Invariant measures and the soliton resolution conjecture

Sourav Chatterjee

Stanford University

 $2Q$

A complex-valued function u of two variables x and t, where $\mathsf{x} \in \mathbb{R}^{d}$ is the space variable and $t \in \mathbb{R}$ is the time variable, is said to satisfy a d -dimensional focusing nonlinear Schrödinger equation (NLS) with nonlinearity parameter p if

$$
i \partial_t u = -\Delta u - |u|^{p-1} u.
$$

へのへ

A complex-valued function u of two variables x and t, where $\mathsf{x} \in \mathbb{R}^{d}$ is the space variable and $t \in \mathbb{R}$ is the time variable, is said to satisfy a d -dimensional focusing nonlinear Schrödinger equation (NLS) with nonlinearity parameter p if

$$
i \partial_t u = -\Delta u - |u|^{p-1} u.
$$

► The equation is called "defocusing" if the term $-|u|^{p-1}u$ is replaced by $+|u|^{p-1}u$. If the nonlinear term is absent, we get the ordinary Schrödinger equation.

へのへ

$$
M(u):=\int_{\mathbb{R}^d}|u(x)|^2dx
$$

a mills.

メ御 トメ ミト メモト

 299

目

$$
M(u):=\int_{\mathbb{R}^d}|u(x)|^2dx
$$

and energy

$$
H(u) := \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u(x)|^2 dx - \frac{1}{p+1} \int_{\mathbb{R}^d} |u(x)|^{p+1} dx.
$$

 $4.171.6$

 \Box

メミメ メミメ

 299

后

$$
M(u):=\int_{\mathbb{R}^d}|u(x)|^2dx
$$

and energy

$$
H(u) := \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u(x)|^2 dx - \frac{1}{p+1} \int_{\mathbb{R}^d} |u(x)|^{p+1} dx.
$$

In That is, if $u(x, t)$ is a solution of the NLS, then $M(u(\cdot, t))$ and $H(u(\cdot,t))$ remain constant over time.

A + + = + + = +

 $2Q$

$$
M(u):=\int_{\mathbb{R}^d}|u(x)|^2dx
$$

and energy

$$
H(u) := \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u(x)|^2 dx - \frac{1}{p+1} \int_{\mathbb{R}^d} |u(x)|^{p+1} dx.
$$

- In That is, if $u(x, t)$ is a solution of the NLS, then $M(u(\cdot, t))$ and $H(u(\cdot,t))$ remain constant over time.
- If List of all conserved quantities unknown (except in $d=1$, $p = 3$).

桐 トラ ミュ エト

 \blacktriangleright We will say that two functions u and v from \mathbb{R}^d into $\mathbb R$ are equivalent if

$$
v(x) = u(x - x_0)e^{i\lambda_0}
$$

for some $x_0 \in \mathbb{R}^d$ and $\lambda_0 \in \mathbb{R}$.

 $2Q$

 \blacktriangleright We will say that two functions u and v from \mathbb{R}^d into $\mathbb R$ are equivalent if

$$
v(x) = u(x - x_0)e^{i\lambda_0}
$$

for some $x_0 \in \mathbb{R}^d$ and $\lambda_0 \in \mathbb{R}$.

 \triangleright Note that if u and v are equivalent in this sense, then $M(u) = M(v)$ and $H(u) = H(v)$.

 \triangleright For the ordinary Schrödinger equation, as well for the defocusing NLS, it is known that in general the solution "radiates to zero" as $t \to \infty$.

 $2Q$

 \triangleright For the ordinary Schrödinger equation, as well for the defocusing NLS, it is known that in general the solution "radiates to zero" as $t \to \infty$. This means that for every compact set $K \subseteq \mathbb{R}^d$,

$$
\lim_{t\to\infty}\int_K|u(x,t)|^2dx=0.
$$

 \triangleright For the ordinary Schrödinger equation, as well for the defocusing NLS, it is known that in general the solution "radiates to zero" as $t \to \infty$. This means that for every compact set $K \subseteq \mathbb{R}^d$,

$$
\lim_{t\to\infty}\int_K|u(x,t)|^2dx=0.
$$

In the focusing case this may not happen.

 \triangleright For the ordinary Schrödinger equation, as well for the defocusing NLS, it is known that in general the solution "radiates to zero" as $t \to \infty$. This means that for every compact set $K \subseteq \mathbb{R}^d$,

$$
\lim_{t\to\infty}\int_K|u(x,t)|^2dx=0.
$$

- In the focusing case this may not happen.
- \triangleright Demonstrated quite simply by a special class of solutions called "solitons" or "standing waves".

 \triangleright For the ordinary Schrödinger equation, as well for the defocusing NLS, it is known that in general the solution "radiates to zero" as $t \to \infty$. This means that for every compact set $K \subseteq \mathbb{R}^d$,

$$
\lim_{t\to\infty}\int_K|u(x,t)|^2dx=0.
$$

- In the focusing case this may not happen.
- \triangleright Demonstrated quite simply by a special class of solutions called "solitons" or "standing waves".
- **Fi** These are solutions of the form $u(x, t) = v(x)e^{i\omega t}$, where ω is a positive constant and the function v is a solution of the soliton equation

$$
\omega v = \Delta v + |v|^{p-1}v.
$$

 \triangleright For the ordinary Schrödinger equation, as well for the defocusing NLS, it is known that in general the solution "radiates to zero" as $t \to \infty$. This means that for every compact set $K \subseteq \mathbb{R}^d$,

$$
\lim_{t\to\infty}\int_K|u(x,t)|^2dx=0.
$$

- In the focusing case this may not happen.
- \triangleright Demonstrated quite simply by a special class of solutions called "solitons" or "standing waves".
- **Fi** These are solutions of the form $u(x, t) = v(x)e^{i\omega t}$, where ω is a positive constant and the function v is a solution of the soliton equation

$$
\omega v = \Delta v + |v|^{p-1}v.
$$

Often, the function v is also called a so[lit](#page-13-0)[on.](#page-15-0)

 \triangleright When p satisfies the "mass-subcriticality" condition $p < 1 + 4/d$, it is known that there is a unique equivalence class minimizing $H(u)$ under the constraint $M(u) = m$. The minimum energy may be denoted by $E_{\text{min}}(m)$.

