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Modeling of micromagnetics

I Pierre Weiss, 1907 : domain theory

Magnetic materials = collection of uniform magnets
minimizing magnetostatic + jump energy

From A. Hubert and R. Schäfer, Magnetic domains



I W.F. Brown, 1940-60 : continuous model

Magnetization (magnet distribution)

M : O → R3

with

|M(x)| = Ms(T ) a.e. x ∈ O

here T = temperature

On the stochastic flow of harmonic maps
A. HOCQUET - ÉCOLE POLYTECHNIQUE CMAP

THE MODEL

The domain D ⊆ R3 is bounded, dim D = 2.

Figure 1: Example : D = the unit disk

The field u(t, x) has to respect the pointwise norm
constraint

|u(t, x)| = 1 , for all (t, x) ∈ R+ × D .

It tends to align to ∆u to minimize the Dirichlet energy

E :=

�

D

|∇u|2dx .

The flow of harmonic maps writes :




∂u
∂t = ∆u + u|∇u|2 , (t, x) ∈ R+ × D ,

u(t = 0, ·) = u0 ,∈ H1 x ∈ D ,

u(t, ·)|∂D = u0|∂D , t ∈ R+ .

(1)

If u is a steady-state of (1) then u is a harmonic map between the
two manifolds D and S2. It says that u0 has an harmonic map in its
homotopy class.

THE NOISE
The stochastic flow of harmonic maps writes :

du =
�
∆u + u|∇u|2

�
dt + σ(u) ◦ dW , (2)

with boundary conditions as in (1).

Conditions on the noise.

1. The term σ(u)Ẇ (t, x) has to be orthogonal to the vector
u(t, x).

2. The product σ(u) ◦ dW is understood in the
Stratonovitch sense.

Equivalent Itô formulation :

du =
�
∆u + u|∇u|2 − g(x)u

�
dt + σ(u)dW .

The following two choices

σ(u(t, x))Ẇ (t, x) =

�
u(t, x) × Ẇ (t, x) ,

Pu(t,x)⊥Ẇ (t, x) , (orth. proj.)

with Ẇ (t, ·) ∈ L2(D; R3) lead to the same laws.

A NEW NUMERICAL SCHEME

Notation : Time step : ∆t := T
N , N ∈ N∗. Consider a subspace of

finite elements Vh ⊆ H1.

Algorithm [4] : Fix u0 := u0 ∈ Vh and for any n ∈ {0, . . . , N − 1},
and denote

W(un) := {ψ ∈ Vh, ∀x ∈ D, ψ(x) ⊥ un(x)} .

Let θ ∈ ( 1
2 , 1], and vn ∈ W(un) be the unique solution to the following

variational problem: ∀ϕ ∈ W(un) ,

�vn,ϕ�L2+2θ∆t �∇vn,∇ϕ�L2 = −2∆t �∇un,∇ϕ�L2+�σ(un)∆Wn,ϕ�L2 .

Renormalization step : we set almost surely, for all x ∈ D,

un+1(x) =
un(x) + vn(x)

|un(x) + vn(x)| . (3)

Theorem 1. The algorithm converges up to a subsequence to a solution
of (2) as ∆t, h → 0.

Figure 2: Example of simulation of (2)

GLOBAL SOLUTIONS

Theorem 2. For u0 ∈ H1, there exist a global solution to (2) in the
weak sense and a sequence of stopping times T 1 < T 2 < · · · < Tn

such that P
�
Tn n→∞−−−−→ ∞

�
= 1 , and one has almost surely

u ∈
�

n∈N
C
�
[Tn, Tn+1); H1

�
∩ L2

�
[Tn, Tn+1); H2

�
,

and this u is unique in this class of solutions. Moreover, the times
T k at which u may blow-up are caracterized by bubbles:

inf
R>0

sup
x∈D

t∈[T k−1,T k)

�

B(x,R)

|∇u(t, y)|2dy > ε1 .

Figure 3: A bubble at the centre

The solution u(t, x) is prolonged after T k with a loss of
energy expressed as a fixed quantum ε1 > 0.

BLOW-UP PHENOMENA
Deterministic case. In this box we consider equiv-
ariant fields

u(t, x) = (
x1

|x| sin h(t, |x|), x2

|x| sin h(t, |x|), cos h(t, |x|)) .

Figure 4: Equivariant field

Figure 5: Blow-up of h in the deterministic case

Theorem 3. Every deterministic equivariant solution u such that
�h0�L∞ ≤ π is a global regular solution. Conversely, there exist h0 with
�h0�L∞ > π that blow up in finite time t∗ in the following sense :

�∂rh�L∞ → ∞ as t → t∗ .

