Diffusive limits for stochastic kinetic equations

Arnaud Debussche

Ecole Normale Supérieure de Rennes. Joint work with S. De Moor (ENS Rennes) and J. Vovelle (Lyon 1).

> MSRI, Berkeley October 19th, 2015

> > ▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Kinetic models

Many physical systems are described by a kinetic equation:

 $\partial_t f + a(v) \cdot \nabla_x f = Q(f),$

- ▶ $v \in V$ represents the various degrees of freedom of a particle, a(v) is its velocity (often a(v) = v).
- *f*(*x*, *v*) is the distribution function of the particles with degrees of freedom *v* at position *x* ∈ T^N (in this talk).
- ► V is endowed with a probability measure μ and the averaged velocity is zero : $\bar{a} = \int_V a(v) d\mu = 0$.
- Q accounts for the interaction between particles or between a particle and the medium.
- ▶ In general, it has a family of equilibrium F such that: Q(f) = 0 iff $f = \overline{f}F = (\int_V fd\mu)F$ with F > 0, $\overline{F} = 1$.
- ► Often, a small parameter ε is present in the equation and, after rescaling, the following equation is obtained:

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} Q(f^{\varepsilon}),$$

Radiative transfer and Rosseland approximation

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\overline{f}) L f^{\varepsilon},$$

with $L(f) = \overline{f}F - f$ describes the interaction between a surrounding continuous medium and a flux of photons radiating through it in the absence of hydrodynamical motion.

► The unknown f^ε(t, x, v) then stands for a distribution function of photons having position x and velocity v at time t.

• The function σ is the opacity of the matter.

Radiative transfer and Rosseland approximation

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\overline{f}) L f^{\varepsilon},$$

with $L(f) = \overline{f}F - f$ describes the interaction between a surrounding continuous medium and a flux of photons radiating through it in the absence of hydrodynamical motion.

- ► The unknown f^ε(t, x, v) then stands for a distribution function of photons having position x and velocity v at time t.
- The function σ is the opacity of the matter.
- When the surrounding medium becomes very large compared to the mean free paths ε of photons, f^ε is known to behave like ρ the solution of the Rosseland equation

 $\partial_t \rho - \operatorname{div}_x(\sigma(\rho)^{-1} K \nabla_x \rho) = 0, \qquad (t, x) \in [0, T] \times \mathbb{T}^N.$

with $K := \int_V a(v) \otimes a(v) dv$. This is called the Rosseland approximation. (Bardos, Golse, Perthame, Sentis)

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}) L(f^{\varepsilon}), \quad L(f) = \bar{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}) L(f^{\varepsilon}), \quad L(f) = \bar{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 \rightsquigarrow order -2: $Lf_0 = \overline{f}_0 - f_0 = 0$ and $f_0 = \overline{f}_0 = \rho$. (We assume $0 < \sigma_* < \sigma(\rho) < \sigma^*, \ \rho \in \mathbb{R}$).

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}) L(f^{\varepsilon}), \quad L(f) = \bar{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 $\label{eq:condition} \stackrel{}{\rightsquigarrow} \text{ order } -2: \ Lf_0 = \bar{f}_0 - f_0 = 0 \ \text{and} \ f_0 = \bar{f}_0 = \rho. \\ \text{(We assume } 0 < \sigma_* \leq \sigma(\rho) \leq \sigma^*, \ \rho \in \mathbb{R}\text{)}.$

 \rightsquigarrow order -1: $a(v) \cdot \nabla_{\times} \rho = \sigma(\rho) L(f_1).$

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}) L(f^{\varepsilon}), \quad L(f) = \bar{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 $\label{eq:condition} \stackrel{}{\rightsquigarrow} \text{ order } -2: \ Lf_0 = \bar{f}_0 - f_0 = 0 \ \text{and} \ f_0 = \bar{f}_0 = \rho. \\ \text{(We assume } 0 < \sigma_* \leq \sigma(\rho) \leq \sigma^*, \ \rho \in \mathbb{R}\text{)}.$

 \rightsquigarrow order -1: $a(v) \cdot \nabla_x \rho = \sigma(\rho) L(f_1)$. The equation

$$L(g) = \overline{g} - g = \int_V g d\mu - g = h$$

can be solved iff $\int_V h d\mu = 0$ and in this case, we can take g = -h.

Recall that $\int_V a(v) d\mu = 0 \rightarrow f_1 = -\sigma(\rho)^{-1} a(v) \cdot \nabla_{\times} \rho$

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon}, \quad L(f) = \bar{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 \rightsquigarrow order -2: $L(f_0) = 0$ and $f_0 = \int_V f_0 d\mu = \rho$.

 \rightsquigarrow order -1: $a(v) \cdot \nabla_{\times} \rho = L(f_1) \longrightarrow f_1 = -\sigma(\rho)^{-1}a(v) \cdot \nabla_{\times} \rho$.

 \rightsquigarrow order 0 : $\partial_t \rho + a(v) \cdot \nabla_x f_1 = \sigma(\rho) L(f_2)$

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(\mathbf{v}) \cdot \nabla_{\mathbf{x}} f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\overline{f}^{\varepsilon}) L f^{\varepsilon}, \quad L(f) = \overline{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 \rightsquigarrow order -2: $L(f_0) = 0$ and $f_0 = \int_V f_0 d\mu = \rho$.

 \rightsquigarrow order -1: $a(v) \cdot \nabla_{\times} \rho = L(f_1) \longrightarrow f_1 = -\sigma(\rho)^{-1}a(v) \cdot \nabla_{\times} \rho$.

 \rightsquigarrow order 0 : $\partial_t \rho + a(v) \cdot \nabla_x f_1 = \sigma(\rho) L(f_2)$

$$\longrightarrow \quad \partial_t \rho - \int_V a(v) \cdot \nabla_x (\sigma(\rho)^{-1} a(v) \cdot \nabla_x \rho) d\mu = 0$$

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\overline{f}^{\varepsilon}) L f^{\varepsilon}, \quad L(f) = \overline{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 \rightsquigarrow order -2: $L(f_0) = 0$ and $f_0 = \int_V f_0 d\mu = \rho$.

 \rightsquigarrow order -1: $a(v) \cdot \nabla_{\times} \rho = L(f_1) \longrightarrow f_1 = -\sigma(\rho)^{-1}a(v) \cdot \nabla_{\times} \rho$.

 \rightsquigarrow order 0 : $\partial_t \rho + a(v) \cdot \nabla_x f_1 = \sigma(\rho) L(f_2)$

$$\longrightarrow \partial_t \rho - \int_V a(v) \cdot \nabla_x (\sigma(\rho)^{-1} a(v) \cdot \nabla_x \rho) d\mu = 0$$

$$\longrightarrow \partial_t \rho - \operatorname{div} \left(\sigma(\rho)^{-1} K \nabla_x \rho \right) = 0,$$

with

$$K := \int_{V} a(v) \otimes a(v) d\mu(v).$$

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon}, \ L(f) = \bar{f}F - f.$$

When $\varepsilon \to 0$, the density $\rho^{\varepsilon} := \int_V f^{\varepsilon} d\mu$ converges to the solution ρ of the diffusion equation

$$\partial_t \rho - \operatorname{div}(\sigma(\rho)^{-1} K \nabla \rho) = 0$$

with initial data $\rho_0 = \int_V f_0 d\mu$. We assume $\int_V a(v)F(v)d\mu(v) = 0$ and:

 $\forall \varepsilon > 0, \forall (\xi, \alpha) \in S^{N-1} \times \mathbb{R}, \ \mu \left(\{ v \in V, |a(v) \cdot \xi + \alpha| < \varepsilon \} \right) \le \varepsilon^{\theta},$ for some $\theta > 0$.