- \triangleright When p satisfies the "mass-subcriticality" condition $p < 1 + 4/d$, it is known that there is a unique equivalence class minimizing $H(u)$ under the constraint $M(u) = m$. The minimum energy may be denoted by $E_{\text{min}}(m)$.
- \triangleright This equivalence class is known as the "ground state soliton" of mass m.

へのへ

- \triangleright When p satisfies the "mass-subcriticality" condition $p < 1 + 4/d$, it is known that there is a unique equivalence class minimizing $H(u)$ under the constraint $M(u) = m$. The minimum energy may be denoted by $E_{\text{min}}(m)$.
- \triangleright This equivalence class is known as the "ground state soliton" of mass m.
- \triangleright The ground state soliton has the following description:

へのへ

- \triangleright When p satisfies the "mass-subcriticality" condition $p < 1 + 4/d$, it is known that there is a unique equivalence class minimizing $H(u)$ under the constraint $M(u) = m$. The minimum energy may be denoted by $E_{\text{min}}(m)$.
- \triangleright This equivalence class is known as the "ground state soliton" of mass m.
- \triangleright The ground state soliton has the following description:
	- \triangleright (Deep classical result) There is a unique positive and radially symmetric solution Q of the soliton equation

$$
\omega Q = \Delta Q + |Q|^{p-1}Q
$$

with $\omega = 1$.

オター・オティ オティー

- \triangleright When p satisfies the "mass-subcriticality" condition $p < 1 + 4/d$, it is known that there is a unique equivalence class minimizing $H(u)$ under the constraint $M(u) = m$. The minimum energy may be denoted by $E_{\text{min}}(m)$.
- \triangleright This equivalence class is known as the "ground state soliton" of mass m.
- \triangleright The ground state soliton has the following description:
	- \triangleright (Deep classical result) There is a unique positive and radially symmetric solution Q of the soliton equation

$$
\omega Q = \Delta Q + |Q|^{p-1}Q
$$

with $\omega = 1$.

For each $\lambda > 0$, let

$$
Q_{\lambda}(x):=\lambda^{2/(p-1)}Q(\lambda x).
$$

Then each Q_{λ} is also a soliton (with ω dependent on λ).

イロメ イ押 トラ ミックチャー

- \triangleright When p satisfies the "mass-subcriticality" condition $p < 1 + 4/d$, it is known that there is a unique equivalence class minimizing $H(u)$ under the constraint $M(u) = m$. The minimum energy may be denoted by $E_{\text{min}}(m)$.
- \triangleright This equivalence class is known as the "ground state soliton" of mass m.
- \blacktriangleright The ground state soliton has the following description:
	- \triangleright (Deep classical result) There is a unique positive and radially symmetric solution Q of the soliton equation

$$
\omega Q = \Delta Q + |Q|^{p-1}Q
$$

with $\omega = 1$.

For each $\lambda > 0$, let

$$
Q_{\lambda}(x):=\lambda^{2/(p-1)}Q(\lambda x).
$$

Then each Q_{λ} is also a soliton (with ω dependent on λ).

 \blacktriangleright For each $m>0$, there is a unique $\lambda(m)>0$ such that $Q_{\lambda(m)}$ is the ground state soliton of mass m . \mathbb{R}^n is a \mathbb{R}^n is

 \triangleright The long-term behavior of solutions of the focusing NLS is still not fully understood.

 \equiv \rightarrow

 $2Q$

- \triangleright The long-term behavior of solutions of the focusing NLS is still not fully understood.
- \triangleright One particularly important conjecture, sometimes called the "soliton resolution conjecture", claims that as $t \to \infty$, the solution $u(\cdot, t)$ would look more and more like a soliton, or a union of a finite number of receding solitons.

- \triangleright The long-term behavior of solutions of the focusing NLS is still not fully understood.
- \triangleright One particularly important conjecture, sometimes called the "soliton resolution conjecture", claims that as $t \to \infty$, the solution $u(\cdot, t)$ would look more and more like a soliton, or a union of a finite number of receding solitons.
- \triangleright The claim may not hold for all initial conditions, but is expected to hold for "generic" initial data.

- \triangleright The long-term behavior of solutions of the focusing NLS is still not fully understood.
- \triangleright One particularly important conjecture, sometimes called the "soliton resolution conjecture", claims that as $t \to \infty$, the solution $u(\cdot, t)$ would look more and more like a soliton, or a union of a finite number of receding solitons.
- \triangleright The claim may not hold for all initial conditions, but is expected to hold for "generic" initial data.
- \triangleright Significant progress in recent years (Kenig, Merle, Schlag, Tao, many others) but complete solution is still elusive.

 $4.50 \times 4.70 \times 4.70 \times$

► Let $\{T_t\}_{t>0}$ be a semigroup of operators on the space of functions from an abstract space $\mathcal X$ into $\mathbb R$.

A + + = + + = +

 $2Q$

- ► Let $\{T_t\}_{t>0}$ be a semigroup of operators on the space of functions from an abstract space $\mathcal X$ into $\mathbb R$.
- \blacktriangleright For example, for $f:\mathbb{R}^d\to\mathbb{R},\; \mathcal{T}_tf$ can be the solution of the focusing NLS at time t with initial data f .

- ► Let $\{T_t\}_{t>0}$ be a semigroup of operators on the space of functions from an abstract space $\mathcal X$ into $\mathbb R$.
- \blacktriangleright For example, for $f:\mathbb{R}^d\to\mathbb{R},\; \mathcal{T}_tf$ can be the solution of the focusing NLS at time t with initial data f .
- \triangleright Birkhoff's ergodic theorem: If μ is an ergodic invariant measure for the flow $\{T_t\}_{t>0}$, then

$$
\lim_{t\to\infty}\frac{1}{t}\int_0^t T_s f(x)ds = \int_{\mathcal{X}} f(x)d\mu(x).
$$

へのへ

- ► Let $\{T_t\}_{t>0}$ be a semigroup of operators on the space of functions from an abstract space $\mathcal X$ into $\mathbb R$.
- \blacktriangleright For example, for $f:\mathbb{R}^d\to\mathbb{R},\; \mathcal{T}_tf$ can be the solution of the focusing NLS at time t with initial data f .
- \triangleright Birkhoff's ergodic theorem: If μ is an ergodic invariant measure for the flow $\{T_t\}_{t>0}$, then

$$
\lim_{t\to\infty}\frac{1}{t}\int_0^t T_s f(x)ds = \int_{\mathcal{X}} f(x)d\mu(x).
$$

 \triangleright Suggests that one can study the time-averaged long-term behavior of a flow by studying the space-average over an ergodic invariant measure μ .

