THE STOCHASTIC LANDAU-LIFSHITZ EQUATION

A. de Bouard

CMAP, Ecole Polytechnique, France joint work with F. Alouges and A. Hocquet (CMAP)

New challenges in PDE: Deterministic dynamics and randomness in high and infinite dimensional systems MSRI, 19-30 Oct. 2015

A B < A B </p>

Modeling of micromagnetics

▶ Pierre Weiss, 1907 : domain theory

 $\begin{aligned} \text{Magnetic materials} &= \text{collection of uniform magnets} \\ \text{minimizing magnetostatic} &+ \text{jump energy} \end{aligned}$

From A. Hubert and R. Schäfer, Magnetic domains

▶ W.F. Brown, 1940-60 : continuous model

Magnetization (magnet distribution)

 $M:\mathcal{O}\to \mathbf{R}^3$

with

 $|M(x)| = M_s(T)$ a.e. $x \in \mathcal{O}$

here T = temperature

 $m = M/M_s(T)$ minimizes the Brown energy (non dimensional form) :

$$\mathcal{E}(m) = \frac{1}{2} \int_{\mathcal{O}} |\nabla m|^2 \, dx - \int_{\mathcal{O}} H_{\text{ext}} \cdot m \, dx$$
$$-\frac{1}{2} \int_{\mathcal{O}} H_d(m) \cdot m \, dx + K \int_{\mathcal{O}} G(m) \, dx$$

with $m(x) \in S^2$, p.p.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

- $\frac{1}{2} \int_{\mathcal{O}} |\nabla m|^2 dx$: exchange energy
- $-\int_{\mathcal{O}} H_{ext} \cdot m \, dx$: external energy (due to external field H_{ext})
- ► -H_d(m) : stray field (magnetic field induced by the particle itself);

$$H_d(m) = -
abla \Delta^{-1}$$
div $ar{m}$

•
$$K \int_{\mathcal{O}} G(m) dx$$
: anisotropic energy

 \rightsquigarrow minimization of m(x) subject to constraint |m(x)| = 1, a.e. leads to a frustrated system

- Lots of theoretical/asymptotic studies (depending on size/material)
- Strong link with harmonic maps into the sphere

Dynamical equation

Landau-Lifshitz \sim 1935 :

$$H_{eff}(m) = -D_m \mathcal{E}(m) = \Delta m + H_{ext} + H_d(m) - K D_m G(m)$$

then the LL equation is given by

$$\begin{cases} \frac{\partial m}{\partial t} = m \times H_{eff}(m) - \alpha m \times (m \times H_{eff}(m)) \text{ in}\mathcal{O} \\ m(0, x) = m_0(x) \text{ in }\mathcal{O} \\ \frac{\partial m}{\partial n} = 0 \text{ on } \partial\mathcal{O} \end{cases}$$

 $\alpha >$ 0, damping :

$$\frac{d\mathcal{E}(m)}{dt} = -H_{eff}(m) \cdot \frac{\partial m}{\partial t} = -\alpha |m \times H_{eff}(m)|^2$$

▲□→ ▲ □→ ▲ □→

Nonzero temperature : thermal activation

 \rightsquigarrow add to H_{eff} a random field H_{therm} (Brown, 1963) Usually for physicists :

- *H*_{therm} gaussian
- $\blacktriangleright \langle H_{therm}(x,t) \rangle = 0$

$$\blacktriangleright \langle H_{therm}(x,t) \cdot H_{therm}(y,s) \rangle = \mu \delta_{x-y} \delta_{t-s}$$

 \rightsquigarrow space-time white noise

Actually : ideal case

Time correlation length $\sim 10^{-13} s.$ (room temperature)

Response time of the medium $\sim 10^{-10} s$.

and independence of the single domain particles

Finite dimensional case

Single particle domain :

Very small objects ($\sim 10 nm$) \rightsquigarrow neglect exchange energy :

$$m(t,x) = m(t) \mathbb{1}_{\mathcal{O}}(x)$$

 \rightsquigarrow Stoner Wohlfarth model :

$$rac{dm}{dt} = m imes ilde{H}_{eff} - lpha m imes (m imes ilde{H}_{eff})$$

with $m(t) \in S^2 \subset \mathbf{R}^3$,

$$\tilde{H}_{eff} = H_{ext} - Dm - K \nabla_m G(m) + H_{therm},$$

 $D = (D_{ij})_{1 \le i,j \le 3}$ positive definite matrix, $H_{therm} = \sqrt{\frac{2\varepsilon\alpha}{1+\alpha^2}}\dot{W}(t)$, $W(t) = (W_1(t), W_2(t), W_3(t))$, three dimensional Brownian motion

