
On global solutions of water wave models

Alexandru Ionescu

October 26, 2015

Alexandru Ionescu On global solutions of water wave models



The ”division” problem

Consider a generic evolution problem of the type

∂tu + iΛu = N (u,Dxu)

where Λ is real and N is a quadratic nonlinearity. At first iteration

u(t) = e−itΛφ.

At second iteration, assuming N = ∂1(u2),

û(ξ, t) = e−itΛ(ξ)φ̂(ξ)

+ Ce−itΛ(ξ)

∫
φ̂(ξ − η)φ̂(η)iξ1

1− e it[Λ(ξ)−Λ(η)−Λ(ξ−η)]

Λ(ξ)− Λ(η)− Λ(ξ − η)
dη.

One has to understand the contribution of the set of (time)
resonances:

{(ξ, η) : ±Λ(ξ)± Λ(η)± Λ(ξ − η) = 0}.
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In semilinear problems one can iterate using X s,b spaces
(Bourgain, Kenig–Ponce–Vega, Klainerman–Machedon). The
iteration method completely fails in quasilinear problems due to the
unavoidable loss of derivative.

In quasilinear problems, the classical methods are
• energy and vector-field methods (Klainerman, Christodoulou);
• the normal form method (Shatah).
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There are two possible situations: low regularity + short time or
high regularity + long time. We focus on the second case.

In many interesting quasilinear evolutions it is not known how to
construct even one dynamically nontrivial global solution.

We assume that we start with ”nice” and ”small” data (smooth
and localized) and would like to understand the long-term
evolution problem. The exact smoothness assumption is not
important, but the ”momentum” conditions (assumption on the 0
frequency) are important.
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In quasilinear problems, understanding the division problem is
necessary when:
• The solution has strictly less than 1/t pointwise decay;
• There is a full set (codimension 1) of time resonances and no
matching ”null structure”.

The main point is that the phases corresponding to bilinear
interactions satisfy the following restricted nondegeneracy
condition: if

Φ(ξ, η) := ±Λ(ξ)± Λ(η)± Λ(ξ − η)

and
Υ(ξ, η) := ∇2

ξ,ηΦ(ξ, η)
[
∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)

]
,

then Υ(ξ, η) 6= 0 at (almost all) points on the time-resonant set
Φ(ξ, η) = 0.
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We have three results in this direction:

• I.–Pusateri: the capillary water waves in 2d with no momentum
conditions on the Hamiltonian variables (independent result of
Ifrim–Tataru in the case of data satisfying one momentum
condition on the Hamiltonian variable);

• Deng–I.–Pausader: the Euler–Maxwell one-fluid system in 2d.

• Deng–I.–Pausader–Pusateri: the gravity-capillary irrotational
water waves in 3d (2d interface). Schematically,

∂tu + iΛu = N (u,Dxu), Λ(ξ) =
√
|ξ|+ |ξ|3.

Alexandru Ionescu On global solutions of water wave models



The main theorem

We consider the free boundary incompressible Euler equations

vt + v · ∇v = −∇p − gen, ∇ · v = 0, x ∈ Ωt ,

where g is the gravitational constant. The free surface
St = {(x , h(x , t))} moves with the velocity, according to the
kinematic boundary condition:

∂t + v · ∇ is tangent to
⋃
t

St ⊂ Rn+1.

In the presence of surface tension the pressure on the interface is
given by

p(x , t) = σκ(x , t), x ∈ St ,

where κ is the mean-curvature of St and σ > 0.
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In the irrotational case curl v = 0, let Φ denote the velocity
potential, v = ∇Φ, and let φ(x , t) = Φ(x , h(x , t), t) denote its
trace on the interface.

Main Theorem. (Deng, I., Pausader, Pusateri) If g > 0, σ > 0,
and

‖(h0, φ0)‖Suitable norm ≤ ε0 � 1

then there is a unique smooth global solution of the
gravity-capillary water-wave system in 3d, with initial data (h0, φ0).
The solution (h, φ)(t) decays in L∞ at t−5/6+ rate as t →∞.

Model equation:

(∂t + iΛ)U = iTv ·ζU,

Λ(ξ) =
√
|ξ|+ |ξ|3, v = |∇|−1/2∇(=(U)).
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The quasilinear I-method

The I-method of Colliander–Keel–Staffilani–Takaoka–Tao is a
method to estimate the increment of energy:

• Start with an energy inequality of the form

EN(t)− EN(0) ≤
∣∣∣ ∫ t

0

∫
Rd

DNU × DNU × DU dxdt
∣∣∣

• Transfer to the Fourier space,

EN(t)−EN(0) ≤
∣∣∣ ∫ t

0

∫
Rd×Rd

D̂NU(ξ)D̂NU(η)D̂U(−ξ−η) dξdηdt
∣∣∣
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• Use the equation, schematically,

(∂t + iΛ)U = D(U × U).

Write V = e itΛU (extract the free flow),

∂tV = e itΛD(e−itΛV × e−itΛV ).