オター オラ・オラト

- ► Let $\{T_t\}_{t>0}$ be a semigroup of operators on the space of functions from an abstract space $\mathcal X$ into $\mathbb R$.
- \blacktriangleright For example, for $f:\mathbb{R}^d\to\mathbb{R},\; \mathcal{T}_tf$ can be the solution of the focusing NLS at time t with initial data f .
- \triangleright Birkhoff's ergodic theorem: If μ is an ergodic invariant measure for the flow $\{T_t\}_{t>0}$, then

$$
\lim_{t\to\infty}\frac{1}{t}\int_0^t T_sf(x)ds=\int_{\mathcal{X}}f(x)d\mu(x).
$$

- \triangleright Suggests that one can study the time-averaged long-term behavior of a flow by studying the space-average over an ergodic invariant measure μ .
- \triangleright Easier to construct invariant measures than proving ergodicity.

マーティ ミューエム

へのへ

- ► Let $\{T_t\}_{t>0}$ be a semigroup of operators on the space of functions from an abstract space $\mathcal X$ into $\mathbb R$.
- \blacktriangleright For example, for $f:\mathbb{R}^d\to\mathbb{R},\; \mathcal{T}_tf$ can be the solution of the focusing NLS at time t with initial data f .
- \triangleright Birkhoff's ergodic theorem: If μ is an ergodic invariant measure for the flow $\{T_t\}_{t>0}$, then

$$
\lim_{t\to\infty}\frac{1}{t}\int_0^t T_sf(x)ds=\int_{\mathcal{X}}f(x)d\mu(x).
$$

- \triangleright Suggests that one can study the time-averaged long-term behavior of a flow by studying the space-average over an ergodic invariant measure μ .
- \triangleright Easier to construct invariant measures than proving ergodicity.
- \blacktriangleright However, any invariant measure decomposes into ergodic components. Therefore Birkhoff's theorem implies that a high probability event for μ occurs within most ergodic components.

 $2Q$

 \triangleright Substantial body of literature on understanding the long-term behavior of the focusing NLS by studying invariants measures.

- \triangleright Substantial body of literature on understanding the long-term behavior of the focusing NLS by studying invariants measures.
- \triangleright Ergodicity has not been proved in any case, as far as I am aware.

- \triangleright Substantial body of literature on understanding the long-term behavior of the focusing NLS by studying invariants measures.
- \triangleright Ergodicity has not been proved in any case, as far as I am aware.
- \triangleright Initiated in a seminal paper of Lebowitz, Rose and Speer (1988).

- \triangleright Substantial body of literature on understanding the long-term behavior of the focusing NLS by studying invariants measures.
- \triangleright Ergodicity has not been proved in any case, as far as I am aware.
- \blacktriangleright Initiated in a seminal paper of Lebowitz, Rose and Speer (1988).
- \triangleright Large body of follow-up work in the nineties (Bourgain, McKean, Zhidkov, Vaninsky, Rider, Brydges, Slade,).

- \triangleright Substantial body of literature on understanding the long-term behavior of the focusing NLS by studying invariants measures.
- \triangleright Ergodicity has not been proved in any case, as far as I am aware.
- \triangleright Initiated in a seminal paper of Lebowitz, Rose and Speer (1988).
- \triangleright Large body of follow-up work in the nineties (Bourgain, McKean, Zhidkov, Vaninsky, Rider, Brydges, Slade,).
- \triangleright Resurgence of interest in recent years (Burq, Tzvetkov, Oh, Staffilani, Bulut,Thomann, Nahmod,).
Invariant measures for the NLS

- \triangleright Substantial body of literature on understanding the long-term behavior of the focusing NLS by studying invariants measures.
- \triangleright Ergodicity has not been proved in any case, as far as I am aware.
- \triangleright Initiated in a seminal paper of Lebowitz, Rose and Speer (1988).
- \triangleright Large body of follow-up work in the nineties (Bourgain, McKean, Zhidkov, Vaninsky, Rider, Brydges, Slade,).
- \triangleright Resurgence of interest in recent years (Burg, Tzvetkov, Oh, Staffilani, Bulut,Thomann, Nahmod,).
- \triangleright The focus in the PDE community has mainly been on using invariant measures to prove existence of global solutions.

 $A \cap B$ $A \cap A \subseteq B$ $A \subseteq B$

Invariant measures for the NLS

- \triangleright Substantial body of literature on understanding the long-term behavior of the focusing NLS by studying invariants measures.
- \triangleright Ergodicity has not been proved in any case, as far as I am aware.
- \triangleright Initiated in a seminal paper of Lebowitz, Rose and Speer (1988).
- \triangleright Large body of follow-up work in the nineties (Bourgain, McKean, Zhidkov, Vaninsky, Rider, Brydges, Slade,).
- \triangleright Resurgence of interest in recent years (Burg, Tzvetkov, Oh, Staffilani, Bulut,Thomann, Nahmod,).
- \triangleright The focus in the PDE community has mainly been on using invariant measures to prove existence of global solutions.
- \triangleright As a probabilist, my interest is more in understanding the space-average with respect to these invariant measures, and then appealing to the ergodic hypothes[is.](#page-36-0)

 \blacktriangleright Invariant measures are easier to construct and study in the discrete setting.

a mills.

- ⊀ 母 ▶ . ∢ ヨ ▶ . ∢ ヨ ▶

 298

目

- \blacktriangleright Invariant measures are easier to construct and study in the discrete setting.
- \blacktriangleright Initial work in:

Chatterjee, S. and Kirkpatrick, K. (2012). Probabilistic methods for discrete nonlinear Schrödinger equations. Comm. Pure Appl. Math., **65** no. 5, 727-757.