Case with noise. Noise can be added to the equivariant
case considering a real noise Ẇ (t) ∈ L2(D; R) and

σ(x, u) = u⊥Ẇ , where

u⊥ := (
x1

|x| cos h(t, |x|), x2

|x| cos h(t, |x|),− sin h(t, |x|)) ,

leading to





dh = (∂rrh + 1
r∂rh − sin 2h/2

r2
)dt + dW ,

(r, t) ∈ (0, 1) × R+ ,

h(r ∈ {0, 1}, t) = 0 , t ∈ R+ ,

h(·, t = 0) = h0 .

(4) Figure 6: Example of blow-up that can not occur without noise

Theorem 4. Every solution of (4) associated with an arbitrary initial
data h0 blows-up with positive probablility.

FUTURE DEVELOPMENTS
•Blow-up for any initial data
Numerical studies show that initial data that are close to
equivariant explosive initial data may also blow up, even if
the noise term is multidimensional. Thus, if the noise ap-
proaches a control that brings a solution close to an initial
explosive data, any solution of (2) may blow up in finite time
with a positive probability.

•Blow-up for stochastic LLG
Such blow-up phenomena are related to the blow-up of the
stochastic Landau-Lifshitz-Gilbert equation. In this case we
have to understand how the so called gyromagnetic term that
must be added in (2) interacts with bubbles.
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m = M/Ms(T ) minimizes the Brown energy (non dimensional
form) :

E(m) =
1

2

∫

O
|∇m|2 dx −

∫

O
Hext ·mdx

−1

2

∫

O
Hd (m) ·mdx + K

∫

O
G (m) dx

with m(x) ∈ S2, p.p.



I
1

2

∫

O
|∇m|2 dx : exchange energy

I −
∫

O
Hext ·mdx : external energy (due to external field Hext)

I −Hd (m) : stray field (magnetic field induced by the particle
itself) ;

Hd (m) = −∇∆−1div m̄

I K

∫

O
G (m) dx : anisotropic energy

 minimization of m(x) subject to constraint |m(x)| = 1, a.e.
leads to a frustrated system

I Lots of theoretical/asymptotic studies (depending on
size/material)

I Strong link with harmonic maps into the sphere



Dynamical equation

Landau-Lifshitz ∼ 1935 :

Heff (m) = −DmE(m) = ∆m + Hext + Hd (m)− KDmG (m)

then the LL equation is given by





∂m

∂t
= m × Heff (m)− αm × (m × Heff (m)) inO

m(0, x) = m0(x) in O
∂m

∂n
= 0 on ∂O

α > 0, damping :

dE(m)

dt
= −Heff (m) · ∂m

∂t
= −α|m × Heff (m)|2



Nonzero temperature : thermal activation

 add to Heff a random field Htherm (Brown, 1963)

Usually for physicists :

I Htherm gaussian

I 〈Htherm(x , t)〉 = 0

I 〈Htherm(x , t) · Htherm(y , s)〉 = µδx−yδt−s

 space-time white noise

Actually : ideal case

Time correlation length ∼ 10−13s. (room temperature)

Response time of the medium ∼ 10−10s.

and independence of the single domain particles



Finite dimensional case

Single particle domain :

Very small objects (∼ 10nm)  neglect exchange energy :

m(t, x) = m(t)1lO(x)

 Stoner Wohlfarth model :

dm

dt
= m × H̃eff − αm × (m × H̃eff )

with m(t) ∈ S2 ⊂ R3,

H̃eff = Hext − Dm − K∇mG (m) + Htherm,

D = (Dij )1≤i ,j≤3 positive definite matrix, Htherm =
√

2εα
1+α2 Ẇ (t),

W (t) = (W1(t),W2(t),W3(t)), three dimensional Brownian
motion



Remarks :

I Equivalent equation (same law) :

dm

dt
= m × (Heff +

√
2εαẆ (t))− αm × (m × Heff )

I Stratonovich product : |m(t)| = 1, a.e.

I Existence and uniqueness of (global in time) strong solutions
is clear (compact state space)

I m × dW = dB additive Brownian motion with values on the
sphere

Well studied : Brown (1962) ; Garcia-Palacios-Lazaro (1998) ;
Kohn-Reznikov-Vanden-Eijnden (2005) ; Bañas-Neklyudov-Prohl
(2013), · · ·



I Existence and uniqueness of invariant measure (for usual
anisotropic energies) : Gibbs measure

µ(dm) = Ze−E(m)/εdm, Z =

∫

S2

e−E(m)/εdm

I Use of Large Deviation Principle to explain influence of T on
Stoner-Wohlfarth aströıds, hysteresis loops, ...

I Case of N single particles, coupled thanks to exchange
energy :

M = (m1, · · · ,mN), mj ∈ S2 ∈ R3, J = (Jkl )1≤k,l≤N ,

where J is sym. def. ≥ 0 ; then exchange energy given by

Eexch(M) =
1

2

N∑

k;l=1

Jkl〈mk ,ml〉.