Remarks :

Equivalent equation (same law) :

 $\frac{dm}{dt} = m \times (H_{eff} + \sqrt{2\varepsilon\alpha}\dot{W}(t)) - \alpha m \times (m \times H_{eff})$

- Stratonovich product : |m(t)| = 1, a.e.
- Existence and uniqueness of (global in time) strong solutions is clear (compact state space)
- ► m × dW = dB additive Brownian motion with values on the sphere

Well studied : Brown (1962); Garcia-Palacios-Lazaro (1998); Kohn-Reznikov-Vanden-Eijnden (2005); Bañas-Neklyudov-Prohl (2013), ··· Existence and uniqueness of invariant measure (for usual anisotropic energies) : Gibbs measure

$$\mu(dm) = Ze^{-\mathcal{E}(m)/\varepsilon}dm, \quad Z = \int_{S^2} e^{-\mathcal{E}(m)/\varepsilon}dm$$

- Use of Large Deviation Principle to explain influence of T on Stoner-Wohlfarth astroïds, hysteresis loops, ...
- Case of N single particles, coupled thanks to exchange energy :

$$M = (m_1, \cdots, m_N), \ m_j \in S^2 \in \mathbf{R}^3, \ J = (J_{kl})_{1 \le k, l \le N},$$

where J is sym. def. \geq 0; then exchange energy given by

$$\mathcal{E}_{exch}(M) = \frac{1}{2} \sum_{k;l=1}^{N} J_{kl} \langle m_k, m_l \rangle.$$

・ロッ ・回 ・ ・ ヨッ ・ ヨッ

Convergence of numerical schemes

Infinite dimensional case

- Three dimensional situation : no hope for space-time white noise
- Deterministic case (H_{therm} = 0) :
 - Global existence of weak solutions (no uniqueness)
 - Local existence of strong solutions (blow up?)

Formally : $\varphi : \mathcal{O} \to \mathbf{R}^3$ regular

$$\langle m \times \Delta m, \varphi \rangle = \langle \nabla (m \times \nabla m), \varphi \rangle = \langle \nabla m, m \times \nabla \varphi \rangle$$

 \rightsquigarrow natural space for weak solutions : $\textbf{H}^1=(\mathcal{H}^1(\mathcal{O}))^3$

In what follows :

 $H_{eff}(m) = \Delta m;$ $H_{therm} = h(x)\dot{W}(t),$ $h: \mathcal{O} \to \mathbb{R}^3$ and W(t) is a one dimensional Brownian motion; can actually treat more general situations $\begin{array}{ll} (SLL) & \partial_t m = m \times (\Delta m + h \dot{W}) - \alpha m \times (m \times (\Delta m + h \dot{W})) \\ \\ \hline \mathbf{Definition}: \text{Weak solutions (Brzezniak-Goldys-Jegaraj)} \\ (\Omega, \mathcal{F}, \mathbf{P}, (\mathcal{F}_t)_{t \geq 0}, W, m) \text{ such that for all } T > 0, \end{array}$

•
$$m \in C([0, T]; H^{-1}(\mathcal{O})), \mathbf{P}.a.s.$$

• $\mathbf{E}\left(\sup_{t \leq T} |\nabla m(t)|^{2}_{L^{2}(\mathcal{O})}\right)$ is finite
• $|m(t, x)| = 1, dx \otimes \mathbf{P}$ a.e.
• m satisfies for all $\varphi \in C^{\infty}(\bar{\mathcal{O}}, \mathbf{R}^{3}),$

$$\langle m(t), \varphi \rangle - \langle m_0, \varphi \rangle = -\int_0 \langle \nabla m, (\nabla \varphi) \times m \rangle \, ds$$

 $-\alpha \int_0^t \langle \nabla m, \nabla (m \times \varphi) \times m \rangle + \int_0^t \langle G(m)h, \varphi \rangle \circ dW(s)$

with $G(m)h = m \times h - \alpha m \times (m \times h)$.