 Ω

a Basa Ba

- Invariant measures are easier to construct and study in the discrete setting.
- \blacktriangleright Initial work in:

Chatterjee, S. and Kirkpatrick, K. (2012). Probabilistic methods for discrete nonlinear Schrödinger equations. Comm. Pure Appl. Math., 65 no. 5, 727–757.

 \blacktriangleright This talk is based on:

Chatterjee, S. (2014). Invariant measures and the soliton resolution conjecture. Comm. Pure Appl. Math., 67 no. 11, 1737–1842.

► Let $\mathbb{T}_n^d = \{0, 1, ..., n-1\}^d = (\mathbb{Z}/n\mathbb{Z})^d$ be the discrete torus of width n.

AD - 4 E - 4 E -

 298

后

- ► Let $\mathbb{T}_n^d = \{0, 1, ..., n-1\}^d = (\mathbb{Z}/n\mathbb{Z})^d$ be the discrete torus of width n.
- \blacktriangleright Imagine this set embedded in \mathbb{R}^d as $h\mathbb{T}_n^d$, where $h>0$ is the mesh size.

- ► Let $\mathbb{T}_n^d = \{0, 1, ..., n-1\}^d = (\mathbb{Z}/n\mathbb{Z})^d$ be the discrete torus of width n.
- \blacktriangleright Imagine this set embedded in \mathbb{R}^d as $h\mathbb{T}_n^d$, where $h>0$ is the mesh size.
- If $h\mathbb{T}_n^d$ is a discrete approximation of the box $[0, nh]^d$.

- ► Let $\mathbb{T}_n^d = \{0, 1, ..., n-1\}^d = (\mathbb{Z}/n\mathbb{Z})^d$ be the discrete torus of width n.
- \blacktriangleright Imagine this set embedded in \mathbb{R}^d as $h\mathbb{T}_n^d$, where $h>0$ is the mesh size.
- If $h\mathbb{T}_n^d$ is a discrete approximation of the box $[0, nh]^d$.
- \blacktriangleright Define the discrete Laplacian on $h\mathbb{T}_n^d$.

$$
\Delta u(x) = \frac{1}{h^2} \sum_{y \text{ is a nhr of } x} (u(y) - u(x)).
$$

- ► Let $\mathbb{T}_n^d = \{0, 1, ..., n-1\}^d = (\mathbb{Z}/n\mathbb{Z})^d$ be the discrete torus of width n.
- \blacktriangleright Imagine this set embedded in \mathbb{R}^d as $h\mathbb{T}_n^d$, where $h>0$ is the mesh size.
- If $h\mathbb{T}_n^d$ is a discrete approximation of the box $[0, nh]^d$.
- \blacktriangleright Define the discrete Laplacian on $h\mathbb{T}_n^d$.

$$
\Delta u(x) = \frac{1}{h^2} \sum_{y \text{ is a nhbr of } x} (u(y) - u(x)).
$$

Focusing DNLS on hT_n^d :

$$
\mathrm{i}\,\frac{du}{dt}=-\Delta u-|u|^{p-1}u\,.
$$

 \blacktriangleright Luckily, the DNLS is also a Hamiltonian flow.

 $4.171 +$

A.

不重 医不重

 298

扂

- \blacktriangleright Luckily, the DNLS is also a Hamiltonian flow.
- \blacktriangleright The discrete mass and energy of a function $u : h\mathbb{T}_n^d \to \mathbb{C}$, defined below, are conserved quantities for this flow:

- \blacktriangleright Luckily, the DNLS is also a Hamiltonian flow.
- \blacktriangleright The discrete mass and energy of a function $u : h\mathbb{T}_n^d \to \mathbb{C}$, defined below, are conserved quantities for this flow:

$$
M(u) := h^d \sum_x |u(x)|^2,
$$

and

$$
H(u) := \frac{h^d}{2} \sum_{x, y \text{ nhbrs}} \left| \frac{u(x) - u(y)}{h} \right|^2 - \frac{h^d}{p+1} \sum_{x} |u(x)|^{p+1}.
$$

Fixing $\epsilon > 0$, $E \in \mathbb{R}$ and $m > 0$, define

$$
S_{\epsilon,h,n}(E,m):=\{u:|M(u)-m|\leq\epsilon,|H(u)-E|\leq\epsilon\}.
$$

AD - 4 E - 4 E -

 298

重

Fixing $\epsilon > 0$, $E \in \mathbb{R}$ and $m > 0$, define

 $S_{\epsilon,h,n}(E,m) := \{u : |M(u) - m| \leq \epsilon, |H(u) - E| \leq \epsilon\}.$

In words, $S_{\epsilon,h,n}(E,m)$ is the set of all functions on $h\mathbb{T}_n^d$ with mass \approx *m* and energy \approx *E*.

 Ω

Alba (Baba) Bar

Fixing $\epsilon > 0$, $E \in \mathbb{R}$ and $m > 0$, define

 $S_{\epsilon,h,n}(E,m) := \{u : |M(u) - m| \leq \epsilon, |H(u) - E| \leq \epsilon\}.$

- In words, $S_{\epsilon,h,n}(E,m)$ is the set of all functions on $h\mathbb{T}_n^d$ with mass \approx *m* and energy \approx *E*.
- \triangleright By Liouville's theorem, the uniform probability measure on $S_{\epsilon,h,n}(E,m)$ is an invariant measure for the DNLS flow on $h\mathbb{T}_n^d$.

Fixing $\epsilon > 0$, $E \in \mathbb{R}$ and $m > 0$, define

 $S_{\epsilon,h,n}(E,m) := \{u : |M(u) - m| \leq \epsilon, |H(u) - E| \leq \epsilon\}.$

- In words, $S_{\epsilon,h,n}(E,m)$ is the set of all functions on $h\mathbb{T}_n^d$ with mass \approx *m* and energy \approx *E*.
- \triangleright By Liouville's theorem, the uniform probability measure on $S_{\epsilon,h,n}(E,m)$ is an invariant measure for the DNLS flow on $h\mathbb{T}_n^d$.
- \blacktriangleright Let f be a random function drawn from this uniform probability measure.