The stochastic case

We first consider a similar model with time white noise:

 $df^{\varepsilon} + \frac{1}{\varepsilon}a(v) \cdot \nabla_{x}f^{\varepsilon} dt = \frac{1}{\varepsilon^{2}}\sigma(\bar{f}^{\varepsilon})Lf^{\varepsilon}dt + f^{\varepsilon} \circ QdW_{t},$ $x \in \mathbb{T}^{N}, v \in V, Lf = \bar{f}F - f.$

- The noise represents randoms creations/absorptions of photons.
- We expect to obtain a stochastic quasilinear parabolic equation at the limit.
- We adapt the Hilbert expansion method.
- ► We first have to prove existence of f^ε, we need non degeneracy of a:

 $\forall \varepsilon > 0, \forall (\xi, \alpha) \in S^{N-1} \times \mathbb{R}, \ \mu \left(\{ v \in V, |a(v) \cdot \xi + \alpha| < \varepsilon \} \right) \le \varepsilon^{\theta},$

for some $\theta > 0$.

Hilbert expansion, stochastic case

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon} + f^{\varepsilon} \circ Q dW_t, \quad L(f) = \bar{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 \rightsquigarrow order -2: $Lf_0 = 0$ and $f_0 = \int_V f_0 d\mu = \rho$.

 $\rightsquigarrow \text{ order } -1: a(v) \cdot \nabla_{\times} \rho = \sigma(\rho) L f_1 \longrightarrow f_1 = -\sigma(\rho)^{-1} a(v) \cdot \nabla_{\times} \rho.$

 \rightsquigarrow order 0 : $\partial_t \rho + a(v) \cdot \nabla_x f_1 = \sigma(\rho) L f_2 + \rho \circ Q d W_t$

Hilbert expansion, stochastic case

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon} + f^{\varepsilon} \circ Q dW_t, \quad L(f) = \bar{f} - f.$$

Hilbert expansion (formal): $f^{\varepsilon} = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

 \rightsquigarrow order -2: $Lf_0 = 0$ and $f_0 = \int_V f_0 d\mu = \rho$.

$$\rightsquigarrow$$
 order -1 : $a(v) \cdot \nabla_{x} \rho = \sigma(\rho) L f_{1} \longrightarrow f_{1} = -\sigma(\rho)^{-1} a(v) \cdot \nabla_{x} \rho.$

$$\stackrel{\text{$\sim $\rightarrow $ order 0 : } \partial_t \rho + a(v) \cdot \nabla_x f_1 = \sigma(\rho) L f_2 + \rho \circ Q dW_t $} \\ \stackrel{\text{$\sim $\rightarrow $} \partial_t \rho - \operatorname{div} \left(\sigma(\rho)^{-1} \left(\int_V a(v) \otimes a(v) d\mu \right) \nabla_x \rho \right) = \rho \circ Q dW_t. $ \\ \text{$and $} \\ \end{aligned}$$

$$\operatorname{div}\left(\sigma(\rho)^{-1}\left(a(v)\otimes a(v)-\int_{V}a(v)\otimes a(v)d\mu\right)\nabla_{x}\rho\right)=\sigma(\rho)Lf_{2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• We take the solution of the SPDE:

$$\partial_t \rho - \operatorname{div}\left(\sigma(\rho)^{-1}\left(\int_V a(v)\otimes a(v)d\mu\right)\nabla_x \rho\right) = \rho \circ Q dW_t.$$

It is smooth is space provided the noise and initial data are also smooth. (D., De Moor, Hofmanova).

• Define: $f_1 = -\sigma(\rho)^{-1}a(v) \cdot \nabla_x \rho$ and

$$f_2 = -\operatorname{div}\left(\sigma(\rho)^{-1}\left(a(v) \otimes a(v) - \int_V a(v) \otimes a(v)d\mu\right)\nabla_x\rho\right).$$

$$\blacktriangleright \text{ Set } r^{\varepsilon} = f^{\varepsilon} - \rho - \varepsilon f_1 - \varepsilon^2 f_2$$

Þ

• We take the solution of the SPDE:

$$\partial_t \rho - \operatorname{div}\left(\sigma(\rho)^{-1}\left(\int_V a(v)\otimes a(v)d\mu\right)\nabla_x \rho\right) = \rho \circ Q dW_t.$$

It is smooth is space provided the noise and initial data are also smooth. (D., De Moor, Hofmanova).

• Define: $f_1 = -\sigma(\rho)^{-1}a(v) \cdot \nabla_{\times}\rho$ and

$$f_2 = -\operatorname{div}\left(\sigma(\rho)^{-1}\left(a(v) \otimes a(v) - \int_V a(v) \otimes a(v)d\mu\right)\nabla_{\times}\rho\right).$$

• Set

$$r^{\varepsilon} = f^{\varepsilon} - \rho - \varepsilon f_1 - \varepsilon^2 f_2$$

then, with $df_1 = f_{1,d}dt + \Psi_1^{\flat}dW$,

$$dr^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_{x} r^{\varepsilon} dt = \frac{1}{\varepsilon^{2}} \left[\sigma(\bar{f}^{\varepsilon}) L(f^{\varepsilon}) - \sigma(\rho) L(f^{\varepsilon} - r^{\varepsilon}) \right] dt - \varepsilon a(v) \cdot \nabla_{x} f_{2} dt + (f^{\varepsilon} - \rho - \varepsilon f_{1}) Q dW_{t} + G(f^{\varepsilon} - \rho) dt - \varepsilon f_{1,d} dt - \varepsilon \Psi_{1}^{\flat} dW_{t} - \varepsilon^{2} df_{2}.$$

$$dr^{\varepsilon} + \frac{1}{\varepsilon}a(v) \cdot \nabla_{x}r^{\varepsilon}dt = \frac{1}{\varepsilon^{2}} \left[\sigma(\bar{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]dt - \varepsilon a(v) \cdot \nabla_{x}f_{2}dt + (f^{\varepsilon} - \rho - \varepsilon f_{1})QdW_{t} + G(f^{\varepsilon} - \rho)dt - \varepsilon f_{1,d}dt - \varepsilon \Psi_{1}^{b}dW_{t} - \varepsilon^{2}df_{2}.$$

The terms: $\frac{1}{\varepsilon}a(v) \cdot \nabla_{\times}r^{\varepsilon}$ and $\frac{1}{\varepsilon^2} \left[\sigma(\bar{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]$ behave well in L^1 :

$$\frac{1}{\varepsilon}\int_{\mathbb{T}^N\times V} (a(v)\cdot \nabla_x r^{\varepsilon}) \operatorname{sign}(r^{\varepsilon}) d\mu dx = 0,$$

