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We consider the motion of the interface separating air from water.

We assume:
air density= 0
water density =1
water region is below the air region. At time t , water region
is Ω(t), the interface is Σ(t).

We assume that the water is
inviscid, incompressible, irrotational.
The surface tension is zero.
The water is subject to the influence of gravity g = (0,−g).
g > 0



n

air

water

g = (0,−g)

Σ(t)

Ω(t)

density= 0

density= 1



The motion of the fluid is described by
vt + v · ∇v = (0,−g)−∇P in Ω(t)
div v = 0, curl v = 0, in Ω(t)
P = 0, on Σ(t)

(1)

v is the fluid velocity, P is the fluid pressure.

When surface tension is zero, the motion can be subject to
the Taylor instability.

Taylor sign condition:

−∂P
∂n
≥ 0

on the interface Σ(t). n is the unit normal to Σ(t) pointing
out of the water region Ω(t).



earlier work

Stokes, Levi-Civita, Taylor....



Local wellposedness in Sobolev spaces

Nalimov (1974): infinite depth, 2D, assume initial interface
flat, initial velocity small
Nalimov didn’t use Riemann mapping
T. Nishida: translated Nalimov’s paper into English,
Yoshihara (1982): finite depth, 2D, assume initial data
small
T. Beale, T. Hou & Lowengrub (1992).
Linear wellposedness assuming the presumed solution
satisfies the strong Taylor sign condition:

−∂P
∂n
≥ c0 > 0.



Local wellposedness in Sobolev spaces continues...

S. Wu (1997, 99): 2D, 3D, arbitrary data
proved the strong Taylor sign condition always holds, i.e.

−∂P
∂n
≥ c0 > 0

as long as the interface is non-selfintersecting and smooth
(C1,γ).
in 2D: used Riemann mapping to understand the
quasilinear structure of the water wave equation
in 3D: used Lagrangian coordinates, in Clifford algebra
framework



local wellposedness continues....

Local wellposedness with additional effects: nonzero surface
tension, finite depth, nonzero vorticity, assuming the strong
Taylor sign condition holds.

Iguchi(2001), Ogawa & Tani (2002), Ambrose &
Masmoudi(2005), D. Lannes (2005), Christodoulou &
Lindblad (2000), Lindblad (2005), Coutand & Shkoller
(2007), P. Zhang & Z. Zhang (2007), Shatah & Zeng (2008)



Global behavior for small, smooth and localized data

S. Wu (2009): almost global well-posedness for 2-D,
S. Wu (2011): global well-posedness for 3-D
Germain, Masmoudi & Shatah (2012): global
well-posedness for 3-D
Ionescu & Pusateri (2013): 2-D water waves, global
existence and modified scattering
Alazard & Delort (2013): similar result
Hunter, Ifrim & Tataru (2014): 2-D water wave, almost
global existence, modified energy method
Ifrim & Tataru (2014): 2-D water wave, global existence.



local wellposedness in low regularity Sobolev spaces:

Alazard, Burq, Zuily (2012): Local wellposedness in low
regularity Sobolev space–the interface is C3/2+ε.

Alazard, Burq, Zuily (2014): Local wellposedness in low
regularity Sobolev space–the interface is C3/2−ε.



Singularities:



Singularities:
What are some typical singular behaviors? How does it form?
What are some basic structures of the singularities?



Self-similar solutions:

S. Wu (2012): construction of self-similar solution for 2-D water
waves in the regime where convection is in dominance:

z ∼ t , or in hyperbolic scaling: s = 1.

— neglecting gravity and surface tension.
—- satisfies the Taylor sign condition −∂P

∂n ≥ 0.



φ

µπ

νπ



ν < 1
2 , µ > 1

2

concave up on both sides, the concavity is due to the
Taylor stability condition.



ei µ−1
2 π
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Question:
Q: How relevant are the self-similar solutions?



In all earlier work, either it is assumed there is no bottom, or
there is a bottom Υ, of a positive distance away from the
interface Σ(t)

dist(Σ(t),Υ) ≥ h0 > 0

and the strong Taylor sign condition holds:

−∂P
∂n
≥ c0 > 0



A different take: motivation

Question
We consider the following problem:
Q: the interaction of the free surface with a fixed rigid
boundary?

