
S.Ma

2

On two dimensional gravity water waves with angled crests

Sijue Wu

University of Michigan, Ann Arbor

Partially supported by the National Science Foundation

October 21, 2015

We consider the motion of the interface separating air from water.

We assume:

- air density= 0
- water density =1
- water region is below the air region. At time *t*, water region is Ω(*t*), the interface is Σ(*t*).

We assume that the water is

- inviscid, incompressible, irrotational.
- The surface tension is zero.
- The water is subject to the influence of gravity $\mathbf{g} = (\mathbf{0}, -g)$.

The motion of the fluid is described by

v is the fluid velocity, *P* is the fluid pressure.

When surface tension is zero, the motion can be subject to the Taylor instability.

Taylor sign condition:

$$-rac{\partial P}{\partial \mathbf{n}} \geq \mathbf{0}$$

on the interface $\Sigma(t)$. **n** is the unit normal to $\Sigma(t)$ pointing out of the water region $\Omega(t)$.

Stokes, Levi-Civita, Taylor....

- Nalimov (1974): infinite depth, 2D, assume initial interface flat, initial velocity small
- Nalimov didn't use Riemann mapping
- T. Nishida: translated Nalimov's paper into English,
- Yoshihara (1982): finite depth, 2D, assume initial data small
- T. Beale, T. Hou & Lowengrub (1992). Linear wellposedness assuming the presumed solution satisfies the strong Taylor sign condition:

$$-\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{n}} \geq \boldsymbol{c}_0 > \boldsymbol{0}.$$

- S. Wu (1997, 99): 2D, 3D, arbitrary data
- proved the strong Taylor sign condition always holds, i.e.

$$-rac{\partial P}{\partial \mathbf{n}} \geq c_0 > 0$$

as long as the interface is non-selfintersecting and smooth $(C^{1,\gamma})$.

- in 2D: used Riemann mapping to understand the quasilinear structure of the water wave equation
- in 3D: used Lagrangian coordinates, in Clifford algebra framework

Local wellposedness with additional effects: nonzero surface tension, finite depth, nonzero vorticity, assuming the strong Taylor sign condition holds.

 Iguchi(2001), Ogawa & Tani (2002), Ambrose & Masmoudi(2005), D. Lannes (2005), Christodoulou & Lindblad (2000), Lindblad (2005), Coutand & Shkoller (2007), P. Zhang & Z. Zhang (2007), Shatah & Zeng (2008)

- S. Wu (2009): almost global well-posedness for 2-D,
- S. Wu (2011): global well-posedness for 3-D
- Germain, Masmoudi & Shatah (2012): global well-posedness for 3-D
- Ionescu & Pusateri (2013): 2-D water waves, global existence and modified scattering
- Alazard & Delort (2013): similar result
- Hunter, Ifrim & Tataru (2014): 2-D water wave, almost global existence, modified energy method
- Ifrim & Tataru (2014): 2-D water wave, global existence.

- Alazard, Burq, Zuily (2012): Local wellposedness in low regularity Sobolev space–the interface is C^{3/2+ε}.
- Alazard, Burq, Zuily (2014): Local wellposedness in low regularity Sobolev space–the interface is $C^{3/2-\epsilon}$.

Singularities:

Singularities:

What are some typical singular behaviors? How does it form? What are some basic structures of the singularities?

S. Wu (2012): construction of self-similar solution for 2-D water waves in the regime where convection is in dominance:

• $z \sim t$, or in hyperbolic scaling: s = 1.

- neglecting gravity and surface tension. ---- satisfies the Taylor sign condition $-\frac{\partial P}{\partial \mathbf{n}} \ge 0$.

- $\nu < \frac{1}{2}, \qquad \mu > \frac{1}{2}$
- concave up on both sides, the concavity is due to the Taylor stability condition.

Question:

Q: How relevant are the self-similar solutions?

In all earlier work, either it is assumed there is no bottom, or there is a bottom Υ , of a positive distance away from the interface $\Sigma(t)$

$$dist(\Sigma(t), \Upsilon) \ge h_0 > 0$$

and the strong Taylor sign condition holds:

$$-rac{\partial P}{\partial \mathbf{n}} \ge c_0 > 0$$

Question

We consider the following problem: Q: the interaction of the free surface with a fixed rigid boundary?

