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Has the Talbot e↵ect anything to do with turbulence?Q:

• Vortex Filaments
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• One corner (with V. Banica)

• Regular Polygon (with F. De la Hoz)

• The Talbot E↵ect

• Turbulence:

– (Pseudo) randomness

– Intermittency/multifractality

– Transfer of energy (cascade)
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Euler equations

u: velocity field

� = curlu = r ^ u : vorticity

X = X(s, t) curve in R3 support of �

divu = 0

u(P ) =
�

4�

Z 1

�1

X(s)� P

|X(s)� P |3 ⇥ T (s)ds

� = �Tds T = Xs

Examples: straight lines, vortex rings, helical vortices

11



Xt = Xs ^ Xss = cb

• X = X(s, t) � R3

• c = c(s, t) curvature

• b = b(s, t) binormal

Examples:

a) circle

b) straight line

c) helix

Remark.– • Xs = T |T |2 = constant

• Time reversible equation : eX(s, t) = X(�s,�t)

• Rotation invariant

BINORMAL FLOW (Vortex Filament Flow)
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Tt = T ^ Tss = JDsTs |T | = 1

A(t) 2 R

Hasimoto ’70
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• X = X(s, t) � R3

• c = c(s, t) curvature

• b = b(s, t) binormal

Non-linear equation(s) 

Xt = Xs ^ Xss = cb

�(s, t) = c(s, t)ei
R s
0 �(s0,t)ds0

⇥t�(s, t) = i

✓
⇥2
s� ± 1

2
(|�|2 +A(t)

�
�

◆



• Cubic NLS is a completely integrable system.

– Rough initial conditions.

• Total torsion
R
⌧ds (scaling invariant)

1

2

Z
X ^ Tds.

1

3

Z
X ^

�
X ^ T

�
ds.

• Linear Momentum (Impulse):

• Angular Momentum:

– No use of high order CLs.

• Kinetic energy
R
c2ds =

R
| |2ds =

R
|Ts|2ds.
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Conservation Laws (CLs)



 (s, 0) = a�

X(s, 0) =

(
A+

s s � 0

A�
s s  0.

Q : How does the corner move?

T (s, 0) =

(
A+ s > 0

A� s < 0.

Xt = cb

One corner
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Frenet equations: T 0 = cn

n0 = �cT + �b

b0 = ��n

�s

2
cn = T ^

�
c0n� c2T + c�b

�

c0 = 0 c = a � = s/2

Buttke’88

1

2
G� s

2
G0 = G0 ^ G00 (= cb)

G(0) = 2ab(0)

One corner

X(s, t) =
p
tG

⇣
s/
p
t
⌘

T (s, t) = T
⇣
s/
p
t
⌘

Tt = T ^ Tss

Di�erentiating and making t = 1
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Theorem.– (Gutierrez, Rivas, V., ’03) Given any two unit vectors
(A�, A+) , A± = (A±

1 , A
±
2 , A

±
3 ) such that A±

3 = 0, there exists a unique
Ga such that if

X(s, t) =
p
tGa(s/

p
t) for t > 0

then

Xt = Xs ^ Xss ; X(s, 0) =

(
A+s s � 0

A�s s  0.

Moreover, for s ! ±1 there exist unit vectors (B�, B+) s.t.

(i) Ga(s) = A±
⇣
s+ 2a2

s

⌘
� 4 a

s2na +O
⇣

1
|s|2

⌘
,

T a(s) = A± � 2a
s ba +O

⇣
1
|s|

⌘
,

(na � iba)(s) = B±ei
s2

4 +ia2 lg |s| +O
⇣

1
|s|

⌘
.

(ii) sin
\(A+,�A�)

2 = e�⇡ a2

2 ; sin' = A2p
1�A2

1

.

(iii) cGa
3 6= 0 lim

|⇠|!1
|⇠| |cT a

3 | = ⌘a > 0.
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(ii)
Z

X ^ Tds = t

Z
Ga ^ T ads = t(A+ �A�) = 2te�⇡ a2

2 .

Corollary.– As before,

T (s, t) = T a(s/
p
t) ; T (s, 0) =

(
A+ s > 0

A� s < 0.