 $\frac{1}{\varepsilon^2}\int_{\mathbb{T}^N\times V}\left[\sigma(\bar{f}^\varepsilon)L(f^\varepsilon)-\sigma(\rho)L(f^\varepsilon-r^\varepsilon)\right]\operatorname{sign}(r^\varepsilon)d\mu dx\leq 0.$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$dr^{\varepsilon} + \frac{1}{\varepsilon}a(v) \cdot \nabla_{x}r^{\varepsilon}dt = \frac{1}{\varepsilon^{2}} \left[\sigma(\bar{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]dt - \varepsilon a(v) \cdot \nabla_{x}f_{2}dt + (f^{\varepsilon} - \rho - \varepsilon f_{1})QdW_{t} + G(f^{\varepsilon} - \rho)dt - \varepsilon f_{1,d}dt - \varepsilon \Psi_{1}^{b}dW_{t} - \varepsilon^{2}df_{2}.$$

The terms: $\frac{1}{\varepsilon}a(v) \cdot \nabla_{\times}r^{\varepsilon}$ and $\frac{1}{\varepsilon^2} \left[\sigma(\bar{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]$ behave well in L^1 :

$$\frac{1}{\varepsilon}\int_{\mathbb{T}^N\times V} \left(a(v)\cdot\nabla_x r^{\varepsilon}\right)\,\operatorname{sign}(r^{\varepsilon})d\mu dx=0,$$

 $\frac{1}{\varepsilon^2}\int_{\mathbb{T}^N\times V}\left[\sigma(\bar{f}^\varepsilon)L(f^\varepsilon)-\sigma(\rho)L(f^\varepsilon-r^\varepsilon)\right]\operatorname{sign}(r^\varepsilon)d\mu dx\leq 0.$

Problem: we cannot use Itô formula for $||r^{\varepsilon}||_{L^1}$.

$$dr^{\varepsilon} + \frac{1}{\varepsilon}a(v) \cdot \nabla_{x}r^{\varepsilon}dt = \frac{1}{\varepsilon^{2}} \left[\sigma(\bar{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]dt - \varepsilon a(v) \cdot \nabla_{x}f_{2}dt + (f^{\varepsilon} - \rho - \varepsilon f_{1})QdW_{t} + G(f^{\varepsilon} - \rho)dt - \varepsilon f_{1,d}dt - \varepsilon \Psi_{1}^{\flat}dW_{t} - \varepsilon^{2}df_{2}.$$

The terms: $\frac{1}{\varepsilon}a(v) \cdot \nabla_{x}r^{\varepsilon}$ and $\frac{1}{\varepsilon^{2}}\left[\sigma(\overline{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]$ behave well in L^{1} . Problem: we cannot use Itô formula for $||r^{\varepsilon}||_{L^{1}}$.

- We use Itô formula for a δ smoothed version of the L^1 norm.
- This introduces singular terms in the Itô correction: the second derivative of this smoothed L¹ norm is of order ¹/_δ multiplied by ε².
- The use of a modified L^1 norm introduces a term of order $\frac{\delta}{c^2}$.

$$dr^{\varepsilon} + \frac{1}{\varepsilon}a(v) \cdot \nabla_{x}r^{\varepsilon}dt = \frac{1}{\varepsilon^{2}} \left[\sigma(\bar{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]dt - \varepsilon a(v) \cdot \nabla_{x}f_{2}dt + (f^{\varepsilon} - \rho - \varepsilon f_{1})QdW_{t} + G(f^{\varepsilon} - \rho)dt - \varepsilon f_{1,d}dt - \varepsilon \Psi_{1}^{\flat}dW_{t} - \varepsilon^{2}df_{2}.$$

The terms: $\frac{1}{\varepsilon}a(v) \cdot \nabla_{x}r^{\varepsilon}$ and $\frac{1}{\varepsilon^{2}}\left[\sigma(\overline{f}^{\varepsilon})L(f^{\varepsilon}) - \sigma(\rho)L(f^{\varepsilon} - r^{\varepsilon})\right]$ behave well in L^{1} . Problem: we cannot use Itô formula for $||r^{\varepsilon}||_{L^{1}}$.

- We use Itô formula for a δ smoothed version of the L^1 norm.
- This introduces singular terms in the Itô correction: the second derivative of this smoothed L¹ norm is of order ¹/_δ multiplied by ε².
- The use of a modified L^1 norm introduces a term of order $\frac{\delta}{\epsilon^2}$.
- \rightarrow We need to kill the noise term of order ε .
- \rightarrow We need a third corrector f_3 such that

$$\varepsilon^2 df_3 - \sigma(\rho) L(f_3) dt = \Psi_1^{\flat} dW_t$$

The convergence result

Theorem Let f^{ε} denote the solution of the kinetic problem

$$\begin{array}{ll} df^{\varepsilon} \ + \ \frac{1}{\varepsilon} a(v) \cdot \nabla_{x} f^{\varepsilon} \ dt \ = \ \frac{1}{\varepsilon^{2}} \sigma(\bar{f}^{\varepsilon}) (\bar{f}^{\varepsilon} F - f^{\varepsilon})) dt \ + f^{\varepsilon} \circ Q dW_{t}, \\ x \in \mathbb{T}^{N}, \ v \in V. \end{array}$$

and ρ the solution of the non-linear stochastic partial differential equation

$$\partial_t \rho - \operatorname{div} \left(\sigma(\rho)^{-1} K \nabla_x \rho \right) = \rho \circ Q dW_t,$$

where K denotes the matrix $(\int_V a(v) \otimes a(v)d\mu)$. Then, the solution f^{ε} converges as ε tends to 0 to the fluid limit ρ and we have the estimate:

$$\sup_{t\in[0,T]} \mathbb{E} \|f_t^{\varepsilon} - \rho_t\|_{L^1_{x,v}} \leq C\varepsilon.$$

Another model with "real noise"

We now start with a noise with non vanishing correlation length:

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon} + \frac{1}{\varepsilon} f^{\varepsilon} m(\frac{t}{\varepsilon^2}),$$

where m(t) is an ergodic centered markov process with values in a space of functions of x.

- We assume (V, μ) is a measured space, μ is a probability measure, a ∈ L[∞](V; ℝ^N), N ≥ 1 and x ∈ T^N.
- The equation is set in $\mathbb{R}_t^+ \times \mathbb{T}_x^N \times V_v$, with initial data $f^{\varepsilon}(0) = f_0$.
- ► As before, $L = \overline{f}F f$ and the velocities are centered: $\int_V a(v)d\mu(v) = \int_V a(v)F(v)d\mu(v) = 0$ and non degenerate:

 $\forall \varepsilon > 0, \forall (\xi, \alpha) \in S^{N-1} \times \mathbb{R}, \ \mu \left(\{ v \in V, |a(v) \cdot \xi + \alpha| < \varepsilon \} \right) \le \varepsilon^{\theta}.$

► Existence and uniqueness of f^e is classical under these assumptions.

Diffusion approximation :

We consider a differential equation in \mathbb{R}^d with random coefficients:

$$\frac{dx_t^{\varepsilon}}{dt} = F(x_t^{\varepsilon}, m_t^{\varepsilon}) + \frac{1}{\varepsilon}G(x_t^{\varepsilon}, m_t^{\varepsilon}).$$

The driving process m_t^{ε} scales like $m_t^{\varepsilon} = m(\varepsilon^{-2}t)$ where m_t is a \mathbb{R}^d valued homogeneous stationary and mixing Markov process. If $G \equiv 0$, then $x_t^{\varepsilon} \to \overline{x}_t$ where

$$\frac{d\overline{x}}{dt} = \overline{F}(\overline{x}_t), \quad \overline{F}(x) := \int_{\mathbb{R}} F(x, n) d\nu(n).$$

and ν is the invariant measure of m_t .