On a rigid smooth boundary,

$$\mathbf{v} \cdot \mathbf{n} = \mathbf{0}$$

In the presence of a fixed rigid boundary $\Upsilon,$ the motion of the fluid is described by

$$\mathbf{v}_{t} + \mathbf{v} \cdot \nabla \mathbf{v} = (\mathbf{0}, -g) - \nabla P \quad \text{in } \Omega(t)$$

div $\mathbf{v} = 0$, curl $\mathbf{v} = 0$, in $\Omega(t)$
 $P = 0$, on $\Sigma(t)$
 $\mathbf{v} \cdot \mathbf{n} = 0$, on Υ (2)

v is the fluid velocity, *P* is the fluid pressure. **n** is a normal vector to Υ .

 $\partial \Omega(t) = \Sigma(t) \cup \Upsilon.$

If the fixed rigid boundary Υ is a vertical wall $\{x = 0\}$, and the fluid domain $\Omega(t)$ is the domain to the right of $\{x = 0\}$. Then the velocity field $\mathbf{v} = (v_1, v_2)$ satisfies $v_1(0, y; t) = 0$. By Schwarz reflection: $\mathbf{v}(-x, y; t) = (-v_1(x, y; t), v_2(x, y; t)); P(-x, y; t) = P(x, y, ; t)$

we can reduce the problem to the one on the symmetric domain without a fixed wall.

- Alazard, Burq, Zuily (2012) studied the case where the angle of the wave with the wall is 90°.
- Our focus: study the case where the angle of the wave with the wall is other than 90°.

We want to answer the following question:

Q: Is it possible for the angle between the interface and the wall to be other than $\frac{\pi}{2}$?

Assume the rigid boundary Υ is consisting of two vertical walls:

$$\Upsilon = \{x = 0\} \cup \{x = 1\}$$

Assume the free interface $\Sigma(t)$ makes a 90° angle with the wall $\{x = 0\}$, but we allow a possible non-trivial angle at $\{x = 1\}$. We make a Schwarz reflection about $\{x = 0\}$:

- Q: Can the angle ν be other than 90°?
- Q: local existence in this framework?
- A priori estimates?

- yes, the angle ν can be other than 90°. If it is not 90°, then
- the angle ν must be no more than 90°. More generally,
- the interior angles of the angled crests (don't have to be symmetric) cannot be more than 180°.
- these facts are determined by the water wave equations.

- We construct an analytic framework that includes smooth interfaces, and interfaces with angled crests
- A priori estimates, local existence holds in this regime which includes interfaces with angled crests.
- This is a more fitting framework to study the water wave equation than Sobolev spaces
- The water wave system admits such solutions.
 - A prior estimate: joint work with Rafe Kinsey.

In our regime, we can show that

•
$$-\frac{\partial P}{\partial \mathbf{n}} \geq 0$$
, but

- $-\frac{\partial P}{\partial \mathbf{n}} = -\mathbf{n} \cdot \nabla P = 0$ at the wall where there is a non-right angle, and at the points on the interface where there are angled crests.
- **n** outward unit normal.

Let the free surface be

 $\Sigma(t)$: $z = z(\alpha, t)$, α Lagrangian coordinate.

- $z = x(\alpha, t) + iy(\alpha, t)$, in complex form;
- $z_t = z_t(\alpha, t)$ is the velocity;
- *z*_{tt} is the acceleration;
- -i is the gravity;
- P = 0 on $\Sigma(t)$ implies: $\nabla P \perp \Sigma(t)$
- $\nabla P = i\mathfrak{a} z_{\alpha}$, where $\mathfrak{a} = -\frac{1}{|z_{\alpha}|} \frac{\partial P}{\partial \mathbf{n}}$

- div $\mathbf{v} = \operatorname{curl} \mathbf{v} = 0$ implies $\overline{\mathbf{v}}$ is holomorphic in $\Omega(t)$.
- *z
 _t*(α, t) = **v**(z(α, t), t), the boundary value of the holomorphic function **v**.
- $\bar{z}_t = \mathfrak{H}\bar{z}_t$

Equation of the free surface:

$$z_{tt} + i = i\mathfrak{a} z_{\alpha}$$

$$\bar{z}_t = \mathfrak{H} \bar{z}_t$$
(3)

Quasilinear equation:

$$\bar{z}_{ttt} + i\mathfrak{a}\bar{z}_{tlpha} = -i\mathfrak{a}_t\bar{z}_{lpha}$$

Let

- $\mathfrak{u} = \overline{z}_t$
- $i\bar{z}_{t\alpha} = \nabla_{\mathbf{n}}\mathfrak{u}$

