
Outline Introduction Dispersive analysis

Dispersive analysis for Capillary-gravity Water
waves in 3D

Benoit Pausader
(with Y. Deng, A. Ionescu and F. Pusateri)

November 2, 2015

Benoit Pausader(with Y. Deng, A. Ionescu and F. Pusateri)

Dispersive analysis for Capillary-gravity Water waves in 3D



Outline Introduction Dispersive analysis

Figure: ”Diving grebe” by Brocken Inaglory. Licensed under CC BY-SA
3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Divingg rebe.jpg/media/File :
Divingg rebe.jpg
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Figure: ”Capillary 1” downloaded from
http://epod.usra.edu/blog/2014/08/capillary-waves.html
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Setup

We consider the dynamics of an interface between an inert
atmosphere (without dynamics) and a large body of
incompressible, inviscid, irrotational water, subjected to both
gravity and surface tension.

We consider a small perturbation of a fluid at rest (basic
equilibrium) and we study its asymptotic behavior:

does it converge back to equilibrium?

does it lead to concentration of energy (and eventual
blow-up?)

We show that the former is true (work with Y. Deng, A. Ionescu
and F. Pusateri).

Benoit Pausader(with Y. Deng, A. Ionescu and F. Pusateri)

Dispersive analysis for Capillary-gravity Water waves in 3D



Outline Introduction Dispersive analysis

Setup

We consider the dynamics of an interface between an inert
atmosphere (without dynamics) and a large body of
incompressible, inviscid, irrotational water, subjected to both
gravity and surface tension.

We consider a small perturbation of a fluid at rest (basic
equilibrium) and we study its asymptotic behavior:

does it converge back to equilibrium?

does it lead to concentration of energy (and eventual
blow-up?)

We show that the former is true (work with Y. Deng, A. Ionescu
and F. Pusateri).

Benoit Pausader(with Y. Deng, A. Ionescu and F. Pusateri)

Dispersive analysis for Capillary-gravity Water waves in 3D



Outline Introduction Dispersive analysis

Setup

We consider the dynamics of an interface between an inert
atmosphere (without dynamics) and a large body of
incompressible, inviscid, irrotational water, subjected to both
gravity and surface tension.

We consider a small perturbation of a fluid at rest (basic
equilibrium) and we study its asymptotic behavior:

does it converge back to equilibrium?

does it lead to concentration of energy (and eventual
blow-up?)

We show that the former is true (work with Y. Deng, A. Ionescu
and F. Pusateri).

Benoit Pausader(with Y. Deng, A. Ionescu and F. Pusateri)

Dispersive analysis for Capillary-gravity Water waves in 3D



Outline Introduction Dispersive analysis

Setup

We consider the dynamics of an interface between an inert
atmosphere (without dynamics) and a large body of
incompressible, inviscid, irrotational water, subjected to both
gravity and surface tension.

We consider a small perturbation of a fluid at rest (basic
equilibrium) and we study its asymptotic behavior:

does it converge back to equilibrium?

does it lead to concentration of energy (and eventual
blow-up?)

We show that the former is true (work with Y. Deng, A. Ionescu
and F. Pusateri).

Benoit Pausader(with Y. Deng, A. Ionescu and F. Pusateri)

Dispersive analysis for Capillary-gravity Water waves in 3D



Outline Introduction Dispersive analysis

Setup

We consider the dynamics of an interface between an inert
atmosphere (without dynamics) and a large body of
incompressible, inviscid, irrotational water, subjected to both
gravity and surface tension.

We consider a small perturbation of a fluid at rest (basic
equilibrium) and we study its asymptotic behavior:

does it converge back to equilibrium?

does it lead to concentration of energy (and eventual
blow-up?)

We show that the former is true (work with Y. Deng, A. Ionescu
and F. Pusateri).

Benoit Pausader(with Y. Deng, A. Ionescu and F. Pusateri)

Dispersive analysis for Capillary-gravity Water waves in 3D



Outline Introduction Dispersive analysis

Equations

Hypothesis:

Simple dynamics in the bulk: No dynamics in the air:
p ≡ Cte ≡ 0, inviscid, incompressible, irrotational fluid in the
water:

(∂t + v · ∇) v +∇p = −gey , div(v) = 0 = curl(v)

Coupling by boundary conditions:

(rest at ∞) : |u| → 0, |x | → ∞,
cont. of stress tensor : JpKn = σHn,

interface advected : (∂t + vx · ∇x) h = vy .
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Model limitations

Most dynamical aspects of small waves remain poorly understood.
Among them:

Influence of the vorticity?

