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Kinetic models
Many physical systems are described by a kinetic equation:

∂t f + a(v) · ∇x f = Q(f ),

I v ∈ V represents the various degrees of freedom of a particle,
a(v) is its velocity (often a(v) = v).

I f (x , v) is the distribution function of the particles with
degrees of freedom v at position x ∈ TN (in this talk).

I V is endowed with a probability measure µ and the averaged
velocity is zero : ā =

∫
V a(v)dµ = 0.

I Q accounts for the interaction between particles or between a
particle and the medium.

I In general, it has a family of equilibrium F such that:
Q(f ) = 0 iff f = f̄ F =

(∫
V fdµ

)
F with F > 0, F̄ = 1.

I Often, a small parameter ε is present in the equation and,
after rescaling, the following equation is obtained:

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
Q(f ε),



Radiative transfer and Rosseland approximation

I

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
σ(f̄ )Lf ε,

with L(f ) = f̄ F − f describes the interaction between a
surrounding continuous medium and a flux of photons
radiating through it in the absence of hydrodynamical motion.

I The unknown f ε(t, x , v) then stands for a distribution
function of photons having position x and velocity v at time t.

I The function σ is the opacity of the matter.

I When the surrounding medium becomes very large compared
to the mean free paths ε of photons, f ε is known to behave
like ρ the solution of the Rosseland equation

∂tρ− divx(σ(ρ)−1K∇xρ) = 0, (t, x) ∈ [0,T ]× TN .

with K :=
∫
V a(v)⊗ a(v) dv . This is called the Rosseland

approximation. (Bardos, Golse, Perthame, Sentis)
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Deterministic equation, diffusive limit, F = 1

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
σ(f̄ )L(f ε), L(f ) = f̄ − f .

Hilbert expansion (formal): f ε = f0 + εf1 + ε2f2 + . . .

 order −2 : Lf0 = f̄0 − f0 = 0 and f0 = f̄0 = ρ.

(We assume 0 < σ∗ ≤ σ(ρ) ≤ σ∗, ρ ∈ R).

 order −1 : a(v) · ∇xρ = σ(ρ)L(f1).

The equation

L(g) = ḡ − g =

∫
V
gdµ− g = h

can be solved iff
∫
V hdµ = 0 and in this case, we can take

g = −h.

Recall that
∫
V a(v)dµ = 0 → f1 = −σ(ρ)−1a(v) · ∇xρ
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Deterministic equation, diffusive limit

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
σ(f̄ ε)Lf ε, L(f ) = f̄ F − f .

When ε→ 0, the density ρε :=
∫
V f εdµ converges to the solution

ρ of the diffusion equation

∂tρ− div(σ(ρ)−1K∇ρ) = 0

with initial data ρ0 =
∫
V f0dµ . We assume

∫
V a(v)F (v)dµ(v) = 0

and:

∀ε > 0, ∀(ξ, α) ∈ SN−1× R, µ ({v ∈ V , |a(v) · ξ + α| < ε}) ≤ εθ,

for some θ > 0.



The stochastic case

We first consider a similar model with time white noise:

df ε + 1
εa(v) · ∇x f

ε dt = 1
ε2σ(f̄ ε)Lf εdt + f ε ◦ QdWt ,

x ∈ TN , v ∈ V , Lf = f̄ F − f .

I The noise represents randoms creations/absorptions of
photons.

I We expect to obtain a stochastic quasilinear parabolic
equation at the limit.

I We adapt the Hilbert expansion method.

I We first have to prove existence of f ε, we need non
degeneracy of a:

∀ε > 0, ∀(ξ, α) ∈ SN−1×R, µ ({v ∈ V , |a(v) · ξ + α| < ε}) ≤ εθ,

for some θ > 0.



Hilbert expansion, stochastic case

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
σ(f̄ ε)Lf ε + f ε ◦ QdWt , L(f ) = f̄ − f .