Diffusion approximation :

We consider a differential equation in \mathbb{R}^d with random coefficients:

$$\frac{dx_t^{\varepsilon}}{dt} = F(x_t^{\varepsilon}, m_t^{\varepsilon}) + \frac{1}{\varepsilon}G(x_t^{\varepsilon}, m_t^{\varepsilon}).$$

The driving process m_t^{ε} scales like $m_t^{\varepsilon} = m(\varepsilon^{-2}t)$ where m_t is a \mathbb{R}^d valued homogeneous stationary and mixing Markov process. If $G \equiv 0$, then $x_t^{\varepsilon} \to \overline{x}_t$ where

$$\frac{d\overline{x}}{dt} = \overline{F}(\overline{x}_t), \quad \overline{F}(x) := \int_{\mathbb{R}} F(x, n) d\nu(n),$$

and ν is the invariant measure of m_t . We are interested in the case:

$$G \neq 0, \quad \int_{\mathbb{R}} G(\cdot, n) d\nu(n) \equiv 0 ?$$

We concentrate on the case: G(x, m) = G(x)m.

Donsker Theorem

Let (ξ_i) be i.i.d centered random variables, with variance $\sigma^2 < +\infty$. Let

$$X_n(t) = \frac{1}{\sigma\sqrt{n}} \left(\xi_1 + \cdots + \xi_{nt}\right), \quad t \in [0,1],$$

the random variable on $C = C([0, 1]; \mathbb{R})$ defined by linear interpolation between the points t = i/n. Then

 $X_n \rightarrow \beta$

where β is a brownian motion on *C*. The convergence is in law.

Donsker Theorem

Let (ξ_i) be i.i.d centered random variables, with variance $\sigma^2 < +\infty$. Let

$$X_n(t) = \frac{1}{\sigma\sqrt{n}} \left(\xi_1 + \cdots + \xi_{nt}\right), \quad t \in [0,1],$$

the random variable on $C = C([0, 1]; \mathbb{R})$ defined by linear interpolation between the points t = i/n. Then

 $X_n \rightarrow \beta$

where β is a brownian motion on *C*. The convergence is in law.

$$M^{arepsilon}_t = rac{1}{arepsilon} \int_0^t m(rac{s}{arepsilon^2}) ds \sim arepsilon \sum_0^{\left[rac{t}{arepsilon^2}
ight]} \int_k^{k+1} m(s) ds o W_t,$$

where $W = (\beta_1, \ldots, \beta_d)$ is *d* dimensional brownian motion.

Problem: We assume that the driving process m_t^{ε} scales like $m_t^{\varepsilon} = m(\varepsilon^{-2}t)$ where m_t is homogeneous and stationary Markov process. We assume that it is mixing with invariant measure ν . Let

$$\frac{d}{dt}x_t^{\varepsilon} = F(x_t^{\varepsilon}) + \frac{1}{\varepsilon}G(x_t^{\varepsilon})m_t^{\varepsilon},$$

We expect that at the limit $\varepsilon \to 0$, x^{ε} converges in law to the solution of:

$$dx_t = F(x_t) + G(x_t) \circ dW_t.$$

Problem: We assume that the driving process m_t^{ε} scales like $m_t^{\varepsilon} = m(\varepsilon^{-2}t)$ where m_t is homogeneous and stationary Markov process. We assume that it is mixing with invariant measure ν . Let

$$\frac{d}{dt}x_t^{\varepsilon} = F(x_t^{\varepsilon}) + \frac{1}{\varepsilon}G(x_t^{\varepsilon})m_t^{\varepsilon},$$

We expect that at the limit $\varepsilon \to 0$, x^{ε} converges in law to the solution of:

$$dx_t = F(x_t) + G(x_t) \circ dW_t.$$

To prove this we use the generator of $(x^{\varepsilon}, m^{\varepsilon})$. We denote by M the generator of m, then $(x_t^{\varepsilon}, m_t^{\varepsilon})$ has the following generator:

$$\mathcal{L}^{\varepsilon}\Phi(x,n) = \left(F(x) + \frac{1}{\varepsilon}G(x)n, D_{x}\Phi(x,n)\right) + \frac{1}{\varepsilon^{2}}M\Phi(x,n),$$

$$\Phi \in C_{b}^{2}(\mathbb{R}^{2d}).$$

Let $v^{\varepsilon}(t,x,n) = \mathbb{E}(\varphi(x_t^{\varepsilon}(x), m_t^{\varepsilon}(n)))$, then $\frac{d}{dt}v^{\varepsilon} = \mathcal{L}^{\varepsilon}v^{\varepsilon}$

Evolution of $\mathbb{E}(\varphi(x_t^{\varepsilon}))$:

$$\mathcal{L}^{\varepsilon}\varphi(x^{\varepsilon}) = \left(F(x^{\varepsilon}) + \frac{1}{\varepsilon}G(x^{\varepsilon}, n), D_{x}\varphi(x)\right)$$

・ロト・日本・モト・モート ヨー うへで

 \rightsquigarrow No information as $\varepsilon \rightarrow 0$.

Evolution of $\mathbb{E}(\varphi(x_t^{\varepsilon}))$:

$$\mathcal{L}^{\varepsilon}\varphi(x^{\varepsilon}) = \left(F(x^{\varepsilon}) + \frac{1}{\varepsilon}G(x^{\varepsilon}, n), D_{x}\varphi(x)\right)$$

 \rightsquigarrow No information as $\varepsilon \rightarrow 0$.

 \rightsquigarrow We try to find correctors $\varphi_1, \varphi_2 \in C_b^2(\mathbb{R}^d \times \mathbb{R}^d)$ such that the perturbed test function

$$\varphi^{\varepsilon} := \varphi + \varepsilon \varphi_1 + \varepsilon^2 \varphi_2,$$

satisfies

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(x,n) = \mathcal{L}\varphi(x) + \mathcal{O}(\varepsilon)$$

(Papanicolaou, Stroock, Varadhan 77. See the recent book by Fouque, Garnier, Papanicolaou and Solna)

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(x,n) = \mathcal{L}\varphi(x) + \mathcal{O}(\varepsilon), \quad \varphi^{\varepsilon} := \varphi + \varepsilon\varphi_1 + \varepsilon^2\varphi_2.$$

Write:

$$\begin{split} & \mathbb{E}(\varphi^{\varepsilon}(\mathsf{x}_{t}^{\varepsilon}, m_{t}^{\varepsilon})) \\ & = \mathbb{E}(\varphi^{\varepsilon}(\mathsf{x}_{s}^{\varepsilon}, m_{s}^{\varepsilon})) + \mathbb{E}\left(\int_{s}^{t} \mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(\mathsf{x}_{\sigma}^{\varepsilon}, m_{\sigma}^{\varepsilon})d\sigma\right) \end{split}$$

$$\mathcal{L}^{\varepsilon} \varphi^{\varepsilon}(x, n) = \mathcal{L} \varphi(x) + \mathcal{O}(\varepsilon), \quad \varphi^{\varepsilon} := \varphi + \varepsilon \varphi_1 + \varepsilon^2 \varphi_2.$$