Free surface equation:

$$(\partial_t^2 + \mathfrak{a} \nabla_{\mathbf{n}})\mathfrak{u} = I.o.t$$

is degenerate hyperbolic, if $\mathfrak{a}=-\frac{1}{|z_{\alpha}|}\frac{\partial P}{\partial n}$ can be zero.

$$\mathfrak{H}f(\alpha;t) = \frac{1}{\pi i} \int \frac{z_{\beta}(\beta;t)}{z(\alpha;t) - z(\beta;t)} f(\beta) d\beta$$

- difficult to deal with \$\mathcal{H}\$
- Use Riemann mapping

- Let $\Phi : \Omega(t) \to P_-$ be the Riemann mapping, s.t. $\lim_{z\to\infty} \Phi_z(z) = 1$.
- P₋ is the lower half plane

• Let
$$h(\alpha; t) := \Phi(z(\alpha; t); t)$$
.

•
$$h^{-1}$$
 be: $h(h^{-1}(\alpha'; t); t) = \alpha'$

- $Z(\alpha';t) = z(h^{-1}(\alpha';t),t) := z \circ h^{-1}; Z_{\alpha'} = \partial_{\alpha'}Z(\alpha',t)$
- $Z_t(\alpha'; t) := z_t \circ h^{-1}; \ Z_{tt}(\alpha'; t) := z_{tt} \circ h^{-1}$

Let

•
$$A \circ h = \mathfrak{a} h_{\alpha}$$

• $\mathbb{H}f(\alpha') = \frac{1}{\pi i} \int \frac{1}{\alpha' - \beta'} f(\beta') d\beta'$ be the Hilbert transform

Free surface equation in Riemann mapping variable α' :

$$\begin{cases} Z_{tt} + i = iAZ_{,\alpha'} \\ \overline{Z}_t = \mathbb{H}\overline{Z}_t \end{cases}$$
(4)

 $h(\alpha; t) := \Phi(z(\alpha; t); t)$ implies that

$$Z(\alpha',t) = \Phi^{-1}(\alpha';t); \quad Z_{,\alpha} = \partial_{Z'} \Phi^{-1}(\alpha';t)$$

• To Show the Taylor sign condition $-\frac{\partial P}{\partial \mathbf{n}} \ge c_0 > 0$,

$$-i\frac{\partial P}{\partial \mathbf{n}}|Z_{,\alpha'}| = \overline{Z}_{,\alpha'}(Z_{tt}+i) = iA|Z_{,\alpha'}|^2 := iA_1$$

we proved in Wu (1997) that

$$A_1 = 1 + rac{1}{2\pi} \int rac{|Z_t(lpha', t) - Z_t(eta', t)|^2}{(lpha' - eta')^2} \, deta' \geq 1$$

$$-\frac{\partial P}{\partial \mathbf{n}} = \mathfrak{a}|z_{\alpha}| = \frac{A_1}{|Z_{,\alpha'}|} \circ h \ge 0$$

Recall: $Z_{,\alpha'} = \partial_{z'} \Phi^{-1}(\alpha'; t)$

• (S.Wu, 1997) If the interface $\Sigma(t) \in C^{1,\gamma}$, then $0 < c_0 \le |\partial_{z'} \Phi^{-1}(\alpha'; t)| \le C_0 < \infty$, then

$$-rac{\partial P}{\partial \mathbf{n}} \ge c_1 > 0$$

$$\frac{1}{Z_{,\alpha'}} = i \frac{\overline{Z}_{tt} - i}{A_1}$$

$\mathfrak{a} = 0$ or equivalently $-\frac{\partial P}{\partial \mathbf{n}} = 0$ at the corner:

Free surface equation: $z_{tt} + i = i\mathfrak{a}z_{\alpha} := \nabla P$, $\mathfrak{a} \in \mathbb{R}$ implies:

$$-\frac{x_{\alpha}}{y_{\alpha}} = \frac{y_{tt} + 1}{x_{tt}}.$$
(5)

$$\tan \nu = -\frac{x_{\alpha}}{y_{\alpha}} = \frac{y_{tt} + 1}{x_{tt}}.$$
(6)

•
$$x_t(0; t) = 0$$
 implies $x_{tt}(0; t) = 0$.

- If $\nu \neq \frac{\pi}{2}$, then $y_{tt} + 1 = 0$ at x = 0.
- Therefore $\nabla P = 0$ at the corner x = 0.
- a = 0 at the corner x = 0.