Hilbert expansion (formal): f ε = f0 + εf1 + ε2f2 + . . .

 order −2 : Lf0 = 0 and f0 =
∫
V f0dµ = ρ.

 order −1 : a(v) · ∇xρ = σ(ρ)Lf1 −→ f1 = −σ(ρ)−1a(v) · ∇xρ.

 order 0 : ∂tρ+ a(v) · ∇x f1 = σ(ρ)Lf2 + ρ ◦ QdWt

−→ ∂tρ− div

(
σ(ρ)−1

( ∫
V
a(v)⊗ a(v)dµ

)
∇xρ

)
= ρ ◦ QdWt .

and

div

(
σ(ρ)−1

(
a(v)⊗ a(v)−

∫
V
a(v)⊗ a(v)dµ

)
∇xρ

)
= σ(ρ)Lf2.
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Hilbert expansion, rigorous proof
I We take the solution of the SPDE:

∂tρ− div

(
σ(ρ)−1

(∫
V
a(v)⊗ a(v)dµ

)
∇xρ

)
= ρ ◦ QdWt .

It is smooth is space provided the noise and initial data are
also smooth. (D., De Moor, Hofmanova).

I Define: f1 = −σ(ρ)−1a(v) · ∇xρ and

f2 = −div
(
σ(ρ)−1

(
a(v)⊗ a(v)−

∫
V
a(v)⊗ a(v)dµ

)
∇xρ

)
.

I Set
r ε = f ε − ρ− εf1 − ε2f2

then, with df1 = f1,ddt + Ψ[
1dW ,

dr ε +
1

ε
a(v) · ∇x r

εdt =
1

ε2

[
σ(f̄ ε)L(f ε)− σ(ρ)L(f ε − r ε)

]
dt

− εa(v) · ∇x f2dt + (f ε − ρ− εf1)QdWt

+ G (f ε − ρ) dt − εf1,ddt − εΨ[
1dWt − ε2df2.
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]
behave well in L1:

1

ε

∫
TN×V

(a(v) · ∇x r
ε) sign(r ε)dµdx = 0,

1

ε2

∫
TN×V

[
σ(f̄ ε)L(f ε)− σ(ρ)L(f ε − r ε)

]
sign(r ε)dµdx ≤ 0.

Problem: we cannot use Itô formula for ‖r ε‖L1 .
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I We use Itô formula for a δ smoothed version of the L1 norm.
I This introduces singular terms in the Itô correction: the

second derivative of this smoothed L1 norm is of order 1
δ

multiplied by ε2.
I The use of a modified L1 norm introduces a term of order δ

ε2 .

→ We need to kill the noise term of order ε.
→ We need a third corrector f3 such that

ε2df3 − σ(ρ)L(f3)dt = Ψ[
1dWt
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The convergence result

Theorem Let f ε denote the solution of the kinetic problem

df ε + 1
εa(v) · ∇x f

ε dt = 1
ε2σ(f̄ ε)(f̄ εF − f ε))dt + f ε ◦ QdWt ,

x ∈ TN , v ∈ V .

and ρ the solution of the non-linear stochastic partial differential
equation

∂tρ− div
(
σ(ρ)−1K∇xρ

)
= ρ ◦ QdWt ,

where K denotes the matrix
( ∫

V a(v)⊗ a(v)dµ
)
. Then, the

solution f ε converges as ε tends to 0 to the fluid limit ρ and we
have the estimate:

sup
t∈[0,T ]

E‖f εt − ρt‖L1
x,v
≤ Cε.



Another model with ”real noise”

We now start with a noise with non vanishing correlation length:

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
σ(f̄ ε)Lf ε +

1

ε
f εm(

t

ε2
),

where m(t) is an ergodic centered markov process with values in a
space of functions of x .

I We assume (V , µ) is a measured space, µ is a probability
measure, a ∈ L∞(V ;RN), N ≥ 1 and x ∈ TN .

I The equation is set in R+
t × TN

x × Vv , with initial data
f ε(0) = f0.

I As before, L = f̄ F − f and the velocities are centered:∫
V a(v)dµ(v) =

∫
V a(v)F (v)dµ(v) = 0 and non degenerate:

∀ε > 0, ∀(ξ, α) ∈ SN−1×R, µ ({v ∈ V , |a(v) · ξ + α| < ε}) ≤ εθ.
I Existence and uniqueness of f εis classical under these

assumptions.