Write:

$$\begin{split} \mathbb{E}(\varphi^{\varepsilon}(x_{t}^{\varepsilon},m_{t}^{\varepsilon})) \\ &= \mathbb{E}(\varphi^{\varepsilon}(x_{s}^{\varepsilon},m_{s}^{\varepsilon})) + \mathbb{E}\left(\int_{s}^{t}\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(x_{\sigma}^{\varepsilon},m_{\sigma}^{\varepsilon})d\sigma\right) \\ &\varepsilon \to 0 \quad \rightsquigarrow \quad \mathbb{E}(\varphi(x_{t})) = \mathbb{E}(\varphi(x_{s})) + \mathbb{E}\left(\int_{s}^{t}\mathcal{L}\varphi(x_{\sigma})d\sigma\right) \end{split}$$

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(x,n) = \mathcal{L}\varphi(x) + \mathcal{O}(\varepsilon), \quad \varphi^{\varepsilon} := \varphi + \varepsilon\varphi_1 + \varepsilon^2\varphi_2.$$

Write:

$$\mathbb{E}(\varphi^{\varepsilon}(x_{t}^{\varepsilon}, m_{t}^{\varepsilon})) = \mathbb{E}(\varphi^{\varepsilon}(x_{s}^{\varepsilon}, m_{s}^{\varepsilon})) + \mathbb{E}\left(\int_{s}^{t} \mathcal{L}^{\varepsilon} \varphi^{\varepsilon}(x_{\sigma}^{\varepsilon}, m_{\sigma}^{\varepsilon}) d\sigma\right)$$
$$\varepsilon \to 0 \quad \rightsquigarrow \quad \mathbb{E}(\varphi(x_{t})) = \mathbb{E}(\varphi(x_{s})) + \mathbb{E}\left(\int_{s}^{t} \mathcal{L}\varphi(x_{\sigma}) d\sigma\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\rightsquigarrow \mathcal{L}$ is the generator of the limit process.

Equations for the correctors

$$\mathcal{L}^{\varepsilon}\varphi(x,n) = (F(x) + \frac{1}{\varepsilon}G(x,n), D_{x}\varphi(x,n)) + \frac{1}{\varepsilon^{2}}M\varphi(x,n)$$
$$= \mathcal{L}\varphi(x) + \mathcal{O}(\varepsilon), \quad \varphi \in C_{b}^{2}(\mathbb{R}^{2}),$$
$$\varphi^{\varepsilon} := \varphi + \varepsilon\varphi_{1} + \varepsilon^{2}\varphi_{2}.$$

We derive

$$M\varphi(x)=0,\qquad (1)$$

 $(G(x)n, D_x\varphi(x)) + M\varphi_1(x, n) = 0, \qquad (2)$

 $(F(x), D_x\varphi) + (G(x)n, D_x\varphi_1(x)) + M\varphi_2(x, n) = \mathcal{L}\varphi(x).$ (3)

The first equation is satisfied since φ does not depend on *n*.

Equations for the correctors

$$\mathcal{L}^{\varepsilon}\varphi(x,n) = (F(x) + \frac{1}{\varepsilon}G(x,n), D_{x}\varphi(x,n)) + \frac{1}{\varepsilon^{2}}M\varphi(x,n)$$
$$= \mathcal{L}\varphi(x) + \mathcal{O}(\varepsilon), \quad \varphi \in C_{b}^{2}(\mathbb{R}^{2}),$$
$$\varphi^{\varepsilon} := \varphi + \varepsilon\varphi_{1} + \varepsilon^{2}\varphi_{2}.$$

We derive

$$M\varphi(x)=0,\qquad (1)$$

$$(G(x)n, D_x\varphi(x)) + M\varphi_1(x, n) = 0, \qquad (2)$$

 $(F(x), D_x\varphi) + (G(x)n, D_x\varphi_1(x)) + M\varphi_2(x, n) = \mathcal{L}\varphi(x).$ (3)

The first equation is satisfied since φ does not depend on *n*. To solve the second equation, we need to solve the Poisson equation associated to *M*.
The Poisson equation

We assume that for a large class of functions ψ such that $\int \psi(n) d\nu(n) = 0$ (ν is the invariant law of m_t), the equation

 $M heta = \psi, \quad \psi \in C_b(\mathbb{R})$

has a solution in $\theta \in C_b(E)$, unique under the condition $\int \theta(n) d\nu(n) = 0$.

The Poisson equation

We assume that for a large class of functions ψ such that $\int \psi(n) d\nu(n) = 0$ (ν is the invariant law of m_t), the equation

 $M\theta = \psi, \quad \psi \in C_b(\mathbb{R})$

has a solution in $\theta \in C_b(E)$, unique under the condition $\int \theta(n) d\nu(n) = 0$. It is given by:

$$\theta(n)=M^{-1}\psi(n):=-\int_0^\infty e^{Mt}\psi(n)dt=\int_0^\infty \mathbb{E}\psi(m_t|m(0)=n)dt.$$

 e^{Mt} is the transition semi-group associated to m_t .

Equations for the correctors

$$(G(x)n, D_x\varphi(x)) + M\varphi_1(x, n) = 0, \qquad (4)$$

$$(F(x), D_x\varphi) + (G(x)n, D_x\varphi_1(x)) + M\varphi_2(x, n) = \mathcal{L}\varphi(x). \qquad (5)$$

- ◆□▶ ◆圖▶ ★≧▶ ★≧▶ = 差 = のへぐ

Equations for the correctors

$$(G(x)n, D_x\varphi(x)) + M\varphi_1(x, n) = 0,$$
(4)
$$(F(x), D_x\varphi) + (G(x)n, D_x\varphi_1(x)) + M\varphi_2(x, n) = \mathcal{L}\varphi(x).$$
(5)

We have assumed $\int_E G(x) n d\nu(n) = 0 \rightsquigarrow$ we obtain

 $\varphi_1 = -M^{-1}(G(x)n, D_x\varphi)$

(日) (日) (日) (日) (日) (日) (日) (日)

Equations for the correctors

$$(G(x)n, D_x\varphi(x)) + M\varphi_1(x, n) = 0, \qquad (4)$$

$$(F(x), D_x\varphi) + (G(x)n, D_x\varphi_1(x)) + M\varphi_2(x, n) = \mathcal{L}\varphi(x).$$
(5)

We have assumed $\int_E G(x) n d\nu(n) = 0 \rightsquigarrow$ we obtain

$$\varphi_1 = -M^{-1}(G(x)n, D_x\varphi)$$

 $\rightsquigarrow \mathcal{L}\varphi(x) = (F(x), D_x\varphi) - \int_E (G(x)n, D_x(M^{-1}G(x)n, D_x\varphi(x)))d\nu(n).$

This is the generator associated to the SDE:

$$dx = f(X)dt + G(X)oC^{1/2}d\beta$$

where β is a *d* dimensional brownian motion and *C* is computed from $\int_E n \otimes M^{-1}n \, d\nu(n)$. If all coefficients are bounded. We obtain bounds of the form:

 $\mathbb{E}(\sup_{t\in [0,T]}|x^{arepsilon}(t)|^2)\leq c$

independent on ε and:

$$\mathbb{E}\left(|x^arepsilon(t)-x^arepsilon(s)|^4
ight)\leq |t-s|^2+arepsilon.$$

We write:

$$\mathbb{E}(arphi^arepsilon(x^arepsilon(t),m^arepsilon(t))) = \mathbb{E}(arphi^arepsilon(x^arepsilon(t_0))+\int_{t_0}^t\mathcal{L}^arepsilonarphi^arepsilon(x^arepsilon(t_0))) + \mathbb{E}\int_{t_0}^t\mathcal{L}arphi(x^arepsilon(t),m^arepsilon(t))) ds + O(arepsilon),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Back to the stochastic kinetic equation

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon} + \frac{1}{\varepsilon} f^{\varepsilon} m^{\varepsilon}(t),$$

• $m^{\varepsilon}(t)$ is a centered, mixing markov process with values in a space *E* of functions of *x*.