On a rigid smooth boundary,

v · n = 0



In the presence of a fixed rigid boundary Υ, the motion of
the fluid is described by

vt + v · ∇v = (0,−g)−∇P in Ω(t)
div v = 0, curl v = 0, in Ω(t)
P = 0, on Σ(t)
v · n = 0, on Υ

(2)

v is the fluid velocity, P is the fluid pressure. n is a normal
vector to Υ.

∂Ω(t) = Σ(t) ∪Υ.



We look at the wave motion at a vertical wall:

If the fixed rigid boundary Υ is a vertical wall {x = 0}, and the
fluid domain Ω(t) is the domain to the right of {x = 0}. Then
the velocity field v = (v1, v2) satisfies v1(0, y ; t) = 0.
By Schwarz reflection:
v(−x , y ; t) = (−v1(x , y ; , t), v2(x , y ; t)); P(−x , y ; t) = P(x , y , ; t)
we can reduce the problem to the one on the symmetric
domain without a fixed wall.



Alazard, Burq, Zuily (2012) studied the case where the
angle of the wave with the wall is 90◦.

Our focus: study the case where the angle of the wave with
the wall is other than 90◦.



We want to answer the following question:

Q: Is it possible for the angle between the interface and the wall
to be other than π

2 ?



Put it in an infinite depth "cup"...

Assume the rigid boundary Υ is consisting of two vertical walls:

Υ = {x = 0} ∪ {x = 1}

Assume the free interface Σ(t) makes a 90◦ angle with the wall
{x = 0}, but we allow a possible non-trivial angle at {x = 1}.
We make a Schwarz reflection about {x = 0}:



Q: Can the angle ν be other than 90◦?

Q: local existence in this framework?

A priori estimates?



Main Result (whole line or periodic):

yes, the angle ν can be other than 90◦. If it is not 90◦,
then
the angle ν must be no more than 90◦. More generally,
the interior angles of the angled crests (don’t have to be
symmetric) cannot be more than 180◦.

— these facts are determined by the water wave equations.



Main Result (whole line or periodic):

We construct an analytic framework that includes smooth
interfaces, and interfaces with angled crests
A priori estimates, local existence holds in this regime
which includes interfaces with angled crests.
This is a more fitting framework to study the water wave
equation than Sobolev spaces

The water wave system admits such solutions.

A prior estimate: joint work with Rafe Kinsey.





Difficulty:

In our regime, we can show that

−∂P
∂n ≥ 0, but

−∂P
∂n = −n · ∇P = 0 at the wall where there is a non-right

angle, and at the points on the interface where there are
angled crests.
n outward unit normal.



why this is a difficulty

Let the free surface be

Σ(t) : z = z(α, t), α Lagrangian coordinate.

z = x(α, t) + iy(α, t), in complex form;
zt = zt (α, t) is the velocity;
ztt is the acceleration;
−i is the gravity;
P = 0 on Σ(t) implies: ∇P ⊥ Σ(t)
∇P = iazα, where a = − 1

|zα|
∂P
∂n



Wu (1997, 99):

div v = curl v = 0 implies v̄ is holomorphic in Ω(t).
z̄t (α, t) = v̄(z(α, t), t), the boundary value of the
holomorphic function v̄.
z̄t = Hz̄t

Equation of the free surface:{
ztt + i = iazα
z̄t = Hz̄t

(3)



Wu (1997,99)

Quasilinear equation:

z̄ttt + iaz̄tα = −iat z̄α

Let
u = z̄t

i z̄tα = ∇nu

Free surface equation:

(∂2
t + a∇n)u = l .o.t

is degenerate hyperbolic, if a = − 1
|zα|

∂P
∂n can be zero.



work in Wu (1997):

Hf (α; t) =
1
πi

∫
zβ(β; t)

z(α; t)− z(β; t)
f (β) dβ

difficult to deal with H

Use Riemann mapping



Interface equation in Riemann mapping variable

Let Φ : Ω(t)→ P− be the Riemann mapping, s.t.
limz→∞Φz(z) = 1.
P− is the lower half plane
Let h(α; t) := Φ(z(α; t); t).
h−1 be: h(h−1(α′; t); t) = α′

