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The Kadomtsev-Petviashvili Il equation

Consider
az(ut + Upzr + 8:6U2) + Ayu =0

t,x e R,y eRY, d=1,2

1. Solutions: Line soliton (expected to be stable for KPII,
unstable for KPI)
2. Symmetries:
» Translation
» Scaling: N2u(\3t, Az, A\2y). Fourier: A=%a(A737, A71¢, A7 2p)
» Galilean symmetry: u(t,z — v -y — |[v|?t,y + 2tv). Fourier:
a(r — o6 — 2vm, &, + vE))
3. Invariant function spaces: ||uo|| g-1/2.0 = [||€] /%0 2 for
d =1 and |[uo]| 120 = I1€]/2aiol| for d = 2



Line soliton




Theorem (Hadac, Herr, Koch '09)

There exists € > 0 such that if ||ug|| ;—1/2,0 < € then there exists a
unique solution w in a function space X which satisfies

CRA ) < cllullx < CHUOHH%,o- The solution scatters.

Theorem (Koch, Li '15)
There exists € > 0 such that if

HUOHH%,O <e€

then there exists a unique solution u = S(t)uy + v with that initial
data in a function space X which satisfies

< < 2
100y 0,00y, ) < eVl < elluoll g



Previous results

» 2d: Bourgain L2, Takaoka& Tzvetkov, Isaza& Mejia,
Takaoka, Hadac.

» 3d: Tzvetkov, Isaza, Lopez & Mejia, Hadac (almost invariant)

> First results in function spaces invariant under the symmetries
of the problem

» Thesis Schottdorf '13: Systems of Klein-Gordon equations
with quadratic nonlinearities.



A toy problem

Consider in R x R? 3 (¢, z)
10pu + Au = 3331122

with initial condition u(0,z) = ug(x).

Theorem
There exists € > 0 such that for all uy with ||ugl||;2 < € there exists
a unique global in time solution w. It scatters at co: The limit

lim e~ *Au(t)
t—00

exists in L2.



Step 1: Littlewood-Paley decomposition, duality

Let A € 2% and @), = Xa<le|l<2nU. Let

1/2
lullx = | D luall}=
g2z
Then A
o(t) = etByy  ift>0
o 0 otherwise
satisfies
vllx < V2Juol| 2
and

(t— s)f(s)ds sup

HUHV2<1

/ fvdxdt’



Reduction to a trilinear estimate

We claim

Then, by duality

and the theorem follows by standard arguments.

t
/ez(t—s)ﬁammds < cflullx|lv]lx

0

/ uv8$1wdxdt| < cllullx o llx]lwl x-
RxR2



Littlewood-Paley reduction

We expand

where
Uy = Xa<|g|<2Al
and expand the integral. We claim
1/2

/am@d.@dt‘gcx—l >l loallvzlloallve.

M
(2)

D

759




Dyadic implies full estimate
We expand (with sums over 2%)

/ W08, wdxdt < Z

/ ﬂ)\lﬁ)\anlw)\3.d$dt .
A1,A2,A2

Since the integral of the product is the evaluation of the Fourier
transform of the triple convolution at 0, there is only a
contribution if there are

51 +§2+§3 :0,)\]' < ’53‘ < 2)\]'.

Then necessarily the two larger numbers of A; are of similar size.
To simplify the notation we assume that they are equal and we
denote them by A and the smaller number by p.
Moreover

10z, wxsllv2 < 2A3[[wa, [lv2

and we may replace the derivative with a multiplication by As.



The bound

We bound using (2)

1/2
S Y [ aodo]| <X (Sl | luslvelusly
A pA A A\pa
< cljullxllolx [lwllx
and
B 1%
> > om ] / umwudxdt\ <cd > Slusllvelvallvzllwgllve.
A psA A psA

< dffullxvllxlwlx



Function spaces |
The linear Schrodinger equation
10w+ Au =0

has a fundamental solution

||

gt($) = ((47Tit)1/2)7nef Zit

with Fourier transform

hence
lu®)llze = luollze  Nu()llze < [4mt] ™2 ||ug| 1

It defines a unitary group S(t) (Fourier transform). Solutions are
called free waves.



Function spaces ||

Bourgain:

lull e = IS(=E)(®) 20 sty = ||1€1°1 = le1a|

With v(t) = S(—t)u(t) the problem becomes
ve = S(=1)0(S(t)o(t))?

Useful for scattering, better regularity properties, study of
resonances.

For critical problems one would want to use X*'/2 and X*1/2 -
does usually not work due to failing imbeddings like H'/? ¢ C(R),
L''¢ H-1/2,



Function spaces Il

Replacement (Tataru, Koch and Tataru, Hadac & Herr & Koch)
1 1
Bj, CUC V2 C B},

Advantage: Functions in V.2 are bounded and

[ullir2ry < sup {/vu'dt: vy < 1}

Probability and harmonic analysis: Brownian motion, Wiener,
Lepingle, Bourgain, Lyons.
We define

lullz = [IS(=t)ulv

and similarly we deal with UP and VP.