Convergence of numerical schemes



Infinite dimensional case

I Three dimensional situation : no hope for space-time white
noise

I Deterministic case (Htherm = 0) :

I Global existence of weak solutions (no uniqueness)
I Local existence of strong solutions (blow up ?)

Formally : ϕ : O → R3 regular

〈m ×∆m, ϕ〉 = 〈∇(m ×∇m), ϕ〉 = 〈∇m,m ×∇ϕ〉

 natural space for weak solutions : H1 = (H1(O))3

In what follows :

Heff (m) = ∆m; Htherm = h(x)Ẇ (t), h : O → R3

and W (t) is a one dimensional Brownian motion ; can actually
treat more general situations



(SLL) ∂tm = m × (∆m + hẆ )− αm × (m × (∆m + hẆ ))

Definition : Weak solutions (Brzezniak-Goldys-Jegaraj)

(Ω,F ,P, (Ft)t≥0,W ,m) such that for all T > 0,

I m ∈ C ([0,T ];H−1(O)), P.a.s.

I E
(

supt≤T |∇m(t)|2L2(O)

)
is finite

I |m(t, x)| = 1, dx ⊗ P a.e.

I m satisfies for all ϕ ∈ C∞(Ō,R3),

〈m(t), ϕ〉 − 〈m0, ϕ〉 = −
∫ t

0
〈∇m, (∇ϕ)×m〉 ds

−α
∫ t

0
〈∇m,∇(m × ϕ)×m〉+

∫ t

0
〈G (m)h, ϕ〉 ◦ dW (s)

with G (m)h = m × h − αm × (m × h).



Theorem (Brzezniak-Goldys-Jegaraj, 2013) :

Let m0 ∈ H1 with |m0(x)| = 1, a.e. and h ∈ (L∞ ∩W 1,3(O))3 ;
then there is a weak solution (Ω,F ,P, (Ft)t≥0,W ,m) of (SLL) ;

Moreover, for all T > 0,

E

∫ T

0
|m ×∆m|2L2 dt < +∞,

and m ∈ Cα([0,T ]; L2(O)) a.s. for any α < 1/2.

Then m also satisfies

m(t) = m0 +

∫ t

0
m ×∆mds

−α
∫ t

0
m × (m ×∆m) ds +

∫ t

0
G (m)h ◦ dW (s)



I Strategy of proof uses Galerkin approximation, tightness of
the sequence and convergence of the associated martingale
problem, together with representation theorems

I Nothing is known about the long time behaviour (invariant
measures) : if

E(m) =
1

2

∫

O
|∇m|2 dx

then

E(E(m(t))) + E

∫ T

0

∫

O
|m ×∆m|2 dxdt ≤ CT ;

however lack of uniform compactness in time

I More precise results in the 1-D case O = (0, 1)
Goldys-Le Ngan-Tran : uniqueness of the H1 solution,
application of the LDP to the study of possible switching
Bruned-Hairer-Zambotti : space-time white noise (regularity
structures) in the over damped case



Numerical schemes

(SLL)





dm = [m ×∆m − αm × (m ×∆m)] dt + m × ◦dW
m(0) = m0 in O
∂nm(t, x) = 0 on ∂O

Here W is a Q-Wiener process on L2, such that W (t) ∈ H2 (Q
finite trace sym. positive op. with values in H2)

Finite elements approximation :

Let (Th)h>0 a triangular mesh of O ; replace H1(O) by Vh, with

Vh = {ϕ ∈ H1, ϕ|T ∈ P1 for each T ∈ Th}

Then, replace the test function ϕ ∈ H1 by ϕ ∈ Vh in the definition
of the weak solutions



Time discretization :

Midd-point discretization (Stratonovich product) Banas,
Brzezniak, Neklyudov, Prohl :

Given mn ∈ Vh (approximation of m(nδt, ·), look for mn+1 ∈ Vh

satisfying : ∀ϕ ∈ Vh,

〈mn+1 −mn, ϕ〉h + α(δt)〈mn+1/2 × (mn+1/2 ×∆hm
n+1), ϕ〉h

−(δt)〈mn+1/2 ×∆hm
n+1/2, ϕ〉h = 〈mn+1/2 ×∆nW , ϕ〉h

with

mn+1/2 =
1

2
(mn + mn+1) and ∆nW = W ((n + 1)δt)−W (nδt).

Theorem (BBNP, 2014) : Let T > 0 fixed and m0 ∈ H1 ; then for
δt = T/N, the sequence ((mn)0≤n≤N)N∈N converges in law, up to
a subsequence, to a weak solution of (SLL) as N goes to infinity
(i.e. δt goes to zero).



Remarks :

I The constraint |mn(x)| = 1 is satisfied a.e. (not the case if
discretization of the Itô equ.)