Then, for t > 0,

(i) kT (·, t)k2
B1/2

2,1
= kT ak2

B1/2
2,1

� kT (·, 0)k2
B1/2

2,1
+ ⌘2a > kT (·, 0)k2

B1/2
2,1
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Theorem.– (with V. Banica) The self-similar solutions are stable.
In particular, the creation/annilihation of a corner is stable.
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• The right space of functions.

• Long range potential: Cubic NLS with the Dirac–delta as
initial condition is ill–posed.

• Conformal transformation of  : existence of wave operator
and asymptotic completeness.

• The recipe to go beyond t = 0: Blow–up argument to
“capture” the selfsimilar solution

S. Gutiérrez, J. Rivas 2003
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• The characterization of the selfsimilar solutions plays a fun-
damental role.

V. Banica 2008-2014



• Galilean Transformations

⇤(s, 0) =
2⇥

M

1X

k=�1
�

✓
s� 2⇥k

M

◆
.

�̃(s, t) ⌘ eiks�ik2t�(s� 2kt, t), 8 k, t 2 R.

e2�ijMs�(s, 0) = �(s, 0) 8 j 2 Z.

�̃k = � 8 k 2 Z.

A REGULAR POLYGON (with F. de la Hoz)
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= b (0, tpq)
q�1X

l=0

e�2⇡i(p/q)l2+iMls
1X

k=�1
eiMqks.
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� (s, tpq) = b� (0, tpq)
1X

k=�1
e�i(Mk)22�p/(M2q)+iMks

= b� (0, tpq)
1X

k=�1
e�2�i(p/q)k2+iMks

= b� (0, tpq)
q�1X

l=0

1X

k=�1
e�2�i(p/q)(qk+l)2+iM(qk+l)s



The generalized quadratic Gauß sums are defined by

|c|�1X

l=0

e2�i(al
2+bl)/c,

for given integers a, b, c, with c 6= 0.

for a certain angle �m that depends on m (and, of course, on p and
q, too).

G(�p,m, q) =

8
>>>><

>>>>:

p
qei✓m , if q is odd,

p
2qei✓m , if q is even and q/2 ⌘ m mod2,

0, if q is even and q/2 6⌘ m mod2,
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@
T
e1
e2
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s

=

0

@
0 � ⇥
�� 0 0
�⇥ 0 0

1

A ·

0

@
T
e1
e2

1
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0

@
T
e1
e2

1

A

s

=

0

@
0 a� b�

�a� 0 0
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1

A ·

0

@
T
e1
e2

1

A .

0

@
u1(0

+)
u2(0

+)
u3(0

+)

1

A = exp

2

4

0

@
0 a b
�a 0 0
�b 0 0

1

A
Z 0+

0�
�(s0)ds0

3

5 ·

0

@
u1(0

�)
u2(0

�)
u3(0

�)

1

A

= exp

2

4

0

@
0 a b
�a 0 0
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1

A

3

5 ·

0

@
u1(0

�)
u2(0

�)
u3(0

�)

1
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0

BBBB@

T
⇣

2�k
Mq

+
⌘T

e1

⇣
2�k
Mq

+
⌘T

e2

⇣
2�k
Mq

+
⌘T

1

CCCCA
= Mk ·Mk�1 · . . . ·M1 ·M0 ·

0

B@
T (0�)

T

e1 (0�)
T

e2 (0�)
T

1

CA

MMq�1 ·MMq�2 · . . . ·M1 ·M0 � I.

Let us define

M = Mq�1 ·Mq�2 · . . . ·M1 ·M0.

Tr (M) = 1 + 2 cos

✓
2�

M

◆
,

⇥(M) =
n
1, e2�i/M , e�2�i/M

o
.

cos(⇥) =

8
<

:
2 cos2/q (�/M)� 1, if q is odd,

2 cos4/q (�/M)� 1, if q is even,

• M is an M–th root of the identity matrix.

• M is a rotation matrix that induces a rotation of 2�/M de-
grees around a certain rotation axis.
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G(�p,m, q) =

8
>>>><

>>>>:

p
qei✓m , if q is odd,

p
2qei✓m , if q is even and q/2 ⌘ m mod2,

0, if q is even and q/2 6⌘ m mod2,

with
✓m“ = ” 2⇡i�(p)q (2m+ 1)

�(p) = (4p)�1 mod q

(Explicit inversive congruential generators, Eichenaber-Herrmann, ’93
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The generalized quadratic Gauß sums are defined by

|c|�1X

l=0

e2�i(al
2+bl)/c,

for given integers a, b, c, with c 6= 0.