Properties

v

Duality

v

High modulation
Strichartz and dual Strichartz

v

Bilinear estimates

v

v

Scaling



Modulation

Step 2. We want to bound the left hand side of (2), in particular
’/uuv)\w,\d:cdt’ = ‘fLM * Uy * 12))\(0)| .

The integral is zero unless there are points in the support which
add up to 0. If 71 = |&|* and 72 = |&|? and 73 = —71 — 72 and
&3 = =& — & then

13— [&° = —|&1)® — |&” — & + &
Thus, with g < A, in
/ﬂuﬁ)\w,\dxdt

at least one of the terms has high modulation - i.e. vertical
distance A?/3 to the characteristic set, otherwise the integral is
zero.



High modulation on low frequency
We denote this term by * and we have to bound

‘ / ugmwdxdt‘ <[l 2 (wron) 22
<A Mgy lloall g llwall s
A wllvz loallgs lws s

This completes the estimate in this case since

[oallgs < clloallv

and
1/2

>l wawa)ull3- < [loawa|lze
150N



Bilinear estimate
The Fourier transform of a solution to the linear equation with
initial data ug is

271'120(5)(%:()
and the distance to > measures the deviation from being a
solution.
The remaining product has to be estimated in L2. We consider
first free solutions resp. distributions supported on a surface:
[[ti00g * Dodgllz2 < Clluollz2|voll 2
where (dyadic localization)
2 _
¢ = sup /5(¢(TT1,5£1,77711)7¢>(TT2,§52,7I772))
(ri=I[&il?)

Consequence:

15 ()uoS(t)voll 2 < Clluol|2[lvoll -



Strichartz estimates and bilinear estimates

Strichartz estimates for free waves

lullzrra < cflu(0)]| L2

imply
[ullzppa < cllullue

Bilinear estimates for free solutions

15 (t)uo,.S(t)vorll L2 rxr2) < C(M/)\)lﬂ”uo,uHL?(R?)”UO,,\ | L2(r2)

imply
lupoall 2 @xrzy < /N2 uullpz [urll2-



Application to KPII
Variables: (t,2,7) € R x R x R%. Fourier variables (7,&,7).
Denote by u) the function with Fourier transform

oo A<lEl<2)
A7 1 0 otherwise.

Then, ford=1and p < A

lupoallze < e(u/ NV lulluz loalloz (3)

and ford =2
[upoallrz < cpllupllpz loallyz- (4)

The dispersion relation with ¢(¢,7n) = €3 —n?/¢

2
72 m

&2 &1
|&1 + &2

T+ 72— 0 +&,m+m) = —-6&& +E&) [ 3+



Key argument for d =1

2 2
‘/@Mwwm@ﬁkWTWmWWmM2

<cp AT Jwgllve loallve w2

[ s dyat] <103 ol

<c(u/ N2 PA gl [oallvz sl g2

2
z|<£|>f\ vy )ds < sup /ui“)‘Qv,\awad:cdydt
V2 ||w)\Hv2§1 u<A
1/2
-1 2
=c Z“ l[uplly2 lvally2

H<A



An almost proof for d = 2

lullx =D A2 [lullvz + A7 ua ]l xou
A
lupoallze < plluglloz oallo:
hence

-1

p < A2 lurllv2) A2 oallv2)

X0,1

/0 S(t — 5)0z(urvy)uds

(high,high to (low;high modulation))

AL/2 i Sc)\5/2u_1)\_2||uy”X071”UAHU?
1%

<cp™ gl xoa AV [or]|2

/ S(t—s) >“’\ vy)ds

((low;high modulaton), high to high) tight!



Problems

1. Replace U? by V2
2. Summation
3. Initial data
Difficulty: Two of the four estimates are very tight. This can

sometimes be handled (wave maps, Schrodinger maps) and
sometimes not (Derivative NLS). No general recipe!



Improved bilinear estimate

Proposition

Let A C R? and suppose that uy, A has a Fourier transform
supported in p < |£] < 2u, g € A. Then, if u < \/8,

H (A + g - g\)S(t)uu,AS(t)m

. < cpt A2 Jwg,all 2 a2
L

This is reminiscent of the bilinear estimate of the
Korteweg-de-Vries equation.

Transformation formula, fix 2:2; = p € A, and consider the
integral with ¢ for fixed p. This is a one dimensional bilinear
estimate, like for KdV.



The geometry
n(y)




Function spaces
Let p < 2.

[ullpwyz = Z A2 [[ux (A, N2y, A3t [y
\

where

lutlfys =D lur, 17
J

and for j € 72,

Dja = {(5 ML e <2, - G@ Saft<it G@}

and, with some % <b<«1

lullx = 1Dzl 2ulliwy2 + fullne x2-s0s.

Analogue decomposition of initial data.