- (V, μ) is a measured space and μ is a probability measure.
 a ∈ L[∞](V; ℝ^d)
- $d \ge 1$ and $x \in \mathbb{T}^d$ the d dimensional torus.
- *L* is a dissipative operator.
- We assume $\int_V a(v) d\mu(v) = 0$ and

 $\forall \varepsilon > 0, \forall (\xi, \alpha) \in S^{N-1} \times \mathbb{R}, \ \mu \left(\{ v \in V, |a(v) \cdot \xi + \alpha| < \varepsilon \} \right) \le \varepsilon^{\theta},$

for some $\theta > 0$.

Back to the stochastic kinetic equation

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon} + \frac{1}{\varepsilon} f^{\varepsilon} m^{\varepsilon}(t),$$

We denote by M the generator of m, then the generator of $(f^{\varepsilon}, m^{\varepsilon})$ is:

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af,D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\bar{f})Lf,D\varphi) + \frac{1}{\varepsilon}(nf,D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Back to the stochastic kinetic equation

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon^2} \sigma(\bar{f}^{\varepsilon}) L f^{\varepsilon} + \frac{1}{\varepsilon} f^{\varepsilon} m^{\varepsilon}(t),$$

We denote by M the generator of m, then the generator of $(f^{\varepsilon}, m^{\varepsilon})$ is:

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\bar{f})Lf, D\varphi) + \frac{1}{\varepsilon}(nf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

$$= \frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$$

where $Af = a(v) \cdot \nabla_x f$, D is the gradient with respect to f and

$$\mathcal{L}_1 \varphi = -(Af, D\varphi) + (nf, D\varphi)$$

and

$$\mathcal{L}_2 \varphi = (\sigma(\overline{f})Lf, D\varphi) + M\varphi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\bar{f})Lf, D\varphi) + \frac{1}{\varepsilon}(nf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$
$$= \frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$$

・ロト・日本・モト・モート ヨー うへで

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (nf, D\varphi), \quad \mathcal{L}_2 \varphi = (\sigma(\overline{f})Lf, D\varphi) + M\varphi.$

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\overline{f})Lf, D\varphi) + \frac{1}{\varepsilon}(nf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

$$= \frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$$

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (nf, D\varphi), \quad \mathcal{L}_2 \varphi = (\sigma(\overline{f})Lf, D\varphi) + M\varphi.$

We expect a limit model which is a SPDE with unknown $\rho = \int_V \mathrm{f} d\mu(\mathbf{v})$

 \rightsquigarrow We use test functions of the form $\varphi(f) = \varphi(\rho)$. And consider $\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}$, $\varphi^{\varepsilon} = \varphi + \varepsilon\varphi_1 + \varepsilon^2\varphi_2$.

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\overline{f})Lf, D\varphi) + \frac{1}{\varepsilon}(nf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

$$= \frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$$

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (nf, D\varphi), \quad \mathcal{L}_2 \varphi = (\sigma(\overline{f})Lf, D\varphi) + M\varphi.$

We expect a limit model which is a SPDE with unknown $\rho = \int_V \mathrm{f} d\mu(\mathbf{v})$

 \rightsquigarrow We use test functions of the form $\varphi(f) = \varphi(\rho)$. And consider $\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}$, $\varphi^{\varepsilon} = \varphi + \varepsilon\varphi_1 + \varepsilon^2\varphi_2$.

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied.

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\overline{f})Lf, D\varphi) + \frac{1}{\varepsilon}(nf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (nf, D\varphi), \quad \mathcal{L}_2 \varphi = (\sigma(\overline{f})Lf, D\varphi) + M\varphi.$

We expect a limit model which is a SPDE with unknown $\rho = \int_V \mathrm{f} d\mu(\mathbf{v})$

 \rightsquigarrow We use test functions of the form $\varphi(f) = \varphi(\rho)$. And consider $\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}$, $\varphi^{\varepsilon} = \varphi + \varepsilon\varphi_1 + \varepsilon^2\varphi_2$.

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied.

 $\rightsquigarrow \text{Order } -1 : \mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$

$$\mathcal{L}_2\psi = (\sigma(\bar{f})Lf, D\psi) + M\psi = \Phi$$

$$\mathcal{L}_2\psi = (\sigma(\bar{f})Lf, D\psi) + M\psi = \Phi$$

• This is the generator of the process (g(t; f, n), m(t; f, n)):

$$\frac{d}{dt}g = \sigma(\bar{g})Lg = \sigma(\bar{g})\left(\int_V g \, d\mu(v) - g\right) = \sigma(\bar{g})\left(\rho - g\right), \ g(0) = f,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where *m* is the driving process starting form *n* at t = 0.

$$\mathcal{L}_2\psi = (\sigma(\bar{f})Lf, D\psi) + M\psi = \Phi$$

• This is the generator of the process (g(t; f, n), m(t; f, n)):

$$\frac{d}{dt}g = \sigma(\bar{g})Lg = \sigma(\bar{g})\left(\int_V g \, d\mu(v) - g\right) = \sigma(\bar{g})\left(\rho - g\right), \ g(0) = f,$$

where *m* is the driving process starting form *n* at t = 0.

• Explicit solution : $\rho = \int_V g(t) d\mu(v) = \int_V f d\mu(v)$

$$\rightsquigarrow g(t) = e^{-\sigma(\bar{g})t}f + (1 - e^{-\sigma(\bar{g})t})\rho.$$

 $\sim \rightarrow$

$$\psi(f,n) = \mathcal{L}_2^{-1}\Phi(f,n) = -\int_0^\infty \mathbb{E}\left(\Phi(g(t;f,n);m(t;f,n))\right) dt$$

if $\int_E \Phi(\rho,n) d\nu(n) = 0.$

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\overline{f})Lf, D\varphi) + \frac{1}{\varepsilon}(nf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (nf, D\varphi), \quad \mathcal{L}_2 \varphi = (\sigma(\overline{f})Lf, D\varphi) + M\varphi$

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 $\rightsquigarrow \operatorname{Order} -1 : \mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$

$$\int_{E} \mathcal{L}_{1}\varphi(\rho, n) d\nu(n) = \int_{E} -(A\rho, D\varphi) + (n\rho, D\varphi) d\nu(n) = 0$$

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(\sigma(\overline{f})Lf, D\varphi) + \frac{1}{\varepsilon}(nf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (nf, D\varphi), \quad \mathcal{L}_2 \varphi = (\sigma(\overline{f})Lf, D\varphi) + M\varphi$

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 \rightsquigarrow Order -1 : $\mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$

$$\int_{E} \mathcal{L}_{1}\varphi(\rho, n) d\nu(n) = \int_{E} -(A\rho, D\varphi) + (n\rho, D\varphi) d\nu(n) = 0$$

$$\rightarrow \varphi_1 = -\mathcal{L}_2^{-1}\mathcal{L}_1\varphi = \int_0^\infty -(Ag(t; f, n), D\varphi) + (m(t; f, n)g(t, f, n), D\varphi)dt$$