Fixing $\epsilon > 0$, $E \in \mathbb{R}$ and $m > 0$, define

 $S_{\epsilon,h,n}(E,m) := \{u : |M(u) - m| \leq \epsilon, |H(u) - E| \leq \epsilon\}.$

- In words, $S_{\epsilon,h,n}(E,m)$ is the set of all functions on $h\mathbb{T}_n^d$ with mass \approx *m* and energy \approx *E*.
- \triangleright By Liouville's theorem, the uniform probability measure on $S_{\epsilon,h,n}(E,m)$ is an invariant measure for the DNLS flow on $h\mathbb{T}_n^d$.
- \blacktriangleright Let f be a random function drawn from this uniform probability measure.
- \triangleright A high probability event for f reflects the long-term behavior of the DNLS flow in "most" ergodic components of this invariant measure.

マーター マーティング アイディー

Fixing $\epsilon > 0$, $E \in \mathbb{R}$ and $m > 0$, define

 $S_{\epsilon, h, n}(E, m) := \{u : |M(u) - m| \leq \epsilon, |H(u) - E| \leq \epsilon\}.$

- In words, $S_{\epsilon,h,n}(E,m)$ is the set of all functions on $h\mathbb{T}_n^d$ with mass \approx *m* and energy \approx *E*.
- \triangleright By Liouville's theorem, the uniform probability measure on $S_{\epsilon,h,n}(E,m)$ is an invariant measure for the DNLS flow on $h\mathbb{T}_n^d$.
- \blacktriangleright Let f be a random function drawn from this uniform probability measure.
- \triangleright A high probability event for f reflects the long-term behavior of the DNLS flow in "most" ergodic components of this invariant measure.
- \triangleright Main question: What is the behavior of f? Does it look like a soliton in some limit?

Theorem (C., 2014)

Suppose that $1 < p < 1 + 4/d$. Fix E and m such that $E > E_{min}(m)$. Let Q be the ground state soliton of mass m. Let f be a uniform random choice from the set $S_{\epsilon,h,n}(E,m)$. Then for any $\delta > 0$.

$$
\lim_{h\to 0}\limsup_{\epsilon\to 0}\limsup_{n\to\infty}\mathbb{P}\bigg(\inf_{\stackrel{x_0\in\mathbb{R}^d}{\lambda_0\in\mathbb{R}}}\max_{x\in h\mathbb{T}_n^d}|f(x)-Q(x-x_0)e^{i\lambda_0}|>\delta\bigg)=0\,.
$$

Theorem (C., 2014)

Suppose that $1 < p < 1 + 4/d$. Fix E and m such that $E > E_{min}(m)$. Let Q be the ground state soliton of mass m. Let f be a uniform random choice from the set $S_{\epsilon,h,n}(E,m)$. Then for any $\delta > 0$.

$$
\lim_{h\to 0}\limsup_{\epsilon\to 0}\limsup_{n\to\infty}\mathbb{P}\bigg(\inf_{\stackrel{x_0\in\mathbb{R}^d}{\lambda_0\in\mathbb{R}}}\max_{x\in h\mathbb{T}_n^d}|f(x)-Q(x-x_0)e^{i\lambda_0}|>\delta\bigg)=0\,.
$$

Important note: It is guaranteed by construction that $M(f) \approx m$ and $H(f) \approx E > E_{\text{min}}(m)$.

Theorem (C., 2014)

Suppose that $1 < p < 1 + 4/d$. Fix E and m such that $E > E_{\text{min}}(m)$. Let Q be the ground state soliton of mass m. Let f be a uniform random choice from the set $S_{\epsilon,h,n}(E,m)$. Then for any $\delta > 0$.

$$
\lim_{h\to 0}\limsup_{\epsilon\to 0}\limsup_{n\to\infty}\mathbb{P}\bigg(\inf_{\stackrel{x_0\in\mathbb{R}^d}{\lambda_0\in\mathbb{R}}}\max_{x\in h\mathbb{T}_n^d}|f(x)-Q(x-x_0)e^{i\lambda_0}|>\delta\bigg)=0\,.
$$

Important note: It is guaranteed by construction that $M(f) \approx m$ and $H(f) \approx E > E_{min}(m)$. So f cannot be close to the ground state soliton in the H^1 norm.

Theorem (C., 2014)

Suppose that $1 < p < 1 + 4/d$. Fix E and m such that $E > E_{\text{min}}(m)$. Let Q be the ground state soliton of mass m. Let f be a uniform random choice from the set $S_{\epsilon,h,n}(E,m)$. Then for any $\delta > 0$.

$$
\lim_{h\to 0}\limsup_{\epsilon\to 0}\limsup_{n\to\infty}\mathbb{P}\bigg(\inf_{\stackrel{x_0\in\mathbb{R}^d}{\lambda_0\in\mathbb{R}}}\max_{x\in h\mathbb{T}_n^d}|f(x)-Q(x-x_0)e^{i\lambda_0}|>\delta\bigg)=0\,.
$$

Important note: It is guaranteed by construction that $M(f) \approx m$ and $H(f) \approx E > E_{min}(m)$. So f cannot be close to the ground state soliton in the H^1 norm. The theorem says that in an appropriate limit, f is close to the ground state soliton in the L^{∞} norm.

First, prove that for h fixed, f is close to a discrete ground state soliton with high probability. This is the probabilistic part of the proof. Will say more about this in the next few slides.

- First, prove that for h fixed, f is close to a discrete ground state soliton with high probability. This is the probabilistic part of the proof. Will say more about this in the next few slides.
- \triangleright The second step is to prove that discrete ground state solitons converge to the continuum ground state soliton as the mesh size tends to zero.

- First, prove that for h fixed, f is close to a discrete ground state soliton with high probability. This is the probabilistic part of the proof. Will say more about this in the next few slides.
- \triangleright The second step is to prove that discrete ground state solitons converge to the continuum ground state soliton as the mesh size tends to zero. This is the analytic part of the proof, involving delicate estimates about discrete Green's functions and discrete versions of various classical inequalities (Littlewood-Paley decompositions, Hardy-Littlewood-Sobolev inequality of fractional integration, Gagliardo-Nirenberg inequality, etc.) with constants that do not blow up as the mesh size goes to zero.