Influence of the bottom (flat/periodic?)

Influence of the air? (e.g. formation of waves, see
Bühler-Shatah-Walsh-Zeng)

It would be great to be able to perturb around more complicated
equilibriums:

Multi-solitons

Stability close to solitons (e.g. Instability result by
Rousset-Tzvetkov)
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Water waves and semilinear dispersive equations

Many dispersive equations appear as some limit from the WW:

KdV in the some form of Shallow-water regime; also KP-I/II.

NLS for some modulations.

Benjamin-Ono for internal waves.

See Schneider-Wayne, Craig, Bona-Colin-Lannes,
Alvarez-Samaniego-Lannes, Totz-Wu.
Semilinear equations better understood than WW equations. It
would be great to understand what can be inferred from properties
of these flows to properties of solutions to the WW problem (e.g.
control of 1D NLS helps in scattering for gKdV, see
Killip-Kwon-Shao-Visan).
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Steady waves

The best understood setup is the case of steady or standing waves,
with many contributions, even for large
data/vorticity/stratifications.
Amick, Beale, Toland, Ioss, Plotnikov, Varvaruca,
Constantine, Strauss, Wahlen, Hur, Walsh, Wheeler, Craig,
Groves, Kirchgässner, Alazard-Métivier.
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Global existence for 3D GCWW

GWP for small localized smooth perturbations of a flat 2D
interface at rest, over an infinite bottom subject to gravity and
surface tension.

GWP for small gravity-capillary waves [DIPP]

There exists a norm (finite on S) and ε > 0 such that if (h, φ)
solve the water-wave problem in ZCS formulation with

‖(h(0), φ(0))‖ ≤ ε,

then (h, φ) can be extended globally and scatters in L2,

‖U(t)‖L∞ . (1 + |t|)−
5
6

+

and we have precise information on U =
√
g − σ∆h + i |∇|

1
2φ.
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Previous works on WW

Among many previous works:

Local well-posedness: Nalimov, Yoshihara, Kano-Nishida,
Beale-Hou-Lowengrub, Craig, Iguchi, Ogawa-Tani, Wu,
Ambrose-Masmoudi, Christodoulou-Lindblad, Lannes,
Lindblad, Coutand-Shkoller, Zhang-Zhang, Shatah-Zeng,
Beyer-Gunther, Christianson-Hur-Staffilani,
Alazard-Burq-Zuily, de Poyferre-NGuyen.
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Previous works on WW

Among many previous works:

Global well-posedness in 2D (1d interface):

Wu, Hunter-Ifrim-Tataru (gravity, almost global),
Alazard-Delort, Ionescu-Pusateri, Ifrim-Tataru, X. Wang
(gravity)

Ifrim-Tataru, Ionescu-Pusateri (surface tension).

Global well-posedness in 3D (2d interface):

Germain-Masmoudi-Shatah, Wu (gravity), X. Wang (finite
bottom),
Germain-Masmoudi-Shatah (surface tension).
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Specificity of the gravity-capillary problem

The case of gravity-capillary WW presents serious new difficulties:

Slower linear decay (t−
5
6 → nonintegrable)

Quadratic resonances → no normal form

No scaling invariance

Presence of space-time resonances → delicate semilinear
analysis
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Dispersion relation

Linearize at equilibrium:(
∂t + i

√
|∇|(g − σ∆)

)
U = 0.

Solve by Fourier transform:

U(t) = e−itΛU(0),

Need to understand dispersive properties of free solutions:
Dispersion relation

Λ(ξ) = λ(|ξ|), λ(r) =
√

gr + σr3.
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In water, γ0 ∼ 58m−1, 2π/γ0 ' 1.7cm.
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Slower linear decay

Inflexion point in the dispersion relation (γ0) → slower decay,
Van Der Corput:

‖e itΛPN f ‖L∞ . min{N
3
2 ,N

1
2 }t−1+ 1

6 ‖PN f ‖L1 .