- Fact 1: $\nu \leq \frac{\pi}{2}$
- at the corner: $\Phi^{-1}(z') \approx (z')^r$, where $\nu = \frac{\pi}{2}r$. • $Z_{,\alpha'} = \partial_{z'} \Phi^{-1}(z') \approx (\alpha')^{r-1}$.
- if $\nu > \frac{\pi}{2}$, i.e. if r > 1, then $Z_{\alpha} = 0$ at the corner, so $Z_{tt} = \infty$, so $y_{tt} = \infty$ at the corner, since $x_{tt} = 0$,

Recall

$$\tan \nu = -\frac{x_{\alpha}}{y_{\alpha}} = \frac{y_{tt} + 1}{x_{tt}}.$$
 (7)

this implies

 $\tan \nu = \infty$

therefore

$$\nu = \frac{\pi}{2}$$

So ν cannot be greater than $\frac{\pi}{2}$. Similarly,

• Interior angle of the angled crests cannot be more than π .

$$-rac{\partial P}{\partial \mathbf{n}} = \mathfrak{a}|z_{lpha}| = rac{A_1}{|Z_{,lpha'}|} \circ h \geq 0$$

Recall: $Z_{,\alpha'} = \partial_{z'} \Phi^{-1}(\alpha'; t)$

If the angle ν < π/2, or if the free surface has angled crests with interior angle < π, then r < 1, then 1/Z_{,α'} → 0 at the corner or at the crests, this implies

$$-rac{\partial P}{\partial \mathbf{n}} = \mathbf{0}$$

at the corner if $\nu < \frac{\pi}{2}$ and at the crests where the interior angle is $< \pi$.

Let

$$D_{\alpha}f = rac{1}{z_{\alpha}}\partial_{\alpha}f, \quad D_{\alpha'}g = rac{1}{Z_{,\alpha'}}\partial_{\alpha'}g$$

If *f* is the boundary value of a periodic holomorphic function F on $\Omega(t)$, $f(\alpha, t) = F(z(\alpha, t), t)$, then

$$D_{\alpha}f = \partial_{z}F(z(\alpha, t); t) = -i\partial_{y}F(z(\alpha, t); t)$$

Recall the quasilinear equation of the free surface:

$$(\partial_t^2 + i\mathfrak{a}\partial_\alpha)\bar{z}_t = -i\mathfrak{a}_t\bar{z}_\alpha,\tag{8}$$

higher order equation

$$(\partial_t^2 + i\mathfrak{a}\partial_\alpha)\theta = G_\theta. \tag{9}$$

where $\theta = D_{\alpha}^{k} \bar{z}_{t}$, $G_{\theta} = D_{\alpha}^{k} (-i\mathfrak{a}_{t} \bar{z}_{\alpha}) + [\partial_{t}^{2} + i\mathfrak{a}\partial_{\alpha}, D_{\alpha}^{k}] \bar{z}_{t}$. a natural energy:

• $\boldsymbol{e} = \int |\theta_t|^2 + \Re \int (i\mathfrak{a}\partial_\alpha \theta)\bar{\theta}$

doesn't work in the framework of angled crests.

We construct the energy: let $\alpha_0 \in [-1, 1]$ be fixed

$$E = E_{a,D_{\alpha}^2 \bar{z}_t} + E_{b,D_{\alpha} \bar{z}_t} + \|\bar{z}_{tt}(t) - i\|_{L^{\infty}}$$

where

$$E_{\boldsymbol{a},\theta} = \int_{-1}^{1} \frac{h_{\alpha}}{A_{1} \circ h} |\theta_{t}|^{2} d\alpha + \Re \int_{-1}^{1} \frac{h_{\alpha}}{A_{1} \circ h} (i\mathfrak{a}\partial_{\alpha}\theta)\overline{\theta} d\alpha + I.o.t.$$
$$E_{\boldsymbol{b},\theta} = \int_{-1}^{1} \frac{1}{\mathfrak{a}} |\theta_{t}|^{2} d\alpha + \Re \int_{-1}^{1} (i\partial_{\alpha}\theta)\overline{\theta} d\alpha + I.o.t.$$
$$\mathfrak{a} \approx h_{\alpha} \approx -\frac{\partial P}{\partial \mathbf{n}}$$

 E_a and E_b have roughly inverse singular weights h_{α} and $\frac{1}{a}$.