I The scheme is nonlinearly implicit  requires the resolution of
a nonlinear pb at each time step (fixed point, or Newton)

I No uniqueness for mn+1 (random selection theorem)

Our aim :

Build a linearly implicit scheme that respects the constraint
|mn(x)| = 1, a.e.  implies that dm ⊥ m a.e. ; hence natural to
search the increment in a space of functions ⊥ mn

From now on take α = 1 for simplicity



Ideas : (originates from deterministic scheme F. Alouges, 2008)

I Consider the nonlinear term coming from

m × (m ×∆m) = −∆m −m|∇m|2

then for any ϕ ∈ C∞(O) with ϕ(x) ⊥ m(t, x) a.s.,

〈m × (m ×∆m), ϕ〉 = −〈∆m, ϕ〉 = 〈∇m,∇ϕ〉

 term along m(t, x) recovered as a Lagrange multiplier,
thanks to the constraint

I For the nonlinear term m ×∆m : use of the Gilbert form of
the LL equation :

(SLLG )
dm −m × dm

= 2(∆m + m|∇m|2)dt + 1
2(Id −m×)(m × ◦dW )



Definition of the semi-discrete scheme :

Let G = Q1/2 (assumed HS from L2 into H2) and (ek )k∈N c.o.s.
of L2 ; define the (random) space :

Wδt,n = {ψ ∈ H1(O), ψ(x) ⊥ mn
δt(x)}

where the r.v. mn
δt(x) is a approximation of m(nδt, x). then

I Define vn = vn
δt ∈Wn,δt as the solutions of the pb :

∀ϕ ∈Wn,δt ,

(Pn)

〈vn −mn × vn, ϕ〉+ 2(δt)〈∇vn,∇ϕ〉
= −2(δt)〈∇mn,∇ϕ〉+ 〈(Id −mn × (mn ×∆W n), ϕ〉
+1

2(δt)
∑

k〈(Id −mn×)(mn × Gk )× Gk , ϕ〉

I Set

mn+1
δt (x) =

mn
δt(x) + vn

δt(x)

|mn
δt(x) + vn

δt(x)| .



Note that (Pn) is the variational formulation of a fully implicit
discretization of the Itô form of (SLLG).

The existence an uniqueness of the solution of (Pn) follows from
classical theorem.

Theorem (F.A, AdB, A.H, 2014) :

Let T > 0 fixed, and δt = T/N ; set mN(t) = mn
δt for

t ∈ [nδt, (n + 1)δt) ; then, up to a subsequence, the sequence
(mN)N∈N converges in law in L2((0,T )×O) to a martingale
solution of (SLL).

Moreover, this solution satisfies (SLLG) and there is actually
convergence in L2(Ω̃× (0,T )×O), where Ω̃ is the Skohorod space.



Some remarks :

I Fully discrete version easily deduced : replace Wn,δt by a finite
element space of functions ⊥ mn

δt

I Could use more general θ-scheme  convergence for θ > 1/2

I The scheme is linearly implicit (but nonlinearity hidden in the
space Wn,δt)

I Some 1-D version (i.e. for one dimensional noise) of the
projected scheme was studied previously (Goldys-Le-Tran,
2013), but uses Doss-Sussman formulation  restricted to
1-D noise

I As a by-product we obtain the equivalence of the two
formulations of the equation (SLL) and (SLLG) in some sense

I Nothing known about convergence of the term mn|∇mn|2



More on weak solutions

du = (∆u + u|∇u|2 + u ×∆u + Fφ(u))dt + u × dWφ

on a domain D ⊂ R2 (typically torus in 2D) ; u(t, x) ∈ R3.

Global existence of finite energy solutions :

For u0 ∈ H1, with |u0(t, x)| = 1, a.s., there exists a global solution
and a sequence of (random) stopping times T 1 < T 2 < · · · < T k

such that limk→∞ T k = +∞, a.s. and

u ∈ ∪k∈NC ([T k ,T k+1); H1) ∩ L2([T k ,T k+1); H2).

Moreover,

u(t) ⇀ u(T k ) as t ↗ T k , i.e. u ∈ Cw (R+;H1).

Such a solution is unique.



Note that T k characterized by “bubbles” :

inf
R>0

sup
x ∈ D

t ∈ [T k−1,T k )

∫

B(x ,R)
|∇u(t, y)|2dy > ε1

Here ε1 is a fixed constant that measures the energy loss at the
blow up points.