Diffusion approximation :

We consider a differential equation in Rd with random coefficients:

dxεt
dt

= F (xεt ,m
ε
t ) +

1

ε
G (xεt ,m

ε
t ).

The driving process mε
t scales like mε

t = m(ε−2t) where mt is a Rd

valued homogeneous stationary and mixing Markov process. If
G ≡ 0, then xεt → x t where

dx

dt
= F (x t), F (x) :=

∫
R
F (x , n)dν(n),

and ν is the invariant measure of mt .

We are interested in the
case:

G 6≡ 0,

∫
R
G (·, n)dν(n) ≡ 0 ?

We concentrate on the case: G (x ,m) = G (x)m.
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Donsker Theorem

Let (ξi ) be i.i.d centered random variables, with variance
σ2 < +∞. Let

Xn(t) =
1

σ
√
n

(ξ1 + · · ·+ ξnt) , t ∈ [0, 1],

the random variable on C = C ([0, 1];R) defined by linear
interpolation between the points t = i/n. Then

Xn → β

where β is a brownian motion on C . The convergence is in law.

Mε
t =

1

ε

∫ t

0
m(

s

ε2
)ds ∼ ε

[ t
ε2 ]∑
0

∫ k+1

k
m(s)ds →Wt ,

where W = (β1, . . . , βd) is d dimensional brownian motion.
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The perturbed test function method.
Problem : We assume that the driving process mε

t scales like
mε

t = m(ε−2t) where mt is homogeneous and stationary Markov
process. We assume that it is mixing with invariant measure ν. Let

d

dt
xεt = F (xεt ) +

1

ε
G (xεt )mε

t , .

We expect that at the limit ε→ 0, xε converges in law to the
solution of:

dxt = F (xt) + G (xt) ◦ dWt .

To prove this we use the generator of (xε,mε). We denote by M
the generator of m, then (xεt ,m

ε
t ) has the following generator:

LεΦ(x , n) =

(
F (x) +

1

ε
G (x)n,DxΦ(x , n)

)
+

1

ε2
MΦ(x , n),

Φ ∈ C 2
b (R2d).

Let v ε(t, x , n) = E(ϕ(xεt (x),mε
t (n)), then

d

dt
v ε = Lεv ε
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ε
t ) has the following generator:

LεΦ(x , n) =

(
F (x) +

1

ε
G (x)n,DxΦ(x , n)

)
+

1

ε2
MΦ(x , n),

Φ ∈ C 2
b (R2d).

Let v ε(t, x , n) = E(ϕ(xεt (x),mε
t (n)), then

d

dt
v ε = Lεv ε



The perturbed test function method.

Evolution of E(ϕ(xεt )):

Lεϕ(xε) =

(
F (xε) +

1

ε
G (xε, n),Dxϕ(x)

)

 No information as ε→ 0.

 We try to find correctors ϕ1, ϕ2 ∈ C 2
b (Rd × Rd) such that the

perturbed test function

ϕε := ϕ+ εϕ1 + ε2ϕ2,

satisfies
Lεϕε(x , n) = Lϕ(x) +O(ε)

(Papanicolaou, Stroock, Varadhan 77. See the recent book by
Fouque, Garnier, Papanicolaou and Solna)
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The perturbed test function method.

Lεϕε(x , n) = Lϕ(x) +O(ε), ϕε := ϕ+ εϕ1 + ε2ϕ2.

Write:

E(ϕε(xεt ,m
ε
t ))

= E(ϕε(xεs ,m
ε
s )) + E

(∫ t

s
Lεϕε(xεσ,mε

σ)dσ

)

ε→ 0  E(ϕ(xt)) = E(ϕ(xs)) + E
(∫ t

s
Lϕ(xσ)dσ

)
 L is the generator of the limit process.
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The perturbed test function method.

Lεϕε(x , n) = Lϕ(x) +O(ε), ϕε := ϕ+ εϕ1 + ε2ϕ2.