イ押 トライモ トラモト

- First, prove that for h fixed, f is close to a discrete ground state soliton with high probability. This is the probabilistic part of the proof. Will say more about this in the next few slides.
- \triangleright The second step is to prove that discrete ground state solitons converge to the continuum ground state soliton as the mesh size tends to zero. This is the analytic part of the proof, involving delicate estimates about discrete Green's functions and discrete versions of various classical inequalities (Littlewood-Paley decompositions, Hardy-Littlewood-Sobolev inequality of fractional integration, Gagliardo-Nirenberg inequality, etc.) with constants that do not blow up as the mesh size goes to zero. Also need discrete concentration compactness to prove stability of discrete solitons (which is trickier than concentration compactness in the continuum), and exponential decay of discrete solito[ns](#page-61-0).

In Let $E_{\text{min}}(m, h)$ denote the minimum possible energy of a function of mass m , in the discrete setting with mesh size h and $n \to \infty$.

- In Let $E_{\text{min}}(m, h)$ denote the minimum possible energy of a function of mass m , in the discrete setting with mesh size h and $n \to \infty$.
- **Figure 1.** The proof shows that there exists $m^* < m$ such that with high probability, the random function f is close to a discrete ground state soliton of mass m^* .

- In Let $E_{\text{min}}(m, h)$ denote the minimum possible energy of a function of mass m , in the discrete setting with mesh size h and $n \to \infty$.
- **Figure 1** The proof shows that there exists $m^* < m$ such that with high probability, the random function f is close to a discrete ground state soliton of mass m^* .
- ► Later, it is shown that $m^* \to m$ as $h \to 0$.

• Fix
$$
\delta > 0
$$
 and let $U := \{x \in h\mathbb{T}_n^d : |f(x)| > \delta\}.$

A \sim 重 \sim 三 $2Q$

- ► Fix $\delta > 0$ and let $U := \{x \in h\mathbb{T}_n^d : |f(x)| > \delta\}.$
- ► Let $f^{\vee}(x) := f(x)$ if $x \in U$, 0 otherwise.

 $2Q$

- 4 E F

- ► Fix $\delta > 0$ and let $U := \{x \in h\mathbb{T}_n^d : |f(x)| > \delta\}.$
- ► Let $f^{\vee}(x) := f(x)$ if $x \in U$, 0 otherwise.
- ► Let $f^i(x) := f(x) f^v(x)$.

- ► Fix $\delta > 0$ and let $U := \{x \in h\mathbb{T}_n^d : |f(x)| > \delta\}.$
- ► Let $f^{\vee}(x) := f(x)$ if $x \in U$, 0 otherwise.

$$
\blacktriangleright \text{ Let } f^i(x) := f(x) - f^v(x).
$$

 \triangleright The superscripts v and *i* stand for "visible" and "invisible": f^{\vee} is the visible part of f and f^i is the invisible part of f.

- ► Fix $\delta > 0$ and let $U := \{x \in h\mathbb{T}_n^d : |f(x)| > \delta\}.$
- ► Let $f^{\vee}(x) := f(x)$ if $x \in U$, 0 otherwise.

$$
\blacktriangleright \text{ Let } f^i(x) := f(x) - f^v(x).
$$

- \triangleright The superscripts v and *i* stand for "visible" and "invisible": f^{\vee} is the visible part of f and f^i is the invisible part of f.
- Suffices to show that with high probability, f^{\vee} is close to a ground state soliton in the large n limit.

- ► Fix $\delta > 0$ and let $U := \{x \in h\mathbb{T}_n^d : |f(x)| > \delta\}.$
- ► Let $f^{\vee}(x) := f(x)$ if $x \in U$, 0 otherwise.

$$
\blacktriangleright \text{ Let } f^i(x) := f(x) - f^v(x).
$$

- \triangleright The superscripts v and *i* stand for "visible" and "invisible": f^{\vee} is the visible part of f and f^i is the invisible part of f.
- Suffices to show that with high probability, f^{\vee} is close to a ground state soliton in the large n limit.
- \triangleright By the stability of discrete solitons, suffices to prove that with high probability, $M(f^{\vee}) \approx m^*$ and $H(f^{\vee}) \approx E^*$ for some $m^* \in [0, m]$ and $E^* = E_{min}(m^*, h)$.

メター・メディ メディー
Recall that f is drawn uniformly at random from the set of all u with $M(u) \approx m$ and $H(u) \approx E$.

 $2Q$

- Recall that f is drawn uniformly at random from the set of all u with $M(u) \approx m$ and $H(u) \approx E$.
- Therefore, for any m', E' ,

 $\mathbb{P}(M(f^{\vee}) \approx m', H(f^{\vee}) \approx E')$ $=\frac{\text{Vol}(\lbrace u: M(u^{\vee}) \approx m', H(u^{\vee}) \approx E', M(u) \approx m, H(u) \approx E \rbrace)}{\sum_{i} \lbrace (\lbrace u, M(u), \rbrace \equiv m, H(u) \approx E \rbrace)}$ $\overline{\text{Vol}(\{u : M(u) \approx m, H(u) \approx E\})}$

- Recall that f is drawn uniformly at random from the set of all u with $M(u) \approx m$ and $H(u) \approx E$.
- Therefore, for any m', E' ,

 $\mathbb{P}(M(f^{\vee}) \approx m', H(f^{\vee}) \approx E')$ $=\frac{\text{Vol}(\lbrace u: M(u^{\vee}) \approx m', H(u^{\vee}) \approx E', M(u) \approx m, H(u) \approx E \rbrace)}{\sum_{i} \lbrace (\lbrace u, M(u), \rbrace \equiv m, H(u) \approx E \rbrace)}$ $\overline{\text{Vol}(\{u : M(u) \approx m, H(u) \approx E\})}$

In Let $V(m',E')$ denote the numerator and V denote the denominator.