Remarks :

I Blow up at finite number of (space-time) points : the energy
loss is quantified

I Deterministic case : Struwe, 1985
I Stochastic case : no energy conservation, but refined analysis

of energy density evolution allows to assert that bubbling does
not occur “too often” + compactness

Moreover
I Any weak solution is of this form (hence unique) provided

1
2 |∇u|2L2 − cφt is a supermartingale (deterministic case :
Freire, 1995)



Example : D = D(0, 1) ⊂ R2
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Figure 6.3 – View from above of 3 trajectories (the three columns) solution at times t = 0,
t = 0.015, t = 0.05, t = 0.06 (raws). The color red means that u3(!, t, x) > 0, whereas blue
means u3(!, t, x)  0. The parameters are � = 0, k = 0.001, hmin = 0.050518. All solutions
start with the same initial data, see figure 6.2.

151



Stochastic heat flow of harmonic maps :

du = (∆u + u|∇u|2 + Fφ(u))dt + u × dWφ

The equivariant case :

Here D is the unit disc of R2 ; x = re iθ, and

u(t, x) = (cos θ sin h(t, r), sin θ sin h(t, r), cos h(t, r))

with noise u⊥Ẇ = u × eθẆ and W real valued, then




dh = (∂rrh + 1
r ∂rh − sin 2h

2r2
)dt + dW

h(t, 0) = h(t, 1) = 0

h(0, r) = h0(r)

Blowup in the deterministic case may occur :
Chang, Ding, Yue, Ye, 1992



Blow up in the deterministic case :

On the stochastic flow of harmonic maps
A. HOCQUET - ÉCOLE POLYTECHNIQUE CMAP

THE MODEL

The domain D ⊆ R3 is bounded, dim D = 2.

Figure 1: Example : D = the unit disk

The field u(t, x) has to respect the pointwise norm
constraint

|u(t, x)| = 1 , for all (t, x) ∈ R+ × D .

It tends to align to ∆u to minimize the Dirichlet energy

E :=

�

D

|∇u|2dx .

The flow of harmonic maps writes :




∂u
∂t = ∆u + u|∇u|2 , (t, x) ∈ R+ × D ,

u(t = 0, ·) = u0 ,∈ H1 x ∈ D ,

u(t, ·)|∂D = u0|∂D , t ∈ R+ .

(1)

If u is a steady-state of (1) then u is a harmonic map between the
two manifolds D and S2. It says that u0 has an harmonic map in its
homotopy class.

THE NOISE
The stochastic flow of harmonic maps writes :

du =
�
∆u + u|∇u|2

�
dt + σ(u) ◦ dW , (2)

with boundary conditions as in (1).

Conditions on the noise.

1. The term σ(u)Ẇ (t, x) has to be orthogonal to the vector
u(t, x).

2. The product σ(u) ◦ dW is understood in the
Stratonovitch sense.

Equivalent Itô formulation :

du =
�
∆u + u|∇u|2 − g(x)u

�
dt + σ(u)dW .

The following two choices

σ(u(t, x))Ẇ (t, x) =

�
u(t, x) × Ẇ (t, x) ,

Pu(t,x)⊥Ẇ (t, x) , (orth. proj.)

with Ẇ (t, ·) ∈ L2(D; R3) lead to the same laws.

A NEW NUMERICAL SCHEME

Notation : Time step : ∆t := T
N , N ∈ N∗. Consider a subspace of

finite elements Vh ⊆ H1.

Algorithm [4] : Fix u0 := u0 ∈ Vh and for any n ∈ {0, . . . , N − 1},
and denote

W(un) := {ψ ∈ Vh, ∀x ∈ D, ψ(x) ⊥ un(x)} .

Let θ ∈ ( 1
2 , 1], and vn ∈ W(un) be the unique solution to the following

variational problem: ∀ϕ ∈ W(un) ,

�vn,ϕ�L2+2θ∆t �∇vn,∇ϕ�L2 = −2∆t �∇un,∇ϕ�L2+�σ(un)∆Wn,ϕ�L2 .

Renormalization step : we set almost surely, for all x ∈ D,

un+1(x) =
un(x) + vn(x)

|un(x) + vn(x)| . (3)

Theorem 1. The algorithm converges up to a subsequence to a solution
of (2) as ∆t, h → 0.

Figure 2: Example of simulation of (2)

GLOBAL SOLUTIONS

Theorem 2. For u0 ∈ H1, there exist a global solution to (2) in the
weak sense and a sequence of stopping times T 1 < T 2 < · · · < Tn

such that P
�
Tn n→∞−−−−→ ∞

�
= 1 , and one has almost surely

u ∈
�

n∈N
C
�
[Tn, Tn+1); H1

�
∩ L2

�
[Tn, Tn+1); H2

�
,

and this u is unique in this class of solutions. Moreover, the times
T k at which u may blow-up are caracterized by bubbles:

inf
R>0

sup
x∈D

t∈[T k−1,T k)

�

B(x,R)

|∇u(t, y)|2dy > ε1 .

Figure 3: A bubble at the centre

The solution u(t, x) is prolonged after T k with a loss of
energy expressed as a fixed quantum ε1 > 0.