Z (α′; t) = z(h−1(α′; t), t) := z ◦ h−1; Z,α′ = ∂α′Z (α′, t)
Zt (α

′; t) := zt ◦ h−1; Ztt (α
′; t) := ztt ◦ h−1



Wu (1997):

Let

A ◦ h = ahα
Hf (α′) = 1

πi

∫ 1
α′−β′ f (β′) dβ′ be the Hilbert transform

Free surface equation in Riemann mapping variable α′:{
Ztt + i = iAZ,α′
Z t = HZ t

(4)



work in Wu (1997)

h(α; t) := Φ(z(α; t); t) implies that

Z (α′, t) = Φ−1(α′; t); Z,α = ∂z′Φ
−1(α′; t)

To Show the Taylor sign condition −∂P
∂n ≥ c0 > 0,

−i
∂P
∂n
|Z,α′ | = Z ,α′(Ztt + i) = iA|Z,α′ |2 := iA1

we proved in Wu (1997) that

A1 = 1 +
1

2π

∫
|Zt (α

′, t)− Zt (β
′, t)|2

(α′ − β′)2 dβ′ ≥ 1



Wu (1997)

−∂P
∂n

= a|zα| =
A1

|Z,α′ |
◦ h ≥ 0

Recall: Z,α′ = ∂z′Φ
−1(α′; t)

(S.Wu, 1997) If the interface Σ(t) ∈ C1,γ , then
0 < c0 ≤ |∂z′Φ

−1(α′; t)| ≤ C0 <∞, then

−∂P
∂n
≥ c1 > 0



1
Z,α′

= i
Z tt − i

A1



a = 0 or equivalently −∂P
∂n = 0 at the corner:

Free surface equation: ztt + i = iazα := ∇P, a ∈ R implies:

−xα
yα

=
ytt + 1

xtt
. (5)

tan ν = −xα
yα

=
ytt + 1

xtt
. (6)

xt (0; t) = 0 implies xtt (0; t) = 0.
If ν 6= π

2 , then ytt + 1 = 0 at x = 0.
Therefore ∇P = 0 at the corner x = 0.
a = 0 at the corner x = 0.



Fact 1: ν ≤ π
2

at the corner:
Φ−1(z ′) ≈ (z ′)r , where ν = π

2 r .
Z,α′ = ∂z′Φ

−1(z ′) ≈ (α′)r−1.
if ν > π

2 , i.e. if r > 1, then Z,α = 0 at the corner, so
Ztt =∞, so ytt =∞ at the corner, since xtt = 0,



Recall
tan ν = −xα

yα
=

ytt + 1
xtt

. (7)

this implies
tan ν =∞

therefore

ν =
π

2
So ν cannot be greater than π

2 .
Similarly,

Interior angle of the angled crests cannot be more than π.



Fact 2:
−∂P
∂n

= a|zα| =
A1

|Z,α′ |
◦ h ≥ 0

Recall: Z,α′ = ∂z′Φ
−1(α′; t)

If the angle ν < π
2 , or if the free surface has angled crests

with interior angle < π, then r < 1, then 1
Z,α′
→ 0 at the

corner or at the crests, this implies

−∂P
∂n

= 0

at the corner if ν < π
2 and at the crests where the interior

angle is < π.



The energy functional

Let
Dαf =

1
zα
∂αf , Dα′g =

1
Z,α′

∂α′g

If f is the boundary value of a periodic holomorphic function F
on Ω(t), f (α, t) = F (z(α, t), t), then

Dαf = ∂zF (z(α, t); t) = −i∂yF (z(α, t); t)



Recall the quasilinear equation of the free surface:

(∂2
t + ia∂α)z̄t = −iat z̄α, (8)

higher order equation

(∂2
t + ia∂α)θ = Gθ. (9)

where θ = Dk
αz̄t , Gθ = Dk

α(−iat z̄α) + [∂2
t + ia∂α,Dk

α]z̄t .
a natural energy:

e =
∫
|θt |2 + <

∫
(ia∂αθ)θ̄

doesn’t work in the framework of angled crests.



