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The Kadomtsev-Petviashvili II equation

Consider
∂x(ut + uxxx + ∂xu

2) + ∆yu = 0

t, x ∈ R, y ∈ Rd, d = 1, 2

1. Solutions: Line soliton (expected to be stable for KPII,
unstable for KPI)

2. Symmetries:
I Translation
I Scaling: λ2u(λ3t, λx, λ2y). Fourier: λ−dû(λ−3τ, λ−1ξ, λ−2η)
I Galilean symmetry: u(t, x− v · y − |v|2t, y + 2tv). Fourier:
û(τ − |v|2ξ − 2vη, ξ, η + vξ))

3. Invariant function spaces: ‖u0‖Ḣ−1/2,0 = ‖|ξ|−1/2û0‖L2 for
d = 1 and ‖u0‖Ḣ1/2,0 = ‖|ξ|1/2û0‖L2 for d = 2



Line soliton



Theorem (Hadac, Herr, Koch ’09)

There exists ε > 0 such that if ‖u0‖Ḣ−1/2,0 < ε then there exists a
unique solution u in a function space X which satisfies
‖u‖

C(R;Ḣ
1
2 ,0)
≤ c‖u‖X ≤ c‖u0‖

Ḣ−
1
2 ,0

. The solution scatters.

Theorem (Koch, Li ’15)

There exists ε > 0 such that if

‖u0‖
H̃

1
2 ,0

< ε

then there exists a unique solution u = S(t)u0 + v with that initial
data in a function space X which satisfies

‖v‖
Cb([0,∞),H̃

1
2 )
≤ c‖v‖X ≤ c‖u0‖2

H̃
1
2
.



Previous results

I 2d: Bourgain L2, Takaoka& Tzvetkov, Isaza& Mejia,
Takaoka, Hadac.

I 3d: Tzvetkov, Isaza, Lopez & Mejia, Hadac (almost invariant)

I First results in function spaces invariant under the symmetries
of the problem

I Thesis Schottdorf ’13: Systems of Klein-Gordon equations
with quadratic nonlinearities.



A toy problem

Consider in R× R2 3 (t, x)

i∂tu+ ∆u = ∂x1 ū
2

with initial condition u(0, x) = u0(x).

Theorem
There exists ε > 0 such that for all u0 with ‖u0‖L2 < ε there exists
a unique global in time solution u. It scatters at ∞: The limit

lim
t→∞

e−it∆u(t)

exists in L2.



Step 1: Littlewood-Paley decomposition, duality

Let λ ∈ 2Z and ûλ = χλ≤|ξ|<2λû. Let

‖u‖X =

∑
λ∈2Z

‖uλ‖2V 2

1/2

.

Then

v(t) =

{
eit∆u0 if t > 0

0 otherwise

satisfies
‖v‖X ≤

√
2‖u0‖L2

and ∥∥∥∥∫ t

0
S(t− s)f(s)ds

∥∥∥∥
V 2

≤ 2 sup
‖v‖V 2≤1

∣∣∣∣∫ fv̄dxdt

∣∣∣∣ .



Reduction to a trilinear estimate

We claim ∣∣∣∣∫
R×R2

ūv̄∂x1w̄dxdt

∣∣∣∣ ≤ c‖u‖X‖v‖X‖w‖X . (1)

Then, by duality∥∥∥∥∫ t

0
ei(t−s)∆∂x1 ūv̄ds

∥∥∥∥
X

≤ c‖u‖X‖v‖X

and the theorem follows by standard arguments.



Littlewood-Paley reduction

We expand

u =
∑
λ∈2Z

uλ

where
ûλ = χλ≤|ξ|<2λû

and expand the integral. We claim

∑
µ≤λ

∣∣∣∣∫ ūµv̄λw̄λdxdt

∣∣∣∣ ≤ cλ−1

∑
µ≤λ
‖uµ‖2V 2

1/2

‖vλ‖V 2‖vλ‖V 2 .

(2)



Dyadic implies full estimate

We expand (with sums over 2Z)∫
ūv̄∂x1w̄dxdt ≤

∑
λ1,λ2,λ2

∣∣∣∣∫ ūλ1 v̄λ2∂x1w̄λ3 .dxdt

∣∣∣∣ .
Since the integral of the product is the evaluation of the Fourier
transform of the triple convolution at 0, there is only a
contribution if there are

ξ1 + ξ2 + ξ3 = 0, λj ≤ |ξj | ≤ 2λj .

Then necessarily the two larger numbers of λj are of similar size.
To simplify the notation we assume that they are equal and we
denote them by λ and the smaller number by µ.
Moreover

‖∂x1wλ3‖V 2 ≤ 2λ3‖wλ3‖V 2

and we may replace the derivative with a multiplication by λ3.