Write:

E(ϕε(xεt ,m
ε
t ))

= E(ϕε(xεs ,m
ε
s )) + E

(∫ t

s
Lεϕε(xεσ,mε

σ)dσ

)

ε→ 0  E(ϕ(xt)) = E(ϕ(xs)) + E
(∫ t

s
Lϕ(xσ)dσ

)
 L is the generator of the limit process.



Equations for the correctors

Lεϕ(x , n) = (F (x) +
1

ε
G (x , n),Dxϕ(x , n)) +

1

ε2
Mϕ(x , n)

= Lϕ(x) +O(ε), ϕ ∈ C 2
b (R2),

ϕε := ϕ+ εϕ1 + ε2ϕ2.

We derive

Mϕ(x) = 0, (1)

(G (x)n,Dxϕ(x)) + Mϕ1(x , n) = 0, (2)

(F (x),Dxϕ) + (G (x)n,Dxϕ1(x)) + Mϕ2(x , n) = Lϕ(x). (3)

The first equation is satisfied since ϕ does not depend on n.

To
solve the second equation, we need to solve the Poisson equation
associated to M.
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Lεϕ(x , n) = (F (x) +
1

ε
G (x , n),Dxϕ(x , n)) +

1

ε2
Mϕ(x , n)

= Lϕ(x) +O(ε), ϕ ∈ C 2
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(F (x),Dxϕ) + (G (x)n,Dxϕ1(x)) + Mϕ2(x , n) = Lϕ(x). (3)

The first equation is satisfied since ϕ does not depend on n. To
solve the second equation, we need to solve the Poisson equation
associated to M.



The Poisson equation

We assume that for a large class of functions ψ such that∫
ψ(n)dν(n) = 0 (ν is the invariant law of mt), the equation

Mθ = ψ, ψ ∈ Cb(R)

has a solution in θ ∈ Cb(E ), unique under the condition∫
θ(n)dν(n) = 0.

It is given by:

θ(n) = M−1ψ(n) := −
∫ ∞

0
eMtψ(n)dt =

∫ ∞
0

Eψ(mt |m(0) = n)dt.

eMt is the transition semi-group associated to mt .



The Poisson equation
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Equations for the correctors

(G (x)n,Dxϕ(x)) + Mϕ1(x , n) = 0, (4)

(F (x),Dxϕ) + (G (x)n,Dxϕ1(x)) + Mϕ2(x , n) = Lϕ(x). (5)

We have assumed
∫
E G (x)ndν(n) = 0  we obtain

ϕ1 = −M−1(G (x)n,Dxϕ)

 Lϕ(x) = (F (x),Dxϕ)−
∫
E

(G (x)n,Dx(M−1G (x)n,Dxϕ(x)))dν(n).

This is the generator associated to the SDE:

dx = f (X )dt + G (X )oC 1/2dβ

where β is a d dimensional brownian motion and C is computed
from

∫
E n ⊗M−1n dν(n).
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Equations for the correctors

(G (x)n,Dxϕ(x)) + Mϕ1(x , n) = 0, (4)

(F (x),Dxϕ) + (G (x)n,Dxϕ1(x)) + Mϕ2(x , n) = Lϕ(x). (5)

We have assumed
∫
E G (x)ndν(n) = 0  we obtain

ϕ1 = −M−1(G (x)n,Dxϕ)

 Lϕ(x) = (F (x),Dxϕ)−
∫
E

(G (x)n,Dx(M−1G (x)n,Dxϕ(x)))dν(n).

This is the generator associated to the SDE:

dx = f (X )dt + G (X )oC 1/2dβ

where β is a d dimensional brownian motion and C is computed
from

∫
E n ⊗M−1n dν(n).



If all coefficients are bounded.
We obtain bounds of the form:

E( sup
t∈[0,T ]

|xε(t)|2) ≤ c

independent on ε and:

E
(
|xε(t)− xε(s)|4

)
≤ |t − s|2 + ε.