BLOW-UP PHENOMENA
Deterministic case. In this box we consider equiv-
ariant fields

u(t, x) = (
x1

|x| sin h(t, |x|), x2

|x| sin h(t, |x|), cos h(t, |x|)) .

Figure 4: Equivariant field

Figure 5: Blow-up of h in the deterministic case

Theorem 3. Every deterministic equivariant solution u such that
�h0�L∞ ≤ π is a global regular solution. Conversely, there exist h0 with
�h0�L∞ > π that blow up in finite time t∗ in the following sense :

�∂rh�L∞ → ∞ as t → t∗ .

Case with noise. Noise can be added to the equivariant
case considering a real noise Ẇ (t) ∈ L2(D; R) and

σ(x, u) = u⊥Ẇ , where

u⊥ := (
x1

|x| cos h(t, |x|), x2

|x| cos h(t, |x|),− sin h(t, |x|)) ,

leading to





dh = (∂rrh + 1
r∂rh − sin 2h/2

r2
)dt + dW ,

(r, t) ∈ (0, 1) × R+ ,

h(r ∈ {0, 1}, t) = 0 , t ∈ R+ ,

h(·, t = 0) = h0 .

(4) Figure 6: Example of blow-up that can not occur without noise

Theorem 4. Every solution of (4) associated with an arbitrary initial
data h0 blows-up with positive probablility.

FUTURE DEVELOPMENTS
•Blow-up for any initial data
Numerical studies show that initial data that are close to
equivariant explosive initial data may also blow up, even if
the noise term is multidimensional. Thus, if the noise ap-
proaches a control that brings a solution close to an initial
explosive data, any solution of (2) may blow up in finite time
with a positive probability.

•Blow-up for stochastic LLG
Such blow-up phenomena are related to the blow-up of the
stochastic Landau-Lifshitz-Gilbert equation. In this case we
have to understand how the so called gyromagnetic term that
must be added in (2) interacts with bubbles.
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1. The term σ(u)Ẇ (t, x) has to be orthogonal to the vector
u(t, x).

2. The product σ(u) ◦ dW is understood in the
Stratonovitch sense.

Equivalent Itô formulation :

du =
�
∆u + u|∇u|2 − g(x)u

�
dt + σ(u)dW .

The following two choices

σ(u(t, x))Ẇ (t, x) =
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u(t, x) × Ẇ (t, x) ,
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The field u(t, x) has to respect the pointwise norm
constraint

|u(t, x)| = 1 , for all (t, x) ∈ R+ × D .

It tends to align to ∆u to minimize the Dirichlet energy

E :=

�

D

|∇u|2dx .

The flow of harmonic maps writes :




∂u
∂t = ∆u + u|∇u|2 , (t, x) ∈ R+ × D ,

u(t = 0, ·) = u0 ,∈ H1 x ∈ D ,

u(t, ·)|∂D = u0|∂D , t ∈ R+ .

(1)

If u is a steady-state of (1) then u is a harmonic map between the
two manifolds D and S2. It says that u0 has an harmonic map in its
homotopy class.

THE NOISE
The stochastic flow of harmonic maps writes :

du =
�
∆u + u|∇u|2

�
dt + σ(u) ◦ dW , (2)

with boundary conditions as in (1).

Conditions on the noise.

1. The term σ(u)Ẇ (t, x) has to be orthogonal to the vector
u(t, x).

2. The product σ(u) ◦ dW is understood in the
Stratonovitch sense.

Equivalent Itô formulation :

du =
�
∆u + u|∇u|2 − g(x)u

�
dt + σ(u)dW .

The following two choices

σ(u(t, x))Ẇ (t, x) =

�
u(t, x) × Ẇ (t, x) ,

Pu(t,x)⊥Ẇ (t, x) , (orth. proj.)

with Ẇ (t, ·) ∈ L2(D; R3) lead to the same laws.

A NEW NUMERICAL SCHEME

Notation : Time step : ∆t := T
N , N ∈ N∗. Consider a subspace of

finite elements Vh ⊆ H1.

Algorithm [4] : Fix u0 := u0 ∈ Vh and for any n ∈ {0, . . . , N − 1},
and denote

W(un) := {ψ ∈ Vh, ∀x ∈ D, ψ(x) ⊥ un(x)} .

Let θ ∈ ( 1
2 , 1], and vn ∈ W(un) be the unique solution to the following

variational problem: ∀ϕ ∈ W(un) ,

�vn,ϕ�L2+2θ∆t �∇vn,∇ϕ�L2 = −2∆t �∇un,∇ϕ�L2+�σ(un)∆Wn,ϕ�L2 .

Renormalization step : we set almost surely, for all x ∈ D,

un+1(x) =
un(x) + vn(x)

|un(x) + vn(x)| . (3)

Theorem 1. The algorithm converges up to a subsequence to a solution
of (2) as ∆t, h → 0.