- Recall that f is drawn uniformly at random from the set of all u with $M(u) \approx m$ and $H(u) \approx E$.
- Therefore, for any m', E' ,

 $\mathbb{P}(M(f^{\vee}) \approx m', H(f^{\vee}) \approx E')$ $=\frac{\text{Vol}(\lbrace u: M(u^{\vee}) \approx m', H(u^{\vee}) \approx E', M(u) \approx m, H(u) \approx E \rbrace)}{\sum_{i} \lbrace (\lbrace u, M(u), \rbrace \equiv m, H(u) \approx E \rbrace)}$ $\overline{\text{Vol}(\{u : M(u) \approx m, H(u) \approx E\})}$

- In Let $V(m',E')$ denote the numerator and V denote the denominator.
- ► Need to show that there exists $m^* \in [0, m]$ and $E^* = E_{\text{min}}(m^*, h)$ such that

$$
\sum_{(m',E')\not\approx (m^*,E^*)} V(m',E') \ll V.
$$

- Recall that f is drawn uniformly at random from the set of all u with $M(u) \approx m$ and $H(u) \approx E$.
- Therefore, for any m', E' ,

 $\mathbb{P}(M(f^{\vee}) \approx m', H(f^{\vee}) \approx E')$ $=\frac{\text{Vol}(\lbrace u: M(u^{\vee}) \approx m', H(u^{\vee}) \approx E', M(u) \approx m, H(u) \approx E \rbrace)}{\sum_{i} \lbrace (\lbrace u, M(u), \rbrace \equiv m, H(u) \approx E \rbrace)}$ $Vol({u : M(u) \approx m, H(u) \approx E})$

- In Let $V(m',E')$ denote the numerator and V denote the denominator.
- ► Need to show that there exists $m^* \in [0, m]$ and $E^* = E_{\text{min}}(m^*, h)$ such that

$$
\sum_{(m',E')\not\approx (m^*,E^*)} V(m',E') \ll V.
$$

Need upper bound on $V(m', E')$ and lower bound on V (that should actually closely match the true [val](#page-75-0)[ues](#page-77-0)[\)](#page-71-0)[.](#page-72-0)

► The lower bound on V is obtained by guessing m^* and E^* and then using $V \ge V(m^*,E^*) \ge$ the volume of a neighborhood of a discrete soliton of mass m^* and energy E^* .

- ► The lower bound on V is obtained by guessing m^* and E^* and then using $V \ge V(m^*,E^*) \ge$ the volume of a neighborhood of a discrete soliton of mass m^* and energy E^* .
- In Let us now see how to get an upper bound on $V(m', E').$ Assume $h = 1$ for simplicity.

- ► The lower bound on V is obtained by guessing m^* and E^* and then using $V \ge V(m^*,E^*) \ge$ the volume of a neighborhood of a discrete soliton of mass m^* and energy E^* .
- In Let us now see how to get an upper bound on $V(m', E').$ Assume $h = 1$ for simplicity.
- ► Suppose that $M(u^{\vee}) \approx m'$ and $H(u^{\vee}) \approx E'$. Then $M(u^{i}) \approx m - m'$, and $H(u^{i}) \approx E - E'$.

する トランチ キャンチ

- ► The lower bound on V is obtained by guessing m^* and E^* and then using $V \ge V(m^*,E^*) \ge$ the volume of a neighborhood of a discrete soliton of mass m^* and energy E^* .
- In Let us now see how to get an upper bound on $V(m', E').$ Assume $h = 1$ for simplicity.
- ► Suppose that $M(u^{\vee}) \approx m'$ and $H(u^{\vee}) \approx E'$. Then $M(u^{i}) \approx m - m'$, and $H(u^{i}) \approx E - E'$.
- Now, $|u^{i}(x)| \leq \delta$ everywhere. So

$$
\sum |u^i(x)|^{p+1} \leq \delta^{p-1} \sum |u^i(x)|^2 = \delta^{p-1} M(u^i) \approx \delta^{p-1} m.
$$

する トランチ キャンチ

- ► The lower bound on V is obtained by guessing m^* and E^* and then using $V \ge V(m^*,E^*) \ge$ the volume of a neighborhood of a discrete soliton of mass m^* and energy E^* .
- In Let us now see how to get an upper bound on $V(m', E').$ Assume $h = 1$ for simplicity.
- ► Suppose that $M(u^{\vee}) \approx m'$ and $H(u^{\vee}) \approx E'$. Then $M(u^{i}) \approx m - m'$, and $H(u^{i}) \approx E - E'$.
- Now, $|u^{i}(x)| \leq \delta$ everywhere. So

$$
\sum |u^{i}(x)|^{p+1} \leq \delta^{p-1} \sum |u^{i}(x)|^{2} = \delta^{p-1} M(u^{i}) \approx \delta^{p-1} m.
$$

If δ is small, this implies that

$$
H(u^i) \approx \frac{1}{2} \sum_{x,y \text{ nhbrs}} |u^i(x) - u^i(y)|^2.
$$

- ► The lower bound on V is obtained by guessing m^* and E^* and then using $V \ge V(m^*,E^*) \ge$ the volume of a neighborhood of a discrete soliton of mass m^* and energy E^* .
- In Let us now see how to get an upper bound on $V(m', E').$ Assume $h = 1$ for simplicity.
- ► Suppose that $M(u^{\vee}) \approx m'$ and $H(u^{\vee}) \approx E'$. Then $M(u^{i}) \approx m - m'$, and $H(u^{i}) \approx E - E'$.
- Now, $|u^{i}(x)| \leq \delta$ everywhere. So

$$
\sum |u^{i}(x)|^{p+1} \leq \delta^{p-1} \sum |u^{i}(x)|^{2} = \delta^{p-1} M(u^{i}) \approx \delta^{p-1} m.
$$

If δ is small, this implies that

$$
H(u^i) \approx \frac{1}{2} \sum_{x,y \text{ nhbrs}} |u^i(x) - u^i(y)|^2.
$$

 \blacktriangleright Lastly, observe that

$$
|U| = |\{x : |f(x)| > \delta\}| \leq \delta^{-2} \sum |u(x)|^2 \approx \delta^{-2} m.
$$

 \blacktriangleright Thus,

$$
V(m', E') \leq \text{Vol}(\lbrace u : \exists U, |U| \leq \delta^{-2} m, \sum_{x \notin U} |u(x)|^2 \approx m - m',
$$

$$
\frac{1}{2} \sum_{\substack{x, y \text{ nbps} \\ x, y \notin U}} |u(x) - u(y)|^2 \approx E - E'\rbrace)
$$