Tnum versus Talg, for M = 3, at T1,3 =
2�

27
. T1 appears in blue,

T2 in green, T3 in red. In Tnum, the Gibbs phenomenon is clearly
visible. The black circles denote the points chosen for the compar-
isons.
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• Multifractal (Frisch–Parisi conjecture)

�(t) =

Z t

0

 1X

k=1

e⇡ik
2⌧

!
d⌧ = a0 +

X

k 6=0

e⇡ik
2t

i⇡k2
, t 2 [0, 2]
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• Ja↵ard



• Oskolkov ’92,

• Ja�ard, multifractal ’96,

• Olver ’10,

• Chousionis, Erdogan, Tzirakis ’15.

• Erdogan, Tzirakis ’13,
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• Berry and Goldberg, Talbot E�ect ’88,

• Duistermaat ’91,

• Kapitanski, Rodnianski ’99,
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THANK YOU FOR YOUR 

ATTENTION
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Theorem.– Let us consider the triple product of three consecutive
tangent vectors, and the scalar product of a tangent vector and the
second next one. Then, these quantities depend exclusively on �(p):

�(p) ⌘

8
><

>:

(4p)�1 mod q, if q ⌘ 1 mod 2,

p�1 mod (q/2), if q ⌘ 2 mod 4,

p�1 mod q, if q ⌘ 0 mod 4.

Furthermore, taking the first quantity as the real part and the
second quantity as the imaginary part of a complex number zq,m(p)
that lies on a circumference of center i cos2(⇢) and radius sin2(⇢),
for all p:

zq,m(p) =

8
<

:
i c2⇢ � i s2⇢ exp

⇣
2⇡i�(p)(2m+1)

q

⌘
, if q 6⌘ 2 mod 4,

i c2⇢ � i s2⇢ exp
⇣

2⇡i�(p)m
q/2

⌘
, if q ⌘ 2 mod 4.
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Pseudo-random numbers



Inversive congruential generators (ICGs), (Eichenauer 1986)

xn+1 ⌘
(
a xn + b mod q, xn � 1, x = x�1

b, xn = 0,
n � 0,

with q prime, a 6⌘ 0 mod q:

• Absence of any lattice structure,

• Computational generation is not so e�cient as with the Lin-
ear Congruential Generators.
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Explicit inversive congruential generators (EICGs), (1993
Eichenauer–Herrmann):

xn ⌘ an+ b mod q, n � 0,

with q prime, a 6⌘ 0 mod q; (full period i.e., {x0, . . . , xq�1} = Zq).

• un = xn/q passes the uniformity test for equidistribution in
[0, 1).
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• Behave very well in parallel and vector computations, as
shown by Niederreiter: “eminently suitable for the generation

of parallel streams of pseudorandom numbers with desirable

properties”.



• statistical independence properties; the discrepancy:

for a given dimension k � 2 and for N arbitrary points
(⇠0, . . . , ⇠N�1) 2 [0, 1)k, to consider their discrepancy, which
is defined as

DN (⇠0, . . . , ⇠N�1) = sup
J

|FN (J)� V (J)|,

where the supremum is extended over all the subintervals J
of [0, 1)k; FN (J) is N�1 times the number of terms among
⇠0, . . . , ⇠N�1 falling into J ; and V (J) denotes the volume of
J .
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Eeichenauer(1993): given a sequence of numbers (un)n�0 ob-
tained with an EICG, the k-dimensional points

un = (un+n1 , . . . , un+nk) 2 [0, 1)k, 0  n < p,

is considered, for n1, . . . , nk arbitrary integers satisfying 0 =
n1 < . . . < nk < p, and the abbreviation

D(k)
p = Dp(u0, . . . ,up�1)

being used for their discrepancy.

Versus p�1/2(log log p)1/2 for p independent and uniformly
distributed points taken from [0, 1)k.

• For EICG, p�1/2 < D(k)
p < p�1/2(log p)k.

• Behave very well in parallel and vector computations, as
shown by Niederreiter: “eminently suitable for the generation

of parallel streams of pseudorandom numbers with desirable

properties”. 42
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• Pictures.

Q: Has the Talbot e↵ect anything to do with turbulence?

• The Talbot e↵ect. The linear setting.

• The Talbot e↵fect. The non–linear setting.
V. Banica, F. de la Hoz.
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