Theorem (Brzezniak-Goldys-Jegaraj, 2013) :

Let $m_0 \in \mathbf{H}^1$ with $|m_0(x)| = 1$, a.e. and $h \in (L^{\infty} \cap W^{1,3}(\mathcal{O}))^3$; then there is a weak solution $(\Omega, \mathcal{F}, \mathbf{P}, (\mathcal{F}_t)_{t\geq 0}, W, m)$ of (SLL);

Moreover, for all T > 0,

$$\mathsf{E}\int_0^T |m \times \Delta m|_{L^2}^2 \, dt < +\infty,$$

and $m \in C^{\alpha}([0, T]; L^{2}(\mathcal{O}))$ a.s. for any $\alpha < 1/2$.

Then m also satisfies

$$egin{aligned} m(t) &= m_0 + \int_0^t m imes \Delta m \, ds \ &-lpha \int_0^t m imes (m imes \Delta m) \, ds + \int_0^t G(m) h \circ dW(s) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

- Strategy of proof uses Galerkin approximation, tightness of the sequence and convergence of the associated martingale problem, together with representation theorems
- Nothing is known about the long time behaviour (invariant measures) : if

$$\mathcal{E}(m) = \frac{1}{2} \int_{\mathcal{O}} |\nabla m|^2 \, dx$$

then

$$\mathbf{E}(\mathcal{E}(m(t))) + \mathbf{E} \int_0^T \int_{\mathcal{O}} |m \times \Delta m|^2 dx dt \leq CT;$$

however lack of uniform compactness in time

More precise results in the 1-D case O = (0,1) Goldys-Le Ngan-Tran : uniqueness of the H¹ solution, application of the LDP to the study of possible switching Bruned-Hairer-Zambotti : space-time white noise (regularity structures) in the over damped case

Numerical schemes

$$(SLL) \quad \begin{cases} dm = [m \times \Delta m - \alpha m \times (m \times \Delta m)] dt + m \times \circ dW \\ m(0) = m_0 \text{ in } \mathcal{O} \\ \partial_n m(t, x) = 0 \text{ on } \partial\mathcal{O} \end{cases}$$

Here W is a Q-Wiener process on L^2 , such that $W(t) \in H^2$ (Q finite trace sym. positive op. with values in H^2)

Finite elements approximation :

Let $(\mathbf{T}_h)_{h>0}$ a triangular mesh of \mathcal{O} ; replace $\mathbf{H}^1(\mathcal{O})$ by \mathbf{V}_h , with

$$\mathbf{V}_h = \{ arphi \in \mathbf{H}^1, \ arphi_{ert_{\mathcal{T}}} \in \mathbf{P}^1 ext{ for each } \mathcal{T} \in \mathbf{T}_h \}$$

Then, replace the test function $\varphi \in \mathbf{H}^1$ by $\varphi \in \mathbf{V}_h$ in the definition of the weak solutions

Time discretization :

Midd-point discretization (Stratonovich product) Banas, Brzezniak, Neklyudov, Prohl :

Given $m^n \in \mathbf{V}_h$ (approximation of $m(n\delta t, \cdot)$, look for $m^{n+1} \in \mathbf{V}_h$ satisfying : $\forall \varphi \in \mathbf{V}_h$,

$$\langle m^{n+1} - m^n, \varphi \rangle_h + \alpha(\delta t) \langle m^{n+1/2} \times (m^{n+1/2} \times \Delta_h m^{n+1}), \varphi \rangle_h - (\delta t) \langle m^{n+1/2} \times \Delta_h m^{n+1/2}, \varphi \rangle_h = \langle m^{n+1/2} \times \Delta_n W, \varphi \rangle_h$$

with

$$m^{n+1/2} = \frac{1}{2}(m^n + m^{n+1})$$
 and $\Delta_n W = W((n+1)\delta t) - W(n\delta t).$

Theorem (BBNP, 2014) : Let T > 0 fixed and $m_0 \in \mathbf{H}^1$; then for $\delta t = T/N$, the sequence $((m^n)_{0 \le n \le N})_{N \in \mathbf{N}}$ converges in law, up to a subsequence, to a weak solution of (*SLL*) as N goes to infinity (i.e. δt goes to zero).