 $4.171 +$

A \sim \equiv \rightarrow

一 4 (重) 8

 298

目

 \blacktriangleright Thus,

$$
V(m', E') \leq \text{Vol}(\lbrace u : \exists U, |U| \leq \delta^{-2}m, \sum_{x \notin U} |u(x)|^2 \approx m - m',
$$

$$
\frac{1}{2} \sum_{\substack{x, y \text{ rhbrs} \\ x, y \notin U}} |u(x) - u(y)|^2 \approx E - E'\rbrace)
$$

$$
\leq \sum_{\substack{U : |U| \leq \delta^{-2}m}} \text{Vol}(\lbrace u : \sum_{x \notin U} |u(x)|^2 \approx m - m',
$$

$$
\frac{1}{2} \sum_{\substack{x, y \text{ rhbrs} \\ x, y \notin U}} |u(x) - u(y)|^2 \approx E - E'\rbrace).
$$

a mills.

K 御 ⊁ K 唐 ⊁ K 唐 ⊁

 298

目

The last displayed item in the previous slide is estimated using the following large deviation principle.

 $2Q$

The last displayed item in the previous slide is estimated using the following large deviation principle.

Theorem (C., 2014)

Let ξ be a random function chosen uniformly from the set of all functions $u:\mathbb{T}_n^d\to\mathbb{C}$ that satisfy $\sum |u(x)|^2=1.$ Then for any $\alpha \in (0, 2d)$,

$$
\lim_{n\to\infty}\frac{1}{n^d}\log\mathbb{P}\bigg(\sum_{x,y \text{ nhbrs}}|\xi(x)-\xi(y)|^2\leq\alpha\bigg)=-\Psi_d(\alpha)\,,
$$

The last displayed item in the previous slide is estimated using the following large deviation principle.

Theorem (C., 2014)

Let ξ be a random function chosen uniformly from the set of all functions $u:\mathbb{T}_n^d\to\mathbb{C}$ that satisfy $\sum |u(x)|^2=1.$ Then for any $\alpha \in (0, 2d)$,

$$
\lim_{n\to\infty}\frac{1}{n^d}\log\mathbb{P}\bigg(\sum_{x,y \text{ nhbrs}}|\xi(x)-\xi(y)|^2\leq\alpha\bigg)=-\Psi_d(\alpha)\,,
$$

where

$$
\Psi_d(\alpha) = \sup_{0 < \gamma < 1} \int_{[0,1]^d} \log \left(1 - \gamma + \frac{4\gamma}{\alpha} \sum_{i=1}^d \sin^2(\pi x_i) \right) dx_1 \cdots dx_d.
$$

The last displayed item in the previous slide is estimated using the following large deviation principle.

Theorem (C., 2014)

Let ξ be a random function chosen uniformly from the set of all functions $u:\mathbb{T}_n^d\to\mathbb{C}$ that satisfy $\sum |u(x)|^2=1.$ Then for any $\alpha \in (0, 2d)$,

$$
\lim_{n\to\infty}\frac{1}{n^d}\log\mathbb{P}\bigg(\sum_{x,y \text{ nhbrs}}|\xi(x)-\xi(y)|^2\leq\alpha\bigg)=-\Psi_d(\alpha)\,,
$$

where

$$
\Psi_d(\alpha) = \sup_{0 < \gamma < 1} \int_{[0,1]^d} \log \left(1 - \gamma + \frac{4\gamma}{\alpha} \sum_{i=1}^d \sin^2(\pi x_i) \right) dx_1 \cdots dx_d.
$$

Whe[n](#page-84-0) $\alpha > 2d$, the same result holds after r[epl](#page-87-0)[aci](#page-89-0)n[g](#page-85-0) \leq [b](#page-0-0)[y](#page-93-0) \geq [.](#page-0-0)

 \triangleright The large deviation principle does not follow from standard techniques, because of localization phenomena.

- \triangleright The large deviation principle does not follow from standard techniques, because of localization phenomena.
- \blacktriangleright The proof involves Fourier analysis on the discrete torus, since $\sum |\xi(y) - \xi(y)|^2$ can be elegantly written as a linear combination of Fourier coefficients.

- \triangleright The large deviation principle does not follow from standard techniques, because of localization phenomena.
- \blacktriangleright The proof involves Fourier analysis on the discrete torus, since $\sum |\xi(y) - \xi(y)|^2$ can be elegantly written as a linear combination of Fourier coefficients.
- \blacktriangleright In certain regimes, a small number low Fourier coefficients become exceedingly large (localization).

- \triangleright The large deviation principle does not follow from standard techniques, because of localization phenomena.
- \blacktriangleright The proof involves Fourier analysis on the discrete torus, since $\sum |\xi(y) - \xi(y)|^2$ can be elegantly written as a linear combination of Fourier coefficients.
- \blacktriangleright In certain regimes, a small number low Fourier coefficients become exceedingly large (localization).

▶ The fact that $V(m', E')$ is maximized at some $(m^*, E^*),$ where $E^* = E_{\text{min}}(m^*, h)$, follows from analyzing the large deviation rate function displayed in the previous slide. This is, of course, the central reason why f is close to a soliton. Beyond this calculation involving the rate function, I don't have an intuition for why this happens.

 $A \oplus B \oplus A \oplus B \oplus A \oplus B \oplus B$

- \triangleright The large deviation principle does not follow from standard techniques, because of localization phenomena.
- \blacktriangleright The proof involves Fourier analysis on the discrete torus, since $\sum |\xi(y) - \xi(y)|^2$ can be elegantly written as a linear combination of Fourier coefficients.
- \blacktriangleright In certain regimes, a small number low Fourier coefficients become exceedingly large (localization).

▶ The fact that $V(m', E')$ is maximized at some $(m^*, E^*),$ where $E^* = E_{\text{min}}(m^*, h)$, follows from analyzing the large deviation rate function displayed in the previous slide. This is, of course, the central reason why f is close to a soliton. Beyond this calculation involving the rate function, I don't have an intuition for why this happens.

That is all. Thanks for your a[tte](#page-92-0)n[tio](#page-88-0)[n](#page-89-0).