Figure 2: Example of simulation of (2)

GLOBAL SOLUTIONS

Theorem 2. For u0 ∈ H1, there exist a global solution to (2) in the
weak sense and a sequence of stopping times T 1 < T 2 < · · · < Tn

such that P
�
Tn n→∞−−−−→ ∞

�
= 1 , and one has almost surely

u ∈
�

n∈N
C
�
[Tn, Tn+1); H1

�
∩ L2

�
[Tn, Tn+1); H2

�
,

and this u is unique in this class of solutions. Moreover, the times
T k at which u may blow-up are caracterized by bubbles:

inf
R>0

sup
x∈D

t∈[T k−1,T k)

�

B(x,R)

|∇u(t, y)|2dy > ε1 .

Figure 3: A bubble at the centre

The solution u(t, x) is prolonged after T k with a loss of
energy expressed as a fixed quantum ε1 > 0.

BLOW-UP PHENOMENA
Deterministic case. In this box we consider equiv-
ariant fields

u(t, x) = (
x1

|x| sin h(t, |x|), x2

|x| sin h(t, |x|), cos h(t, |x|)) .

Figure 4: Equivariant field

Figure 5: Blow-up of h in the deterministic case

Theorem 3. Every deterministic equivariant solution u such that
�h0�L∞ ≤ π is a global regular solution. Conversely, there exist h0 with
�h0�L∞ > π that blow up in finite time t∗ in the following sense :

�∂rh�L∞ → ∞ as t → t∗ .

Case with noise. Noise can be added to the equivariant
case considering a real noise Ẇ (t) ∈ L2(D; R) and

σ(x, u) = u⊥Ẇ , where

u⊥ := (
x1

|x| cos h(t, |x|), x2

|x| cos h(t, |x|),− sin h(t, |x|)) ,

leading to





dh = (∂rrh + 1
r∂rh − sin 2h/2

r2
)dt + dW ,

(r, t) ∈ (0, 1) × R+ ,

h(r ∈ {0, 1}, t) = 0 , t ∈ R+ ,

h(·, t = 0) = h0 .

(4) Figure 6: Example of blow-up that can not occur without noise

Theorem 4. Every solution of (4) associated with an arbitrary initial
data h0 blows-up with positive probablility.

FUTURE DEVELOPMENTS
•Blow-up for any initial data
Numerical studies show that initial data that are close to
equivariant explosive initial data may also blow up, even if
the noise term is multidimensional. Thus, if the noise ap-
proaches a control that brings a solution close to an initial
explosive data, any solution of (2) may blow up in finite time
with a positive probability.

•Blow-up for stochastic LLG
Such blow-up phenomena are related to the blow-up of the
stochastic Landau-Lifshitz-Gilbert equation. In this case we
have to understand how the so called gyromagnetic term that
must be added in (2) interacts with bubbles.
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σ(x, u) = u⊥Ẇ , where
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Such blow-up phenomena are related to the blow-up of the
stochastic Landau-Lifshitz-Gilbert equation. In this case we
have to understand how the so called gyromagnetic term that
must be added in (2) interacts with bubbles.
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The stochastic case :

On the stochastic flow of harmonic maps
A. HOCQUET - ÉCOLE POLYTECHNIQUE CMAP

THE MODEL

The domain D ⊆ R3 is bounded, dim D = 2.

Figure 1: Example : D = the unit disk

The field u(t, x) has to respect the pointwise norm
constraint

|u(t, x)| = 1 , for all (t, x) ∈ R+ × D .

It tends to align to ∆u to minimize the Dirichlet energy

E :=

�

D

|∇u|2dx .

The flow of harmonic maps writes :




∂u
∂t = ∆u + u|∇u|2 , (t, x) ∈ R+ × D ,

u(t = 0, ·) = u0 ,∈ H1 x ∈ D ,

u(t, ·)|∂D = u0|∂D , t ∈ R+ .

(1)

If u is a steady-state of (1) then u is a harmonic map between the
two manifolds D and S2. It says that u0 has an harmonic map in its
homotopy class.

THE NOISE
The stochastic flow of harmonic maps writes :

du =
�
∆u + u|∇u|2

�
dt + σ(u) ◦ dW , (2)

with boundary conditions as in (1).

Conditions on the noise.

1. The term σ(u)Ẇ (t, x) has to be orthogonal to the vector
u(t, x).

2. The product σ(u) ◦ dW is understood in the
Stratonovitch sense.

Equivalent Itô formulation :

du =
�
∆u + u|∇u|2 − g(x)u

�
dt + σ(u)dW .

The following two choices

σ(u(t, x))Ẇ (t, x) =

�
u(t, x) × Ẇ (t, x) ,

Pu(t,x)⊥Ẇ (t, x) , (orth. proj.)

with Ẇ (t, ·) ∈ L2(D; R3) lead to the same laws.