$$A_1 \circ h = rac{\mathfrak{a}|Z_{lpha}|^2}{h_{lpha}}$$

Let

$$\mathcal{E}(t) = \|\bar{Z}_{t,\alpha'}\|_{L^2}^2 + \|D_{\alpha'}^2 \bar{Z}_t\|_{L^2}^2 + \|\partial_{\alpha'} \frac{1}{Z_{,\alpha'}}\|_{L^2}^2 + \|D_{\alpha'}^2 \bar{Z}_t\|_{L^2}^2 + \|D_{\alpha'}^2 \bar{Z}_t\|_{\dot{H}^{1/2}}^2 + \|D_{\alpha'}^2 \bar{Z}_t\|_{\dot{H}^{1/2}}^2 + \|\frac{1}{Z_{,\alpha'}}\|_{L^\infty}^2$$
(10)

Then

$$\boldsymbol{E}(t) \approx \mathcal{E}(t) \tag{11}$$

Difficulties with singular weights:

- Place the singular weights in the right places in the nonlocal operators;
- The very low regularities involved;

$$(\partial_t + b\partial_{\alpha'})^2 \bar{Z}_t + iA\partial_{\alpha'} \bar{Z}_t = -iA_t \bar{Z}_{\alpha'}$$

 $A = \frac{A_1}{|Z_{\alpha'}|^2}$

$$\frac{A_t}{A} = -\frac{\Im\{2[Z_t, \mathbb{H}]\overline{Z}_{tt,\alpha'} + 2[Z_{tt}, \mathbb{H}]\overline{Z}_{t,\alpha'} - [Z_t, Z_t; D_{\alpha'}Z_t]\}}{A_1}$$

Remarks:

٥

$$\frac{1}{Z_{,\alpha'}} = i \frac{\overline{Z}_{tt} - i}{A_1} \approx \overline{Z}_{tt} - i$$

- The self-similar solution has finite energy.
- In general, surfaces that have angled crests of interior angle < π/2, and the angle ν of the wave with the vertical wall ν < π/4 have finite energy.
- Stokes wave of maximum height does not have finite energy.

Theorem (A priori estimate, R. Kinsey & S. Wu)

There exists a polynomial p = p(x) with universal coefficients, such that, for any solution of water wave equations with $E(t) < \infty$ for all $t \in [0, T]$,

$$\frac{d}{dt}E(t) \le p(E(t)) \tag{12}$$

for all $t \in [0, T]$.

Theorem (local existence, S.Wu)

For any initial data satisfying $E(0) < \infty$, there exists T > 0, depending only on E(0), such that the water wave equation is solvable for time $t \in [0, T]$, with $E(t) < \infty$ for $t \in [0, T]$.

Remark: for initial interface $z(\cdot, 0)$ satisfying $E(0) < \infty$ and with its angle function arg $z(\cdot, 0)$ piecewise continuous, the interface $z(\cdot, t)$ will have its angle arg $z(\cdot, t)$ piecewise continuous at later times 0 < t < T. During this time the angles that the angled crests do not change.

-Observed by R. Kinsey,

-Rigorous proof by S. Agrawal

Theorem (blow-up criteria, S. Wu)

Given smooth data, there is a unique smooth solution exist for a positive time period [0, T]. Let T^* be the maximum existence time for the smooth solution. Then either $T^* = \infty$, or $T^* < \infty$, but the interface $z = z(\cdot, t)$ becomes self-intersecting at time T^* , or $\sup_{[0, T^*]} E(t) = \infty$.

 Local wellposed was proved via the quasilinear equations in Riemann mapping variables

$$(\partial_t + b\partial_{\alpha'})^2 \bar{Z}_t + iA\partial_{\alpha'} \bar{Z}_t = -iA_t \bar{Z}_{\alpha'}$$

- This is an equation on the velocity Z_t. The interface induced by the solution may or may not be self-intersecting.
- Only non-self-intersecting interface gives rise to a solution of the Euler equation.
- The idea of solving for solutions, including self-intersecting interfaces, was later used in the work of Cordoba, Fefferman etc on splash, splat singularities.

Idea for the proof of the existence: build on the solutions in Wu (1997):

- mollify the initial data by the Poisson kernel.
- solve the "water wave system" for this initial data, the "solution" exists in Sobolev spaces for a time *T* depending only on *E*(0).
- this "solution" may self-intersect, but it is well-defined in the Riemann mapping framework.
- pass to limit. show the limit satisfies the water wave system in the fluid domain in the classical sense.
- if the data is chord-arc, then the solution remains chord-arc for a time period depending only on *E*(0) and the chord-arc constant.

Thank you very much for your attention!