Loosing “almost integrable decay” leads to many complications.
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Strategy

We proceed in two main steps

1 Energy estimates: allows to control high regularity norms of
the solution assuming good dispersive behavior of low
frequencies,

2 Dispersive analysis: allows to control the dispersive behavior
of the solution assuming good energy estimates.
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Zakharov-Craig-Sulem equation

Restrict to the boundary (graph over equilibrium h ≡ 0):

(h, φ), φ(x) = Φ(x , h(x)), v = ∇Φ, ∆Φ = 0,

G (h)φ =
√

1 + |∇h|2n · ∇Φ|y=h(x)

Equations become

∂th = G (h)φ,

∂tφ = −gh − σdiv

[
∇h

[1 + |∇h|2]
3
2

]
− 1

2
|∇φ|2 +

(G (h)φ+∇h · ∇φ)2

1 + |∇h|2
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Hamiltonian flow

This is the Hamiltonian flow associated to the usual symplectic
structure and to the physical energy:

H(h, φ) =
1

2

∫
R2

{
φ · G (h)φ+ gh2 + 2σ

[√
1 + |∇h|2 − 1

]}
dx
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Semilinear approach

Assume smoothness of solution (EE) → Taylor expansion:

(∂t + iΛ)U = Q(U,U) + C (U,U,U) + h.o.t,

Λ =
√
|∇|(g − σ∆), U =

√
g − σ∆h + i |∇|

1
2φ.

Want: decay of solutions → need to to exploit dispersive effects.
Conjugating by the linear flow:

U(t) = e−itΛu(t),

then u evolves nonlinearly

∂tu = quadratic + h.o.t., ‖U‖L∞ . t−
5
6 ‖u‖W 2,1

New unknown: u.
Benoit Pausader(with Y. Deng, A. Ionescu and F. Pusateri)
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Vector fields

Want: use stationary-phase arguments to obtain decay:

U(x , t) =

∫
R2

e i [tΛ(ξ)+〈x ,ξ〉]û(ξ, t)dξ

Need: smoothness of û.
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Want: use stationary phase arguments to obtain decay:

U(x , t) =

∫
R2

e i [tΛ(ξ)+〈x ,ξ〉]û(ξ, t)dξ

Need: smoothness of û.

Vector-fields (Klainerman): look for X such that

X̂ also vector field,

X̂ commutes to first order with linearized operator.

Then: similar properties to X̂e = ∇ → energy estimates.
Informally: need 2 such vector fields.
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Outline Introduction Dispersive analysis

Vector fields

Want: use stationary phase arguments to obtain decay:

U(x , t) =

∫
R2

e i [tΛ(ξ)+〈x ,ξ〉]û(ξ, t)dξ

Need: smoothness of û.

Vector-fields

Isotropic problem: rotational vector field: X = Ω, X̂ = Ω,

???
Remark: in case of only gravity or surface tension, scaling
invariance: S = x · ∇+ ct∂t + c ′.
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Outline Introduction Dispersive analysis

Smoothness in Fourier space

To compensate for the missing vector field, we will try to obtain
full smoothness (cf Germain-Masmoudi-Shatah,
Gustafson-Nakanishi-Tsai):

‖û(t)‖Hs ' ‖〈x〉su(t)‖L2 .

In general, need s = 1 = (d/2). Here 1 vector field → s > 1/2.

First attempt for a decay norm:

‖u(t)‖B1 := ‖〈x〉1−δu(t)‖L2

Insufficient!
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

A nonlinear norm

Previous discussion only based solely on linear considerations.

Special nonlinear interactions prevents propagation of smooth
norms.
→ Need to modify the norm (Norm dependent on nonlinearity).
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Quadratic space-time resonances
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

Space-resonant/Coherent interaction: Same velocity
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

Space-time resonant interactions

Interactions of waves at frequencies ξ1 and ξ2 such that

∇Λ(ξ1) = ∇Λ(ξ2) ⇔ ∇ηΦ = 0,

Λ(ξ1) + Λ(ξ2) = Λ(ξ1 + ξ2) ⇔ Φ = 0,

cannot in general be avoided: (D + 1) equations in 2D dimensions.

Create space-time resonances (terminology of
Germain-Masmoudi-Shatah).
Presence of space-time resonances makes analysis more
complicated. Bernicot-Germain studied the first iterate:

no correction to optimal decay in 3D: 1/t3/2,

best decay in 2D: log(t)/t

best decay in 1D: t
1
4 /t1/2.

Genuinely nonlinear effect!
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

STR are generic → appear in many dispersive systems. E.g. in
Euler-Maxwell systems.
Germain: isolates a nice model setting: systems of Klein-Gordon
equations (cf Germain-Masmoudi).

Robust study in non-degenerate case: Ionescu-P., see also Yu
Deng’s thesis for some degenerate cases.

Led to global solutions for the 2-fluid Euler-Maxwell system in 3D
Guo-Ionescu-P. and electron system in 2D Deng-Ionescu-P..
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

Duhamel formula

Introducing quadratic interactions:

(∂t + iΛ)U = Q1[U,U] + Q2[U,U] + Q3[U,U] + h.o.t.