A NEW NUMERICAL SCHEME

Notation : Time step : ∆t := T
N , N ∈ N∗. Consider a subspace of

finite elements Vh ⊆ H1.

Algorithm [4] : Fix u0 := u0 ∈ Vh and for any n ∈ {0, . . . , N − 1},
and denote

W(un) := {ψ ∈ Vh, ∀x ∈ D, ψ(x) ⊥ un(x)} .

Let θ ∈ ( 1
2 , 1], and vn ∈ W(un) be the unique solution to the following

variational problem: ∀ϕ ∈ W(un) ,

�vn,ϕ�L2+2θ∆t �∇vn,∇ϕ�L2 = −2∆t �∇un,∇ϕ�L2+�σ(un)∆Wn,ϕ�L2 .

Renormalization step : we set almost surely, for all x ∈ D,

un+1(x) =
un(x) + vn(x)

|un(x) + vn(x)| . (3)

Theorem 1. The algorithm converges up to a subsequence to a solution
of (2) as ∆t, h → 0.

Figure 2: Example of simulation of (2)

GLOBAL SOLUTIONS

Theorem 2. For u0 ∈ H1, there exist a global solution to (2) in the
weak sense and a sequence of stopping times T 1 < T 2 < · · · < Tn

such that P
�
Tn n→∞−−−−→ ∞

�
= 1 , and one has almost surely

u ∈
�

n∈N
C
�
[Tn, Tn+1); H1

�
∩ L2

�
[Tn, Tn+1); H2

�
,

and this u is unique in this class of solutions. Moreover, the times
T k at which u may blow-up are caracterized by bubbles:

inf
R>0

sup
x∈D

t∈[T k−1,T k)

�

B(x,R)

|∇u(t, y)|2dy > ε1 .

Figure 3: A bubble at the centre

The solution u(t, x) is prolonged after T k with a loss of
energy expressed as a fixed quantum ε1 > 0.

BLOW-UP PHENOMENA
Deterministic case. In this box we consider equiv-
ariant fields

u(t, x) = (
x1

|x| sin h(t, |x|), x2

|x| sin h(t, |x|), cos h(t, |x|)) .

Figure 4: Equivariant field

Figure 5: Blow-up of h in the deterministic case

Theorem 3. Every deterministic equivariant solution u such that
�h0�L∞ ≤ π is a global regular solution. Conversely, there exist h0 with
�h0�L∞ > π that blow up in finite time t∗ in the following sense :

�∂rh�L∞ → ∞ as t → t∗ .

Case with noise. Noise can be added to the equivariant
case considering a real noise Ẇ (t) ∈ L2(D; R) and

σ(x, u) = u⊥Ẇ , where

u⊥ := (
x1

|x| cos h(t, |x|), x2

|x| cos h(t, |x|),− sin h(t, |x|)) ,

leading to





dh = (∂rrh + 1
r∂rh − sin 2h/2

r2
)dt + dW ,

(r, t) ∈ (0, 1) × R+ ,

h(r ∈ {0, 1}, t) = 0 , t ∈ R+ ,

h(·, t = 0) = h0 .

(4) Figure 6: Example of blow-up that can not occur without noise

Theorem 4. Every solution of (4) associated with an arbitrary initial
data h0 blows-up with positive probablility.

FUTURE DEVELOPMENTS
•Blow-up for any initial data
Numerical studies show that initial data that are close to
equivariant explosive initial data may also blow up, even if
the noise term is multidimensional. Thus, if the noise ap-
proaches a control that brings a solution close to an initial
explosive data, any solution of (2) may blow up in finite time
with a positive probability.

•Blow-up for stochastic LLG
Such blow-up phenomena are related to the blow-up of the
stochastic Landau-Lifshitz-Gilbert equation. In this case we
have to understand how the so called gyromagnetic term that
must be added in (2) interacts with bubbles.
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Let Aϕ = ∂rrϕ+ (1r ∂r − 1
r2

)ϕ, with Dirichlet B.C. and let

Vβ = D(Aβ) ; then

Theorem

I For any β with 4/3 < β and any h0 ∈ Vβ, there is a unique
strong local solution h of the equation in C ([0, τ∗β(h0)),Vβ)

I If the noise is non degenerate, i.e. Ker(φ∗) = {0}, then for all
h0 ∈ Vβ and all t∗ > 0,

P(τ∗β(h0) < t∗) > 0 and P( sup
[0,t∗)

‖∇u(t)‖L∞ = +∞) > 0

Remarks

I Open for the LLG equation (deterministic or stochastic)

I Blow up for the Schrödinger maps : Bejenaru-Tataru 2010,
Merle-Raphael-Rodianski 2011, Perelman 2012


