave on the line

Krieger-Lenzmann-Raphaël (2013) found solitons for

 $i\partial_t u - |D|u + |u|^2 u = 0$ 

by minimizing, for every velocity  $\beta \in (-1, 1)$ ,

$$J_{eta}(u) := rac{\|u\|_{L^2}^2((|D|-eta D)u,u)_{L^2}}{\|u\|_{L^4}^4}$$

Minimizers  $Q_{\beta}$  satisfy, after rescaling,

$$rac{|D|-eta D}{1-eta}Q_{eta}+Q_{eta}=|Q_{eta}|^2Q_{eta}$$

so that the focusing half-wave equation is satisfied by

$$u_{\beta}(t,x) = e^{it} Q_{\beta} \left( \frac{x - \beta t}{1 - \beta} \right)$$

Main observation : for  $\beta^* < 1$  close enough to 1, there exists a smooth mapping  $\beta \in (\beta^*, 1) \longmapsto Q_\beta \in H^\infty(\mathbb{R})$  such that

$$Q_eta \xrightarrow[eta 
ightarrow 1]{} Q_eta \xrightarrow[eta 
ightarrow 1]{} Q$$

in  $H^s$  for every s. Notice that

 $\|u_{\beta}\|_{L^2}\simeq \sqrt{1-\beta}$ .

# Soliton interaction for the focusing half-wave

Theorem (PG, E. Lenzmann, O. Pocovnicu, P. Raphaël, 2015) For every  $\delta > 0$ , K > 0, there exists T > 0 and a solution u of

 $i\partial_t u - |D|u + |u|^2 u = 0$ 

such that  $||u(0)||_{H^1} \le \delta$ ,  $\forall t \ge T$ ,  $||u(t)||_{H^1} \ge K$ .

## Soliton interaction for the focusing half-wave

Theorem (PG, E. Lenzmann, O. Pocovnicu, P. Raphaël, 2015) For every  $\delta > 0$ , K > 0, there exists T > 0 and a solution u of

 $i\partial_t u - |D|u + |u|^2 u = 0$ 

such that  $||u(0)||_{H^1} \le \delta$ ,  $\forall t \ge T$ ,  $||u(t)||_{H^1} \ge K$ .

Ansatz (Buslaev–Perelman, Merle, Martel, Raphaël, Krieger, Schlag, Tataru, ...)

$$u(t,x) = \sum_{j=1}^2 rac{e^{i\gamma_j(t)}}{\lambda_j^rac{1}{2}(t)} Q_{eta_j(t)}\left(rac{x-x_j(t)}{\lambda_j(t)(1-eta_j(t))}
ight) + arepsilon(t,x)$$

# Perspectives

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ



#### • Turbulent solutions of the half-wave equation ? Genericity ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Perspectives

- Turbulent solutions of the half-wave equation ? Genericity ?
- Random data for the cubic Szegő equation ? For the half-wave equation ?