Remarks :

- ► The constraint |mⁿ(x)| = 1 is satisfied a.e. (not the case if discretization of the Itô equ.)
- The scheme is nonlinearly implicit ~>> requires the resolution of a nonlinear pb at each time step (fixed point, or Newton)
- No uniqueness for m^{n+1} (random selection theorem)

Our aim :

Build a linearly implicit scheme that respects the constraint $|m^n(x)| = 1$, a.e. \rightsquigarrow implies that $dm \perp m$ a.e.; hence natural to search the increment in a space of functions $\perp m^n$

From now on take $\alpha = 1$ for simplicity

Ideas : (originates from deterministic scheme F. Alouges, 2008)

Consider the nonlinear term coming from

 $m \times (m \times \Delta m) = -\Delta m - m |\nabla m|^2$

then for any $arphi\in \mathcal{C}^\infty(\mathcal{O})$ with $arphi(x)\perp \mathit{m}(t,x)$ a.s.,

 $\langle m \times (m \times \Delta m), \varphi \rangle = - \langle \Delta m, \varphi \rangle = \langle \nabla m, \nabla \varphi \rangle$

 \rightsquigarrow term along m(t, x) recovered as a Lagrange multiplier, thanks to the constraint

For the nonlinear term m × ∆m : use of the Gilbert form of the LL equation :

 $(SLLG) \quad \begin{array}{l} dm - m \times dm \\ = 2(\Delta m + m |\nabla m|^2) dt + \frac{1}{2} (Id - m \times) (m \times \circ dW) \end{array}$

Definition of the semi-discrete scheme :

Let $G = Q^{1/2}$ (assumed HS from L^2 into H^2) and $(e_k)_{k \in \mathbb{N}}$ c.o.s. of L^2 ; define the (random) space :

$\mathbf{W}_{\delta t,n} = \{ \psi \in \mathbf{H}^1(\mathcal{O}), \ \psi(x) \perp m_{\delta t}^n(x) \}$

where the r.v. $m_{\delta t}^{n}(x)$ is a approximation of $m(n\delta t, x)$. then

▶ Define
$$v^n = v^n_{\delta t} \in \mathbf{W}_{n,\delta t}$$
 as the solutions of the pb :
 $\forall \varphi \in \mathbf{W}_{n,\delta t}$,

$$\begin{aligned} \langle \mathbf{v}^{n} - \mathbf{m}^{n} \times \mathbf{v}^{n}, \varphi \rangle + 2(\delta t) \langle \nabla \mathbf{v}^{n}, \nabla \varphi \rangle \\ (\mathcal{P}^{n}) &= -2(\delta t) \langle \nabla \mathbf{m}^{n}, \nabla \varphi \rangle + \langle (Id - \mathbf{m}^{n} \times (\mathbf{m}^{n} \times \Delta W^{n}), \varphi \rangle \\ &+ \frac{1}{2} (\delta t) \sum_{k} \langle (Id - \mathbf{m}^{n} \times) (\mathbf{m}^{n} \times G_{k}) \times G_{k}, \varphi \rangle \end{aligned}$$

Set

$$m_{\delta t}^{n+1}(x) = \frac{m_{\delta t}^n(x) + v_{\delta t}^n(x)}{|m_{\delta t}^n(x) + v_{\delta t}^n(x)|}.$$

●●● 単一 本田 * 本田 * 本日 *

Note that (\mathcal{P}^n) is the variational formulation of a fully implicit discretization of the Itô form of (SLLG).

The existence an uniqueness of the solution of (\mathcal{P}^n) follows from classical theorem.

Theorem (F.A, AdB, A.H, 2014) :

Let T > 0 fixed, and $\delta t = T/N$; set $m_N(t) = m_{\delta t}^n$ for $t \in [n\delta t, (n+1)\delta t)$; then, up to a subsequence, the sequence $(m_N)_{N \in \mathbb{N}}$ converges in law in $L^2((0, T) \times \mathcal{O})$ to a martingale solution of (SLL).

Moreover, this solution satisfies (SLLG) and there is actually convergence in $L^2(\tilde{\Omega} \times (0, T) \times \mathcal{O})$, where $\tilde{\Omega}$ is the Skohorod space.