The bound

We bound using (2)

∑
λ

∑
µ≤λ

∣∣∣∣λ ∫ ūµv̄λw̄λdxdt

∣∣∣∣ ≤c∑
λ

∑
µ≤λ
‖uµ‖2V 2

1/2

‖uλ‖V 2‖wλ‖V 2

≤ c‖u‖X‖v‖X‖w‖X

and∑
λ

∑
µ≤λ

µ

∣∣∣∣∫ ūλv̄λw̄µdxdt

∣∣∣∣ ≤c∑
λ

∑
µ≤λ

µ

λ
‖uλ‖V 2‖vλ‖V 2‖wµ‖V 2 .

≤ c‖u‖X‖v‖X‖w‖X



Function spaces I

The linear Schrödinger equation

i∂tu+ ∆u = 0

has a fundamental solution

gt(x) = ((4πit)1/2)−ne−
|x|2
4it

with Fourier transform

ĝt(x) = eit|ξ|
2

hence

‖u(t)‖L2 = ‖u0‖L2 ‖u(t)‖L∞ ≤ |4πt|−n/2‖u0‖L1

It defines a unitary group S(t) (Fourier transform). Solutions are
called free waves.



Function spaces II

Bourgain:

‖u‖Xs,b = ‖S(−t)u(t)‖Hb(R;Hs,0(R1+d)) =
∥∥∥|ξ|s|τ − |ξ|2|bû∥∥∥

L2

With v(t) = S(−t)u(t) the problem becomes

vt = S(−t)∂x(S(t)v(t))2

Useful for scattering, better regularity properties, study of
resonances.
For critical problems one would want to use Xs,1/2 and Xs,−1/2 -
does usually not work due to failing imbeddings like H1/2 6⊂ C(R),
L1 6⊂ H−1/2.



Function spaces III

Replacement (Tataru, Koch and Tataru, Hadac & Herr & Koch)

B
1
2
2,1 ⊂ U

2 ⊂ V 2
rc ⊂ B

1
2
2,∞

Advantage: Functions in V 2
rc are bounded and

‖u‖U2(R) ≤ sup

{∫
vu′dt : ‖v‖V 2

rc
≤ 1

}
Probability and harmonic analysis: Brownian motion, Wiener,
Lepingle, Bourgain, Lyons.
We define

‖u‖U2
S

= ‖S(−t)u‖U2

and similarly we deal with Up and V p.



Properties

I Duality

I High modulation

I Strichartz and dual Strichartz

I Bilinear estimates

I Scaling



Modulation

Step 2. We want to bound the left hand side of (2), in particular∣∣∣∣∫ ūµv̄λw̄λdxdt

∣∣∣∣ = |ûµ ∗ v̂λ ∗ ŵλ(0)| .

The integral is zero unless there are points in the support which
add up to 0. If τ1 = |ξ1|2 and τ2 = |ξ2|2 and τ3 = −τ1 − τ2 and
ξ3 = −ξ1 − ξ2 then

τ3 − |ξ3|2 = −|ξ1|2 − |ξ2|2 − |ξ1 + ξ2|2

Thus, with µ ≤ λ, in ∫
ūµv̄λw̄λdx dt

at least one of the terms has high modulation - i.e. vertical
distance λ2/3 to the characteristic set, otherwise the integral is
zero.



High modulation on low frequency

We denote this term by h and we have to bound∣∣∣∣∫ ūhµv̄λw̄λdxdt

∣∣∣∣ ≤‖uhµ‖L2‖(vλwλ)µ‖L2

≤λ−1‖uµ‖V 2‖vλ‖L4‖wλ‖L4

≤λ−1‖uµ‖V 2‖vλ‖U4‖wλ‖U4

This completes the estimate in this case since

‖vλ‖U4 ≤ c‖vλ‖V 2

and ∑
µ≤λ
‖(vλwλ)µ‖2L2

1/2

≤ ‖vλwλ‖L2



Bilinear estimate
The Fourier transform of a solution to the linear equation with
initial data u0 is

2πû0(ξ)δφ=0

and the distance to Σ measures the deviation from being a
solution.
The remaining product has to be estimated in L2. We consider
first free solutions resp. distributions supported on a surface:

‖û0δφ ∗ v̂0δφ‖L2 ≤ C‖u0‖L2‖v0‖L2

where (dyadic localization)

C2 = sup
(τi=|ξi|2)

∫
δ(φ(τ−τ1,ξ−ξ1,η−η1),φ(τ−τ2,ξ−ξ2,η−η2))

Consequence:

‖S(t)u0S(t)v0‖L2 ≤ C‖u0‖L2‖v0‖L2 .



Strichartz estimates and bilinear estimates

Strichartz estimates for free waves

‖u‖LptLq ≤ c‖u(0)‖L2

imply
‖u‖LptLq ≤ c‖u‖Up

Bilinear estimates for free solutions

‖S(t)u0,µS(t)v0,λ‖L2(R×R2) ≤ c(µ/λ)1/2‖u0,µ‖L2(R2)‖u0,λ‖L2(R2)

imply
‖uµvλ‖L2(R×R2) ≤ c(µ/λ)1/2‖uµ‖U2‖uλ‖U2 .