• Rewrite the energy increment inequality in terms of the profile V

EN(t)− EN(0)

≤
∣∣∣ ∫ t

0

∫
Rd×Rd

e itΦ(ξ,η)D̂NV (ξ)D̂NV (η)D̂V (−ξ − η) dξdηdt
∣∣∣

Here
Φ(ξ, η) = ±Λ(ξ)± Λ(η)± Λ(−ξ − η).

The function Φ (typically) has a codimension 1 vanishing set. For
example, in the gravity–capillary problem

Φ(ξ, η) =
√
|ξ|+ |ξ|3 −

√
|η|+ |η|3 ±

√
|ξ + η|+ |ξ + η|3.
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• Decompose the bulk term, I = I1 + I2,

I1 :=

∫ t

0

∫
Rd×Rd

e itΦ(ξ,η)ϕ≤p(Φ(ξ, η))

D̂NV (ξ)D̂NV (η)D̂V (−ξ − η) dξdηdt,

I2 :=

∫ t

0

∫
Rd×Rd

e itΦ(ξ,η)ϕ>p(Φ(ξ, η))

D̂NV (ξ)D̂NV (η)D̂V (−ξ − η) dξdηdt,

for a suitable choice of p = p(m, k), |ξ| ≈ 2k � 1, |t| ≈ 2m � 1,
|ξ + η| . 1.
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• Estimate |I1| using an L2 lemma. This is the critical gain of the
method. It depends on the functions Φ satisfying the ”restricted
nondegeneracy condition”.

• Estimate |I2| using integration by parts in time (Shatah’s normal
form method) and the equation for V

∂tV = e itΛD(e−itΛV × e−itΛV ).

One needs to use careful symmetrization to avoid the potential loss
of derivative coming from the quasilinear nature of the equation.
We identify a strongly semilinear structure in the bulk integrals,
essentially a gain of one derivative in the region where |Φ| . 1.

• Prove an identity of the form

|EN(t)− EN(0)| . Cubic term with special structure

+ Quartic term.
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Main L2 lemma: Assume that k ,m� 1,

p ≥ −(1−δ)m, p−k/2 ≤ −(1/3+δ)m, 2m−1 ≤ |s| ≤ 2m+1.

Let Tp denote the operator defined by

Tpf (ξ) :=

∫
R2

e isΦ(ξ,η)χ(2−pΦ(ξ, η))χγ0(ξ−η)ϕk(η)a(ξ, η)f (η)dη.

where
Φ(ξ, η) = Λ(ξ)± Λ(ξ − η)− Λ(η),

Then

‖Tp‖L2→L2 . 2δ
2m[2−m/3+(p−k/2) + 23(p−k/2)/2].

Depends on the fact that

Υ(ξ, η) := ∇2
ξ,ηΦ(ξ, η)

[
∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)

]
6= 0,

when Φ(ξ, η) = 0.
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The kernel of the TpT
∗
p operator is

K (x , ξ) :=

∫
R2

e isΘ(x ,ξ,y)χ(2−pΦ(x , y))χ(2−pΦ(ξ, y))a(x , ξ, y)dy ,

Θ(x , ξ, y) := Φ(x , y)− Φ(ξ, y) = Λ(x)− Λ(ξ)− Λ(x − y) + Λ(ξ − y).

where |x |, |ξ|, |y | ≈ 2k , |x − y |, |ξ − y | close to γ0.

To get good estimates and use Schur’s lemma, we have to
integrate by parts in y , in the direction parallel to the level sets of
the function Φ, which is

V2 := ∇⊥y Φ(x , y).

The conditions |Φ(x , y)|+ |Φ(ξ, y)| . 2p show that x − ξ is
basically in the direction of ∇⊥x Φ(x , y). We need that

V2[y → (Φ(x , y)− Φ(ξ, y))] ≈ ∇2Φx ,y [(x − ξ),∇⊥y Φ(x , y)]

is large, which leads to the nondeneracy condition

Υ(ξ, η) := ∇2
x ,y Φ(x , y)

[
∇⊥x Φ(x , y),∇⊥y Φ(x , y)

]
6= 0.
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The quasilinear I-method can be used to control the growth of the
high order energy weighted norms

‖u‖HN0 and ‖u‖
H

N1
Ω

:= sup
b∈[0,N1]

‖Ωbu‖L2

where Ω = x1∂2 − x2∂1 is the rotation vector-field.
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Dispersion: The Z -norm method

To prove dispersion we use the following bootstrap proposition:

Proposition: Assume that U is a solution on some time interval
[0,T ], with initial data U0. Define, as before, V (t) = e itΛU(t).
Assume that

‖U0‖HN0∩H
N1
Ω

+ ‖V0‖Z ≤ ε0 � 1

and
(1 + t)−p0‖U(t)‖

HN0∩H
N1
Ω

+ ‖V (t)‖Z ≤ ε1 � 1

for all t ∈ [0,T ]. Then, for any t ∈ [0,T ]

‖V (t)‖Z . ε0 + ε2
1.
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The choice of the Z -norm is crucial. Examples of Z -norms used in
semilinear analysis: the Strichartz norms, the X s,b spaces, Tataru’s
spaces.