We write:

E(ϕε(xε(t),mε(t)))

= E(ϕε(xε(t0),mε(t0)) +

∫ t

t0

Lεϕε(xε(t),mε(t)))

 E(ϕ(xε(t))) = E(ϕ(xε(t0))) + E
∫ t

t0

Lϕ(xε(s))ds + O(ε),



Back to the stochastic kinetic equation

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
σ(f̄ ε)Lf ε +

1

ε
f εmε(t),

• mε(t) is a centered, mixing markov process with values in a
space E of functions of x .
• (V , µ) is a measured space and µ is a probability measure.
• a ∈ L∞(V ;Rd)
• d ≥ 1 and x ∈ Td the d dimensional torus.
• L is a dissipative operator.
• We assume

∫
V a(v)dµ(v) = 0 and

∀ε > 0, ∀(ξ, α) ∈ SN−1× R, µ ({v ∈ V , |a(v) · ξ + α| < ε}) ≤ εθ,

for some θ > 0.



Back to the stochastic kinetic equation

∂t f
ε +

1

ε
a(v) · ∇x f

ε =
1

ε2
σ(f̄ ε)Lf ε +

1

ε
f εmε(t),

We denote by M the generator of m, then the generator of
(f ε,mε) is:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(σ(f̄ )Lf ,Dϕ) +

1

ε
(nf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

where Af = a(v) · ∇x f , D is the gradient with respect to f and

L1ϕ = −(Af ,Dϕ) + (nf ,Dϕ)

and
L2ϕ = (σ(f̄ )Lf ,Dϕ) + Mϕ.
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Perturbed test function method:

Lεϕε(f , n) = −1

ε
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1

ε2
(σ(f̄ )Lf ,Dϕ) +

1

ε
(nf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (nf ,Dϕ), L2ϕ = (σ(f̄ )Lf ,Dϕ) + Mϕ.

We expect a limit model which is a SPDE with unknown
ρ =

∫
V fdµ(v)

 We use test functions of the form ϕ(f ) = ϕ(ρ). And consider
Lεϕε, ϕε = ϕ+ εϕ1 + ε2ϕ2.

 Order −2 : L2ϕ = 0 → automatically satisfied.

 Order −1 : L1ϕ+ L2ϕ1 = 0



Perturbed test function method:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(σ(f̄ )Lf ,Dϕ) +

1

ε
(nf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (nf ,Dϕ), L2ϕ = (σ(f̄ )Lf ,Dϕ) + Mϕ.

We expect a limit model which is a SPDE with unknown
ρ =

∫
V fdµ(v)

 We use test functions of the form ϕ(f ) = ϕ(ρ). And consider
Lεϕε, ϕε = ϕ+ εϕ1 + ε2ϕ2.

 Order −2 : L2ϕ = 0 → automatically satisfied.

 Order −1 : L1ϕ+ L2ϕ1 = 0



Perturbed test function method:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(σ(f̄ )Lf ,Dϕ) +

1

ε
(nf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (nf ,Dϕ), L2ϕ = (σ(f̄ )Lf ,Dϕ) + Mϕ.

We expect a limit model which is a SPDE with unknown
ρ =

∫
V fdµ(v)

 We use test functions of the form ϕ(f ) = ϕ(ρ). And consider
Lεϕε, ϕε = ϕ+ εϕ1 + ε2ϕ2.

 Order −2 : L2ϕ = 0 → automatically satisfied.

 Order −1 : L1ϕ+ L2ϕ1 = 0



Perturbed test function method:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(σ(f̄ )Lf ,Dϕ) +

1

ε
(nf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (nf ,Dϕ), L2ϕ = (σ(f̄ )Lf ,Dϕ) + Mϕ.

We expect a limit model which is a SPDE with unknown
ρ =

∫
V fdµ(v)

 We use test functions of the form ϕ(f ) = ϕ(ρ). And consider
Lεϕε, ϕε = ϕ+ εϕ1 + ε2ϕ2.

 Order −2 : L2ϕ = 0 → automatically satisfied.

 Order −1 : L1ϕ+ L2ϕ1 = 0



Inversion of L2 :

L2ψ = (σ(f̄ )Lf ,Dψ) + Mψ = Φ

I This is the generator of the process (g(t; f , n),m(t; f , n)) :

d

dt
g = σ(ḡ)Lg = σ(ḡ)

(∫
V
g dµ(v)− g

)
= σ(ḡ) (ρ− g) , g(0) = f ,

where m is the driving process starting form n at t = 0.