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) + \frac{1}{\varepsilon}(m, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi \\ = \frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$$

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (m, D\varphi), \quad \mathcal{L}_2 \varphi = (Lf, D\varphi) + M\varphi$

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 $\rightsquigarrow \text{Order } -1: \mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$

$$\int_{E} \mathcal{L}_{1}\varphi(\rho, n)d\nu(n) = \int_{E} -(A\rho, D\varphi) + (n\rho, D\varphi)d\nu(n) = 0$$

$$\rightarrow \varphi_{1} = -\mathcal{L}_{2}^{-1}\mathcal{L}_{1}\varphi = -(A(\sigma(\rho)^{-1}f), D\varphi) - (fM^{-1}n, D\varphi).$$

・ロト・西ト・モン・モー うへぐ

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) + \frac{1}{\varepsilon}(m, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_1 \varphi = -(Af, D\varphi) + (m, D\varphi), \quad \mathcal{L}_2 \varphi = (Lf, D\varphi) + M\varphi$

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 $\begin{array}{l} \rightsquigarrow \text{ Order } -1: \\ \mathcal{L}_{1}\varphi + \mathcal{L}_{2}\varphi_{1} = 0, \quad \varphi_{1} = -(A\left(\sigma(\rho)^{-1}f\right), D\varphi) - (fM^{-1}n, D\varphi). \\ \rightsquigarrow \text{ Order } 0: \ \mathcal{L}_{1}\varphi_{1} + \mathcal{L}_{2}\varphi_{2} = \mathcal{L}\varphi \rightarrow \mathcal{L}\varphi(\rho) = \int_{E} \mathcal{L}_{1}\varphi_{1}(\rho, n)d\nu(n). \end{array}$

Limit generator:

$$\begin{aligned} \mathcal{L}\varphi &= \int_{E} \mathcal{L}_{1}\varphi_{1}d\nu(n) \\ &= (\mathcal{A}\rho, D\varphi) - \int_{E} \left((\rho n M^{-1}n, D\varphi(\rho)) + D^{2}\varphi(\rho) \cdot (\rho M^{-1}n, \rho n) \right) d\nu(n). \end{aligned}$$

where

$$\mathcal{A}\rho = \operatorname{div}((\sigma(\rho)^{-1}) \operatorname{K} \nabla \rho)$$

This is the generator of

$$\begin{aligned} d\rho &= \operatorname{div}(K\nabla\rho)dt + \rho \circ Q^{1/2}dW(t) \\ &= \operatorname{div}(K\nabla\rho)dt + \frac{1}{2}F\rho + \rho Q^{1/2}dW(t). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Limit $\varepsilon \rightarrow 0$

- To complete the proof, we need to prove tightness of the laws of ρ^ε = f̄^ε.
- ► Bound in $L^2(\mathbb{T}^N)$: Take $\varphi(f) = ||f||_{L^2}^2$ (weigthed norm: $||f||_{L^2}^2 = \int_{\mathbb{T}^N \times V} f^2(x, v) F^{-1}(v) dx dv$.)
- It is not a function of ρ = f̄ but it is possible to compute correctors and obtain a bound on ||f^ε||_{L²(T^N)} in L[∞](0, T).

- This implies tightness in $C([0, T]; H^{-\eta}(\mathbb{T}^N)), \eta > 0.$
- This is not sufficient to deal with the nonlinear term.

Limit $\varepsilon \rightarrow 0$

- We also have a bound $\frac{1}{\varepsilon} \| L f^{\varepsilon} \|_{L^2}$ in $L^2(0, T)$.
- ► $\varepsilon \partial_t f^{\varepsilon} + a(v) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} \sigma(\overline{f}^{\varepsilon}) L f^{\varepsilon} + m^{\varepsilon} f^{\varepsilon}$ is bounded in $L^2(0, T; L^2(\mathbb{T}^N)).$
- Averaging Lemma: Assume

 $\forall \varepsilon > 0, \, \forall (\xi, \alpha) \in S^{N-1} \times \mathbb{R}, \ \mu \left(\{ v \in V, |a(v) \cdot \xi + \alpha| < \varepsilon \} \right) \le \varepsilon^{\theta},$

for some $\theta > 0$. If f^{ε} and $\varepsilon \partial_t f^{\varepsilon} + a(v) \cdot \nabla_x f^{\varepsilon}$ are bounded in $L^2(0, T; L^2(\mathbb{T}^N))$ then $\rho^{\varepsilon} = \overline{f}^{\varepsilon}$ is bounded in $L^2(0, T; H^{\varepsilon})$, for $s < \theta/2$.

• We get tightness in $L^2(0, T; L^2(\mathbb{T}^N))$

Limit $\varepsilon \to 0$

Theorem Let $f_0^{\varepsilon} \in L^2_{x,v}$ and

$$\rho_0 := \int_V f_0 d\mu.$$

Under the above assumptions on the velocities *a* and on the driving process m^{ε} , we have: for all $\eta > 0$, the density $\rho^{\varepsilon} := \int_{V} f^{\varepsilon} d\mu$ converge in law in $C([0, T]; H^{-\eta})$ and in $L^{2}(0, T; H^{s})$ to the solution ρ of the equation

$$d
ho = \operatorname{div}(\sigma(
ho)^{-1} K
abla
ho) dt +
ho \circ Q^{1/2} dW(t), ext{ in } \mathbb{R}^+_t imes \mathbb{T}^d,$$

$$= \operatorname{div}(\sigma(\rho)^{-1} K \nabla \rho) dt + \frac{1}{2} F \rho + \rho Q^{1/2} dW(t), \text{ in } \mathbb{R}^+_t \times \mathbb{T}^d,$$

with initial data ρ_0 , where W is a cylindrical Wiener process on $L^2(\mathbb{T}^d)$, Q is a nuclear operator on $L^2(\mathbb{T}^d)$ determined by the correlation of m.

Coefficient Q in the limit model

It is associated to a kernel k:

$$Qf(x) = \int_{\mathbb{T}^d} k(x,y)f(y)dy, \quad f \in L^2(\mathbb{T}^d),$$

where

$$k(x,y) := \mathbb{E} \int_{\mathbb{R}} m(0)(y)m(t)(x)dt, \quad x,y \in \mathbb{T}^d.$$

The Itô correction :

F(x) = k(x, x).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The noise as a force (linear case):

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} a(v) \cdot \nabla_x f^{\varepsilon} + \frac{1}{\varepsilon^2} m^{\varepsilon} \cdot \nabla_v f = \frac{1}{\varepsilon^2} L f^{\varepsilon}.$$

• $m^{\varepsilon}(t)$ is a centered mixing markov process with values in a space of functions *E*.