We construct the energy: let α0 ∈ [−1,1] be fixed

E = Ea,D2
αz̄t

+ Eb,Dαz̄t + ‖z̄tt (t)− i‖L∞

where

Ea,θ =

∫ 1

−1

hα
A1 ◦ h

|θt |2 dα + <
∫ 1

−1

hα
A1 ◦ h

(ia∂αθ)θ̄ dα + l .o.t .

Eb,θ =

∫ 1

−1

1
a
|θt |2 dα + <

∫ 1

−1
(i∂αθ)θ̄ dα + l .o.t .

a ≈ hα ≈ −
∂P
∂n

Ea and Eb have roughly inverse singular weights hα and 1
a .

A1 ◦ h =
a|zα|2

hα



A characterization of the energy functional

Let

E(t) = ‖Z̄t ,α′‖2L2 + ‖D2
α′Z̄t‖2L2 + ‖∂α′

1
Z,α′
‖2L2+

‖D2
α′

1
Z,α′
‖2L2 + ‖ 1

Z,α′
D2
α′Z̄t‖2Ḣ1/2 + ‖Dα′Z̄t‖2Ḣ1/2 + ‖ 1

Z,α′
‖2L∞ (10)

Then
E(t) ≈ E(t) (11)



Difficulty with a singular weight:

Difficulties with singular weights:

Place the singular weights in the right places in the
nonlocal operators;
The very low regularities involved;

(∂t + b∂α′)2Z̄t + iA∂α′Z̄t = −iAt Z̄α′

A =
A1

|Zα′ |2

At

A
= −
={2[Zt ,H]Z tt ,α′ + 2[Ztt ,H]Z t ,α′ − [Zt ,Zt ; Dα′Zt ]}

A1



Remarks:

1
Z,α′

= i
Z tt − i

A1
≈ Z tt − i

The self-similar solution has finite energy.
In general, surfaces that have angled crests of interior
angle < π

2 , and the angle ν of the wave with the vertical
wall ν < π

4 have finite energy.
Stokes wave of maximum height does not have finite
energy.



Main Result

Theorem (A priori estimate, R. Kinsey & S. Wu)
There exists a polynomial p = p(x) with universal coefficients,
such that, for any solution of water wave equations with
E(t) <∞ for all t ∈ [0,T ],

d
dt

E(t) ≤ p(E(t)) (12)

for all t ∈ [0,T ].

Theorem (local existence, S.Wu)
For any initial data satisfying E(0) <∞, there exists T > 0,
depending only on E(0), such that the water wave equation is
solvable for time t ∈ [0,T ], with E(t) <∞ for t ∈ [0,T ].



Remark: for initial interface z(·,0) satisfying E(0) <∞ and with
its angle function arg z(·,0) piecewise continuous, the interface
z(·, t) will have its angle arg z(·, t) piecewise continuous at later
times 0 < t < T . During this time the angles that the angled
crests do not change.
–Observed by R. Kinsey,
–Rigorous proof by S. Agrawal



Theorem (blow-up criteria, S. Wu)
Given smooth data, there is a unique smooth solution exist for a
positive time period [0,T ]. Let T ∗ be the maximum existence
time for the smooth solution. Then either T ∗ =∞, or T ∗ <∞,
but the interface z = z(·, t) becomes self-intersecting at time
T ∗, or sup[0,T∗) E(t) =∞.



Recall Wu (1997)

Local wellposed was proved via the quasilinear equations
in Riemann mapping variables

(∂t + b∂α′)2Z̄t + iA∂α′Z̄t = −iAt Z̄α′

This is an equation on the velocity Zt . The interface
induced by the solution may or may not be self-intersecting.
Only non-self-intersecting interface gives rise to a solution
of the Euler equation.
The idea of solving for solutions, including self-intersecting
interfaces, was later used in the work of Cordoba,
Fefferman etc on splash, splat singularities.



Idea for the proof of the existence: build on the solutions in Wu
(1997):

mollify the initial data by the Poisson kernel.
solve the "water wave system" for this initial data, the
"solution" exists in Sobolev spaces for a time T depending
only on E(0).
this "solution" may self-intersect, but it is well-defined in the
Riemann mapping framework.
pass to limit. show the limit satisfies the water wave
system in the fluid domain in the classical sense.
if the data is chord-arc, then the solution remains chord-arc
for a time period depending only on E(0) and the chord-arc
constant.



Thank you very much for your attention!