I Explicit solution : ρ =
∫
V g(t)dµ(v) =

∫
V fdµ(v)

 g(t) = e−σ(ḡ)t f + (1− e−σ(ḡ)t)ρ.
 

ψ(f , n) = L−1
2 Φ(f , n) = −

∫ ∞
0

E (Φ(g(t; f , n);m(t; f , n))) dt

if

∫
E

Φ(ρ, n)dν(n) = 0.
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Perturbed test function method:
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(Af ,Dϕ) +

1
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(σ(f̄ )Lf ,Dϕ) +

1

ε
(nf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (nf ,Dϕ), L2ϕ = (σ(f̄ )Lf ,Dϕ) + Mϕ

 Order −2 : L2ϕ = 0 → automatically satisfied

 Order −1 : L1ϕ+ L2ϕ1 = 0∫
E
L1ϕ(ρ, n)dν(n) =

∫
E
−(Aρ,Dϕ) + (nρ,Dϕ)dν(n) = 0

→ ϕ1 = −L−1
2 L1ϕ =∫ ∞

0
−(Ag(t; f , n),Dϕ) + (m(t; f , n)g(t, f , n),Dϕ)dt



Perturbed test function method:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(σ(f̄ )Lf ,Dϕ) +

1

ε
(nf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (nf ,Dϕ), L2ϕ = (σ(f̄ )Lf ,Dϕ) + Mϕ

 Order −2 : L2ϕ = 0 → automatically satisfied

 Order −1 : L1ϕ+ L2ϕ1 = 0∫
E
L1ϕ(ρ, n)dν(n) =

∫
E
−(Aρ,Dϕ) + (nρ,Dϕ)dν(n) = 0

→ ϕ1 = −L−1
2 L1ϕ =∫ ∞

0
−(Ag(t; f , n),Dϕ) + (m(t; f , n)g(t, f , n),Dϕ)dt



Perturbed test function method:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(Lf ,Dϕ) +

1

ε
(m,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (m,Dϕ), L2ϕ = (Lf ,Dϕ) + Mϕ

 Order −2 : L2ϕ = 0 → automatically satisfied

 Order −1 : L1ϕ+ L2ϕ1 = 0∫
E
L1ϕ(ρ, n)dν(n) =

∫
E
−(Aρ,Dϕ) + (nρ,Dϕ)dν(n) = 0

→ ϕ1 = −L−1
2 L1ϕ = −(A

(
σ(ρ)−1f

)
,Dϕ)− (fM−1n,Dϕ).



Perturbed test function method:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(Lf ,Dϕ) +

1

ε
(m,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ) + (m,Dϕ), L2ϕ = (Lf ,Dϕ) + Mϕ

 Order −2 : L2ϕ = 0 → automatically satisfied

 Order −1 :
L1ϕ+ L2ϕ1 = 0, ϕ1 = −(A

(
σ(ρ)−1f

)
,Dϕ)− (fM−1n,Dϕ).

 Order 0 : L1ϕ1 + L2ϕ2 = Lϕ → Lϕ(ρ) =

∫
E
L1ϕ1(ρ, n)dν(n).



Limit generator:

Lϕ =

∫
E
L1ϕ1dν(n)

= (Aρ,Dϕ)−
∫
E

(
(ρnM−1n,Dϕ(ρ)) + D2ϕ(ρ) · (ρM−1n, ρn)

)
dν(n).

where
Aρ = div(

(
σ(ρ)−1

)
K∇ρ)

This is the generator of

dρ = div(K∇ρ)dt + ρ ◦ Q1/2dW (t)

= div(K∇ρ)dt +
1

2
Fρ+ ρQ1/2dW (t).



Limit ε→ 0

I To complete the proof, we need to prove tightness of the laws
of ρε = f̄ ε.

I Bound in L2(TN): Take ϕ(f ) = ‖f ‖2
L2

(weigthed norm: ‖f ‖2
L2 =

∫
TN×V f 2(x , v)F−1(v)dxdv .)