- $v \in V = \mathbb{T}^d$.
- a(v) = v.
- $Lf = \rho F f$ where F is an equilibrium function satisfying:

$$\int_V vF(v)d\mu(v)=0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The noise as a force (linear case):

$$\partial_t f^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{v} \cdot \nabla_{\mathsf{x}} f^{\varepsilon} + \frac{1}{\varepsilon^2} m^{\varepsilon} \cdot \nabla_{\mathsf{v}} f = \frac{1}{\varepsilon^2} L f^{\varepsilon}.$$

We denote by M the generator of m, then the generator of f^{ε} , m^{ε} is given by:

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) - \frac{1}{\varepsilon^{2}}(mBf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$
$$= \frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$$

where $Af = \mathbf{v} \cdot \nabla_x f$, $Bf = \nabla_v f$, D is the gradient with respect to f and now

$$\mathcal{L}_1 arphi = -(Af, Darphi)$$

and

$$\mathcal{L}_2\varphi = (Lf, D\varphi) - (mBf, D\varphi) + M\varphi$$

(日) (日) (日) (日) (日) (日) (日) (日)

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) - \frac{1}{\varepsilon}(mBf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_{1}\varphi = -(Af, D\varphi), \quad \mathcal{L}_{2}\varphi = (Lf, D\varphi) - (mBf, D\varphi) + M\varphi$

We expect a limit model which is a SPDE with unknown $\rho = \int_V f d\mu(v)$

 \rightsquigarrow We use test functions of the form $\varphi(f) = \varphi(\rho)$.

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) - \frac{1}{\varepsilon}(mBf, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_{1}\varphi = -(Af, D\varphi), \quad \mathcal{L}_{2}\varphi = (Lf, D\varphi) - (mBf, D\varphi) + M\varphi$

We expect a limit model which is a SPDE with unknown $\rho = \int_V f d\mu(\mathbf{v})$

 \rightsquigarrow We use test functions of the form $\varphi(f) = \varphi(\rho)$.

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 \rightsquigarrow Order -1 : $\mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$

 $\mathcal{L}_2\varphi = (Lf, D\varphi) + (mBf, D\varphi) + M\varphi$

$$\mathcal{L}_2 \varphi = (Lf, D\varphi) + (mBf, D\varphi) + M\varphi$$

This is the generator of the process (g(t; f, n), m(t; f, n)):

$$\frac{d}{dt}g = Lg - mBg = \rho F - g - m \cdot \nabla_{v}g, \quad g(0) = f,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where *m* is the driving process starting form *n* at t = 0.

$$\mathcal{L}_2 \varphi = (Lf, D\varphi) + (mBf, D\varphi) + M\varphi$$

This is the generator of the process (g(t; f, n), m(t; f, n)):

$$\frac{d}{dt}g = Lg - mBg = \rho F - g - m \cdot \nabla_{v}g, \quad g(0) = f,$$

where *m* is the driving process starting form *n* at t = 0. Explicit solution: $\rho = \int_V g(t) d\mu(v) = \int_V f d\mu(v)$

$$\sim \rightarrow$$

$$g(t, x, v) = e^{-t} f(x, v - M_t) + \int_0^t e^{-(t-s)} \rho(x) F(v + M_s - M_t) ds.$$

where $M_t = \int_0^t m(s, x, n) ds.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 4

 \rightarrow

$$\mathcal{L}_2 \varphi = (Lf, D\varphi) + (mBf, D\varphi) + M\varphi$$

This is the generator of the process (g(t; f, n), m(t; f, n)):

$$\frac{d}{dt}g = Lg - mBg = \rho F - g - m \cdot \nabla_{v}g, \quad g(0) = f,$$

where *m* is the driving process starting form *n* at t = 0. Explicit solution: $\rho = \int_V g(t)d\mu(v) = \int_V fd\mu(v)$

$$g(t, x, v) = e^{-t}f(x, v - M_t) + \int_0^t e^{-(t-s)}\rho(x)F(v + M_s - M_t)ds.$$

where $M_t = \int_0^t m(s, x, n)ds.$
 $\rightsquigarrow \mathcal{L}_2^{-1}\psi(f, n) = -\int_0^\infty \mathbb{E}\left(\psi(g(t; f, n); m(t; f, n))\right)dt$ if
 $\int_E \psi\left(\int_{-\infty}^0 e^s \rho F(v - \int_s^0 m(\sigma, n)d\sigma)ds, n\right)d\nu(n) = 0.$

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) + \frac{1}{\varepsilon}(m, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_{1}\varphi = -(Af, D\varphi), \quad \mathcal{L}_{2}\varphi = (Lf, D\varphi) - (mBf, D\varphi) + M\varphi$

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) + \frac{1}{\varepsilon}(m, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_{1}\varphi = -(Af, D\varphi), \quad \mathcal{L}_{2}\varphi = (Lf, D\varphi) - (mBf, D\varphi) + M\varphi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 \rightsquigarrow Order -1 : $\mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$. It is possible to invert \mathcal{L}_2

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) + \frac{1}{\varepsilon}(m, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_{1}\varphi = -(Af, D\varphi), \quad \mathcal{L}_{2}\varphi = (Lf, D\varphi) - (mBf, D\varphi) + M\varphi$

 \rightsquigarrow Order $-2: \mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 \rightsquigarrow Order -1 : $\mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$. It is possible to invert \mathcal{L}_2 :

$$\varphi_1 = -(Af, D\varphi) - (\operatorname{div}(fM^{-1}n), D\varphi(f)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Perturbed test function method:

$$\mathcal{L}^{\varepsilon}\varphi^{\varepsilon}(f,n) = -\frac{1}{\varepsilon}(Af, D\varphi) + \frac{1}{\varepsilon^{2}}(Lf, D\varphi) + \frac{1}{\varepsilon}(m, D\varphi) + \frac{1}{\varepsilon^{2}}M\varphi$$

= $\frac{1}{\varepsilon}\mathcal{L}_{1}\varphi + \frac{1}{\varepsilon^{2}}\mathcal{L}_{2}\varphi$

 $\mathcal{L}_{1}\varphi = -(Af, D\varphi), \quad \mathcal{L}_{2}\varphi = (Lf, D\varphi) - (mBf, D\varphi) + M\varphi$

 \rightsquigarrow Order -2 : $\mathcal{L}_2 \varphi = 0 \rightarrow$ automatically satisfied

 \rightsquigarrow Order -1 : $\mathcal{L}_1 \varphi + \mathcal{L}_2 \varphi_1 = 0$. It is possible to invert \mathcal{L}_2 :

$$\varphi_1 = -(Af, D\varphi) - (\operatorname{div}(fM^{-1}n), D\varphi(f)).$$

 \rightsquigarrow Order 0 : $\mathcal{L}_1 \varphi_1 + \mathcal{L}_2 \varphi_2 = \mathcal{L} \varphi$

$$\rightarrow \mathcal{L}\varphi = -\int_{E} \mathcal{L}_{1}\varphi_{1} \left(\int_{-\infty}^{0} e^{s} \rho F(v - \int_{s}^{0} m(\sigma, n) d\sigma) ds \right) d\nu(n)$$

Limit generator:

Very long computations ...

<□ > < @ > < E > < E > E のQ @

Limit generator:

Very long computations ... We obtain the limit SPDE:

 $d\rho = \operatorname{div}((K+H)\nabla\rho)dt + \operatorname{div}(\rho G) + \operatorname{div}(\rho \circ Q^{1/2}dW(t)), \text{ in } \mathbb{R}_t^+ \times \mathbb{T}^d$

The operator Q:

$$Qf(x) = \int_{\mathbb{T}^d} k(x,y)f(y)dy, \quad f \in L^2(\mathbb{T}^d),$$

where

$$k(x,y) := \mathbb{E} \int_{\mathbb{R}} m(0)(y) \otimes m(t)(x) dt, \quad x,y \in \mathbb{T}^d.$$

The extra (deterministic) diffusion:

$$H(x) := \mathbb{E} \int_0^\infty e^{-s} m(0)(x) \otimes m(t)(x) dt, \quad x \in \mathbb{T}^d.$$