Duhamel formula for u:

û(ξ, t) = û(ξ, 0)− i

∫ t

0

∫
R2

e isΦ(ξ,η)m(ξ, η)û(ξ − η, s)û(η, s)dηds,

Φ(ξ, η) = Λ(ξ)− Λ(ξ − η)− Λ(η),

Coherence-resonance information contained in the stationary
points of the phase sΦ (space-time resonance method
Germain-Masmoudi-Shatah).
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û(ξ, t) = û(ξ, 0)− i
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

Non degenerate STR

We call an interaction nondegenerate if

Φ = 0 & ∇ηΦ = 0 ⇒ det∇2
ηηΦ 6= 0

generically satisfied for isotropic problems (true for GCWW).

Effect of coherent interaction:

∂t û(ξ) = + R(ξ), g ∈ C∞, ‖R‖L2 . (1 + |t|)−
3
2 ,

Ψ(ξ) = Φ(ξ, η) when ∇ηΦ(ξ, η) = 0,

First term does not behave as a linear wave
→ treated differently!
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

Build up due to space-time resonance
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Effect of space-time resonances

Enveloppe

Increment at time 50

Increment at time 250

Increment at time 1000

Increment at time 10000
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

Norms

We will bootstrap control of the following norms:

sup
0≤t≤T

{
‖U(t)‖HN0 + ‖ΩN2U(t)‖L2 + ‖u(t)‖Z

}
≤ ε,

‖f ‖Z . sup
0≤a≤N2/2

‖Ωaf ‖
Z̃
,

‖f ‖
Z̃

= sup
N·X≥1

(1 + N30)‖QX ,N f ‖B1
X ,N+B2

X ,N
,

‖f ‖B1
X ,N

= X 1−9δ‖f ‖L2 ,

‖f ‖B2
X ,N
∼ (N−10 + N10)X 1−δ‖Ψ(ξ)f̂ (ξ)‖L∞ , Ψ(ξ) ' |ξ| −

√
2

where QX ,N localizes at frequency |ξ| ' N and at position |x | ' X .

‖U(t)‖L∞ . t−
5
6

+‖u‖Z
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Outline Introduction Dispersive analysis

Quadratic space-time resonances

A typical function
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1

2

3

4

5

Enveloppe

Typical function

γ1

Increment at time t∼500
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Outline Introduction Dispersive analysis

Nonlinear analysis

Main properties

The following generic assumptions are verified for our problem:

STR are separated: if (ξ, η) is STR, then (η, χ) is not STR
for any χ. No STR feeds into another STR.

No nontrivial iterated resonances: if (ξ, η) is a STR and
(χ, ξ) is resonant which is coherent with the new wave, then
they have the same speed:

Φ1 + Ψ2 = Λσ(ξ)− Λµ(ξ − η)− Λν(η) + [Λν(η) + Λµ(η − θ)− Λσ(θ)]

∇ηΦ2 = ∇Λµ(η − θ) +∇Λσ(θ) = 0

then ξ = θ.
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Outline Introduction Dispersive analysis

Nonlinear analysis

Figure: Separation of resonances (generic)

ST-Resonant

Non-ST resonant
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Figure: Local iterated resonances (generic)
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Nonlinear analysis

Decompose the inputs all the way to the uncertainty principle

u =
∑

N·X≥1

QX ,Nu, QX ,N ' 1|x |'X1|ξ|'N

and we plug in the Duhamel formula

û(ξ, t) = û(ξ, 0)− i
∑

X1·N1≥1

∑
X2·N2≥1

∫ t

0
e itΦ(ξ,η)ûX1,N1(ξ − η)ûX2,N2(η)dη,

and we estimate QX ,Nu.
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Nonlinear analysis

By energy estimates, we may assume that N,N1,N2 . 1.

By finite speed of propagation, we may assume that
X ,X1,X2 ≤ T and then T is the largest parameter.

This allows to evacuate most of the easy cases.
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Nonlinear analysis

“Local” slow frequency

At the inflexion point γ0, particularly slow decay → rely more on
normal form transformation.

Key: γ0 has the slowest group velocity → interacts mostly with
itself → local (∼ |u|2u).
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Nonlinear analysis

Main cases

Separation assumption: a ST resonance created only by “strong”
inputs (already studied in 3D).

Hardest case: one input is Schwartz and one is very delocalized:
X1 ∼ 0, X2 ' T . No space-resonances/coherence analysis. Need
to reiterate the analysis (cf EP/e 2D).
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