Application to KPII
Variables: (t, x, y) ∈ R× R× Rd. Fourier variables (τ, ξ, η).
Denote by uλ the function with Fourier transform

ûλ =

{
û λ ≤ |ξ| < 2λ
0 otherwise.

Then, for d = 1 and µ ≤ λ

‖uµvλ‖L2 ≤ c(µ/λ)1/2‖uµ‖U2
S
‖vλ‖U2

S
(3)

and for d = 2

‖uµvλ‖L2 ≤ cµ‖uµ‖U2
S
‖vλ‖U2

S
. (4)

The dispersion relation with φ(ξ, η) = ξ3 − η2/ξ

τ1 + τ2 − φ(ξ1 + ξ2, η1 + η2) = −ξ1ξ2(ξ1 + ξ2)

3 +

∣∣∣η2ξ2 − η1
ξ1

∣∣∣2
|ξ1 + ξ2|2

 .



Key argument for d = 1

∣∣∣∣∫ u>µλ
2

µ vλwλdx dy dt

∣∣∣∣ ≤‖u>µλ2µ ‖L2‖(vλwλ)µ‖L2

≤cµ−1/2λ−1‖uµ‖V 2‖vλ‖V 2‖wλ‖V 2

∣∣∣∣∫ uµv
>µλ2

λ wλdx dy dt

∣∣∣∣ ≤‖v>µλ2λ ‖L2‖uµwλ‖L2

≤c(µ/λ)1/2µ−1/2λ−1‖uµ‖U2‖vλ‖V 2‖wλ‖U2

∥∥∥∥∫ t

0
S(t− s)∂x(u

>|ξ|λ2
<<λ vλ)ds

∥∥∥∥
V 2

≤ sup
‖wλ‖V 2≤1

∑
µ≤λ

∣∣∣∣∫ u>µλ
2

µ vλ∂xwλdx dy dt

∣∣∣∣
≤c

∑
µ≤λ

µ−1‖uµ‖2V 2

1/2

‖vλ‖V 2



An almost proof for d = 2

‖u‖X =
∑
λ

λ1/2‖uλ‖V 2 + λ−1‖uλ‖X0,1

‖uµvλ‖L2 ≤ µ‖uµ‖U2‖vλ‖U2

hence

µ−1

∥∥∥∥∫ t

0
S(t− s)∂x(uλvλ)µds

∥∥∥∥
Ẋ0,1

≤ c(λ1/2‖uλ‖V 2)(λ1/2‖vλ‖V 2)

(high,high to (low;high modulation))

λ1/2

∥∥∥∥∫ t

0
S(t− s)∂x(u>µλ

2

µ vλ)ds

∥∥∥∥
V 2

≤cλ5/2µ−1λ−2‖uµ‖X0,1‖vλ‖U2

≤cµ−1‖uµ‖X0,1λ1/2‖vλ‖U2

((low;high modulaton), high to high) tight!



Problems

1. Replace U2 by V 2

2. Summation

3. Initial data

Difficulty: Two of the four estimates are very tight. This can
sometimes be handled (wave maps, Schrödinger maps) and
sometimes not (Derivative NLS). No general recipe!



Improved bilinear estimate

Proposition

Let A ⊂ R2 and suppose that uµ,A has a Fourier transform
supported in µ ≤ |ξ| ≤ 2µ, η

ξ ∈ A. Then, if µ ≤ λ/8,∥∥∥∥(λ+
∣∣∣η2

ξ2
− η1

ξ1

∣∣∣)S(t)uµ,AS(t)vλ

∥∥∥∥
L2

≤ cµ|A|1/2‖uµ,A‖L2‖uλ‖L2

This is reminiscent of the bilinear estimate of the
Korteweg-de-Vries equation.

Transformation formula, fix η−η2
ξ−ξ2 = ρ ∈ A, and consider the

integral with ξ for fixed ρ. This is a one dimensional bilinear
estimate, like for KdV.



The geometry

ξ(x)

η(y)



Function spaces

Let p < 2.

‖u‖l1lpV 2 =
∑
λ

λ1/2‖uλ(λx, λ2y, λ3t)‖lpV 2

where
‖u1‖plpV 2 =

∑
j

‖uΓj,1‖
p
V 2

and for j ∈ Z2,

Γj,1 =

{
(ξ, η) : 1 ≤ |ξ| ≤ 2, j −

(
1/2
1/2

)
≤ η/ξ < j +

(
1/2
1/2

)}
and, with some 5

6 < b < 1

‖u‖X = ‖|Dx|1/2u‖l1lpV 2 + ‖u‖l1lpX2−3b,b .

Analogue decomposition of initial data.