In our (weighted) case we use Duhamel formula and the concept of
space-time resonances (Germain–Masmoudi–Shatah):

(∂t + iΛ)U =
∑
±
N (U±,U±),

where the nonlinearities are defined by

(FN (f , g)) (ξ) =

∫
R2

m(ξ, η)f̂ (ξ − η)ĝ(η) dη.

With V (t) = e itΛU(t), the Duhamel formula is

V̂ (ξ, t) =V̂ (ξ, 0) +
∑
±

∫ t

0
e isΦ(ξ,η)m(ξ, η)V̂±(ξ − η, s)V̂±(η, s) dηds.
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Critical points (spacetime resonances): with

Φ(ξ, η) = Λ(ξ)± Λ(η)± Λ(ξ − η)

the set of space-time resonances is

{(ξ, η) : Φ(ξ, η) = 0 and ∇ηΦ(ξ, η) = 0}.

In our case
(ξ, η) = (γ1ω, γ1ω/2),

where ω ∈ S1 and γ1 =
√

2.
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We define
Qjk f := ϕj(x)Pk f (x).

We define

‖f ‖Z := sup
(k,j)∈J

sup
|α|≤50,m≤N1/2

‖DαΩmQjk f ‖Bσ
j
,

where

‖g‖Bσ
j

: = 2(1−50δ)j2−(1/2−49δ)n‖Ang‖L2 .

The operators An are projection operators relative to the location
of the spheres of space-time resonances, ||ξ| − γ1| ≈ 2−n.

Our Z norm depends in a significant way on both the linear part of
the operator and the quadratic part of the equation. Norms of this
type were introduced in work on the Euler–Maxwell equations in
3d.
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Resonances for bilinear interactions:

• time resonance
Φ(ξ, η) = 0;

• space-time resonance (dispersive analysis)

Φ(ξ, η) = 0 and ∇ηΦ(ξ, η) = 0 and ∇ξΦ(ξ, η) 6= 0;

• nondegenerate space-time resonance (dispersive analysis)

∇2
ηΦ(ξ, η) non-singular at space-time resonances.

• restricted nondegenerate time resonance (energy method)

Φ(ξ, η) = 0, Υ(ξ, η) := ∇2
ξ,ηΦ(ξ, η)

[
∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)

]
6= 0.
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Some open problems

1. Construction of long-term solutions with dynamically nontrivial
vorticity:

Texistence ≈
( 1

|vorticity |

)p

A theorem of this type for the Euler–Maxwell one-fluid plasma
model was proved by I.–Lie, for p = 1. Work in progress with O.
Pocovnicu.

2. Dynamical formation of singularities in the two-fluid interface
model. The ”splash” singularity of
Castro–Córdoba–Fefferman–Gancedo–Gómez-Serrano cannot form
in the case of two-fluid interfaces. A possible scenario is
self-intersection of the interface and loss of regularity at the same
point.

3. Construction of global solutions in the case of two-fluid
interfaces with suitable parameters ρ1, ρ2, σ, g > 0.
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model was proved by I.–Lie, for p = 1. Work in progress with O.
Pocovnicu.

2. Dynamical formation of singularities in the two-fluid interface
model. The ”splash” singularity of
Castro–Córdoba–Fefferman–Gancedo–Gómez-Serrano cannot form
in the case of two-fluid interfaces. A possible scenario is
self-intersection of the interface and loss of regularity at the same
point.

3. Construction of global solutions in the case of two-fluid
interfaces with suitable parameters ρ1, ρ2, σ, g > 0.
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Work of Xuecheng Wang

1. Construction of global solutions of the gravity water wave
model in 2d (1d interface), with no momentum condition on the
velocity field, i.e. infinite energy. This improves on earlier work of
Wu (almost global solutions), I.–Pusateri, Alazard–Delort, and
Ifrim–Tataru. All earlier theorems required

|∇|−1/2v(h(x , t), t) ∈ L2(R).

Wang removes this condition, which requires infinite energy
solutions.

The construction of Wu of an energy that has a quartic ”bulk”
appears to fail. Wang uses the full quasilinear I-method to prove
an energy inequality of the form

|EN(t)− EN(0)| . Cubic term with special structure

+ Quartic term.
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2. Construction of global solutions of the gravity water wave
model in 3d (2d interface), with flat finite bottom. The
corresponding theorem with infinite depth was proved by
Germain–Masmoudi–Shatah and Wu. The linear dispersion in the
finite bottom case is

Λ(ξ) =
√
|ξ| tanh(|ξ|).

The energy part of the proof is similar to the infinite depth
problem (the solution still has 1/t decay). To prove dispersion,
particularly for frequencies close to 0, he uses the Z -norm method
with a well constructed norm.
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