I It is not a function of ρ = f̄ but it is possible to compute
correctors and obtain a bound on ‖f ε‖L2(TN) in L∞(0,T ).

I This implies tightness in C ([0,T ];H−η(TN)), η > 0.

I This is not sufficient to deal with the nonlinear term.



Limit ε→ 0

I We also have a bound 1
ε‖Lf

ε‖L2 in L2(0,T ).

I ε∂t f
ε + a(v) · ∇x f

ε = 1
εσ(f̄ ε)Lf ε + mεf ε is bounded in

L2(0,T ; L2(TN)).

I Averaging Lemma: Assume

∀ε > 0, ∀(ξ, α) ∈ SN−1×R, µ ({v ∈ V , |a(v) · ξ + α| < ε}) ≤ εθ,

for some θ > 0.
If f ε and ε∂t f

ε + a(v) · ∇x f
ε are bounded in L2(0,T ; L2(TN))

then ρε = f̄ ε is bounded in L2(0,T ;Hs), for s < θ/2.

I We get tightness in L2(0,T ; L2(TN))



Limit ε→ 0

Theorem Let f ε0 ∈ L2
x ,v and

ρ0 :=

∫
V
f0dµ.

Under the above assumptions on the velocities a and on the driving
process mε, we have: for all η > 0, the density ρε :=

∫
V f εdµ

converge in law in C ([0,T ];H−η) and in L2(0,T ;Hs) to the
solution ρ of the equation

dρ = div(σ(ρ)−1K∇ρ)dt + ρ ◦ Q1/2dW (t), in R+
t × Td ,

= div(σ(ρ)−1K∇ρ)dt +
1

2
Fρ+ ρQ1/2dW (t), in R+

t × Td ,

with initial data ρ0, where W is a cylindrical Wiener process on
L2(Td), Q is a nuclear operator on L2(Td) determined by the
correlation of m.



Coefficient Q in the limit model

It is associated to a kernel k :

Qf (x) =

∫
Td

k(x , y)f (y)dy , f ∈ L2(Td),

where

k(x , y) := E
∫
R
m(0)(y)m(t)(x)dt, x , y ∈ Td .

The Itô correction :
F (x) = k(x , x).



The noise as a force (linear case):

∂t f
ε +

1

ε
a(v) · ∇x f

ε +
1

ε2
mε · ∇v f =

1

ε2
Lf ε.

• mε(t) is a centered mixing markov process with values in a space
of functions E .
• v ∈ V = Td .
• a(v) = v .
• Lf = ρF − f where F is an equilibrium function satisfying:∫

V
vF (v)dµ(v) = 0.



The noise as a force (linear case):

∂t f
ε +

1

ε
v · ∇x f

ε +
1

ε2
mε · ∇v f =

1

ε2
Lf ε.

We denote by M the generator of m, then the generator of f ε,mε

is given by:

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(Lf ,Dϕ)− 1

ε2
(mBf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

where Af = v · ∇x f , Bf = ∇v f , D is the gradient with respect to
f and now

L1ϕ = −(Af ,Dϕ)

and
L2ϕ = (Lf ,Dϕ)− (mBf ,Dϕ) + Mϕ



Perturbed test function method

Lεϕε(f , n) = −1

ε
(Af ,Dϕ) +

1

ε2
(Lf ,Dϕ)− 1

ε
(mBf ,Dϕ) +

1

ε2
Mϕ

=
1

ε
L1ϕ+

1

ε2
L2ϕ

L1ϕ = −(Af ,Dϕ), L2ϕ = (Lf ,Dϕ)− (mBf ,Dϕ) + Mϕ

We expect a limit model which is a SPDE with unknown
ρ =

∫
V fdµ(v)
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Inversion of L2 :

L2ϕ = (Lf ,Dϕ) + (mBf ,Dϕ) + Mϕ

This is the generator of the process (g(t; f , n),m(t; f , n)) :

d

dt
g = Lg −mBg = ρF − g −m · ∇vg , g(0) = f ,

where m is the driving process starting form n at t = 0.

Explicit solution: ρ =
∫
V g(t)dµ(v) =

∫
V fdµ(v)

 

g(t, x , v) = e−t f (x , v −Mt) +

∫ t

0
e−(t−s)ρ(x)F (v + Ms −Mt)ds.

where Mt =
∫ t

0 m(s, x , n)ds.

 L−1
2 ψ(f , n) = −

∫ ∞
0

E (ψ(g(t; f , n);m(t; f , n))) dt if∫
E
ψ

(∫ 0

−∞
esρF (v −

∫ 0

s
m(σ, n)dσ)ds, n

)
dν(n) = 0.



Inversion of L2 :

L2ϕ = (Lf ,Dϕ) + (mBf ,Dϕ) + Mϕ

This is the generator of the process (g(t; f , n),m(t; f , n)) :

d

dt
g = Lg −mBg = ρF − g −m · ∇vg , g(0) = f ,

where m is the driving process starting form n at t = 0.

Explicit solution: ρ =
∫
V g(t)dµ(v) =

∫
V fdµ(v)

 

g(t, x , v) = e−t f (x , v −Mt) +

∫ t

0
e−(t−s)ρ(x)F (v + Ms −Mt)ds.

where Mt =
∫ t

0 m(s, x , n)ds.

 L−1
2 ψ(f , n) = −

∫ ∞
0

E (ψ(g(t; f , n);m(t; f , n))) dt if∫
E
ψ

(∫ 0

−∞
esρF (v −

∫ 0

s
m(σ, n)dσ)ds, n

)
dν(n) = 0.



Inversion of L2 :

L2ϕ = (Lf ,Dϕ) + (mBf ,Dϕ) + Mϕ

This is the generator of the process (g(t; f , n),m(t; f , n)) :

d

dt
g = Lg −mBg = ρF − g −m · ∇vg , g(0) = f ,

where m is the driving process starting form n at t = 0.

Explicit solution: ρ =
∫
V g(t)dµ(v) =

∫
V fdµ(v)

 

g(t, x , v) = e−t f (x , v −Mt) +

∫ t

0
e−(t−s)ρ(x)F (v + Ms −Mt)ds.

where Mt =
∫ t

0 m(s, x , n)ds.

 L−1
2 ψ(f , n) = −

∫ ∞
0

E (ψ(g(t; f , n);m(t; f , n))) dt if∫
E
ψ

(∫ 0

−∞
esρF (v −

∫ 0

s
m(σ, n)dσ)ds, n

)
dν(n) = 0.



Inversion of L2 :

L2ϕ = (Lf ,Dϕ) + (mBf ,Dϕ) + Mϕ

This is the generator of the process (g(t; f , n),m(t; f , n)) :

d

dt
g = Lg −mBg = ρF − g −m · ∇vg , g(0) = f ,

where m is the driving process starting form n at t = 0.

Explicit solution: ρ =
∫
V g(t)dµ(v) =

∫
V fdµ(v)

 

g(t, x , v) = e−t f (x , v −Mt) +

∫ t

0
e−(t−s)ρ(x)F (v + Ms −Mt)ds.

where Mt =
∫ t

0 m(s, x , n)ds.

 L−1
2 ψ(f , n) = −

∫ ∞
0

E (ψ(g(t; f , n);m(t; f , n))) dt if∫
E
ψ

(∫ 0

−∞
esρF (v −

∫ 0

s
m(σ, n)dσ)ds, n

)
dν(n) = 0.



Perturbed test function method:
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Limit generator:
Very long computations ...

We obtain the limit SPDE:

dρ = div((K+H)∇ρ)dt+div(ρG ) + div(ρ ◦ Q1/2dW (t)), in R+
t × Td ,

The operator Q:

Qf (x) =

∫
Td

k(x , y)f (y)dy , f ∈ L2(Td),

where

k(x , y) := E
∫
R
m(0)(y)⊗m(t)(x)dt, x , y ∈ Td .

The extra (deterministic) diffusion:

H(x) := E
∫ ∞

0
e−sm(0)(x)⊗m(t)(x)dt, x ∈ Td .
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