Some remarks :

- Fully discrete version easily deduced : replace W_{n,δt} by a finite element space of functions ⊥ mⁿ_{δt}
- ▶ Could use more general θ -scheme \rightsquigarrow convergence for $\theta > 1/2$
- The scheme is linearly implicit (but nonlinearity hidden in the space W_{n,δt})
- Some 1-D version (i.e. for one dimensional noise) of the projected scheme was studied previously (Goldys-Le-Tran, 2013), but uses Doss-Sussman formulation ~>> restricted to 1-D noise
- As a by-product we obtain the equivalence of the two formulations of the equation (SLL) and (SLLG) in some sense
- Nothing known about convergence of the term $m^n |\nabla m^n|^2$

More on weak solutions

 $du = (\Delta u + u |\nabla u|^2 + u \times \Delta u + F_{\phi}(u))dt + u \times dW_{\phi}$

on a domain $D \subset \mathbf{R}^2$ (typically torus in 2D); $u(t,x) \in \mathbf{R}^3$.

Global existence of finite energy solutions :

For $u_0 \in \mathbf{H}^1$, with $|u_0(t, x)| = 1$, a.s., there exists a global solution and a sequence of (random) stopping times $T^1 < T^2 < \cdots < T^k$ such that $\lim_{k\to\infty} T^k = +\infty$, a.s. and

 $u \in \bigcup_{k \in \mathbb{N}} C([T^k, T^{k+1}); \mathbb{H}^1) \cap L^2([T^k, T^{k+1}); \mathbb{H}^2).$

Moreover,

$$u(t)
ightarrow u(T^k)$$
 as $t \nearrow T^k$, i.e. $u \in C_w(\mathbf{R}^+; H^1)$.

Note that T^k characterized by "bubbles" :

$$\inf_{R>0} \sup_{\substack{x \in D \\ t \in [T^{k-1}, T^k)}} \int_{B(x,R)} |\nabla u(t, y)|^2 dy > \varepsilon_1$$

Here ε_1 is a fixed constant that measures the energy loss at the blow up points.

Remarks :

- Blow up at finite number of (space-time) points : the energy loss is quantified
- Deterministic case : Struwe, 1985
- Stochastic case : no energy conservation, but refined analysis of energy density evolution allows to assert that bubbling does not occur "too often" + compactness

Moreover

Any weak solution is of this form (hence unique) provided $\frac{1}{2}|\nabla u|_{L^2}^2 - c_{\phi}t$ is a supermartingale (deterministic case : Freire, 1995) **Example :** $D = D(0,1) \subset \mathbb{R}^2$

Figure 6.3 – View from above of 3 trajectories (the three columns) solution at times t = 0, t = 0.015, t = 0.05, t = 0.06 (raws). The color red means that $u^3(\omega, t, x) > 0$, whereas blue means $u^3(\omega, t, x) \le 0$. The parameters are $\gamma = 0$, k = 0.001, $h_{\min} = 0.050518$. All solutions start with the same initial data, see figure 6.2.

Stochastic heat flow of harmonic maps :

$$du = (\Delta u + u |\nabla u|^2 + F_{\phi}(u))dt + u imes dW_{\phi}$$

The equivariant case :

Here D is the unit disc of \mathbf{R}^2 ; $x = re^{i\theta}$, and

 $u(t,x) = (\cos\theta\sin h(t,r), \sin\theta\sin h(t,r), \cos h(t,r))$

with noise $u^{\perp}\dot{W} = u \times e_{ heta}\dot{W}$ and W real valued, then

$$\begin{cases} dh = \left(\partial_{rr}h + \frac{1}{r}\partial_{r}h - \frac{\sin 2h}{2r^{2}}\right)dt + dW\\ h(t,0) = h(t,1) = 0\\ h(0,r) = h_{0}(r) \end{cases}$$

Blowup in the deterministic case may occur : Chang, Ding, Yue, Ye, 1992

Blow up in the deterministic case :

Blow up in the deterministic case :

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙

Blow up in the deterministic case :

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

No blow up in the deterministic case :

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙

No blow up in the deterministic case :

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

No blow up in the deterministic case :

The stochastic case :

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の ۹ ()

The stochastic case :

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ◆ ○ ◆

The stochastic case :

Let $A\varphi = \partial_{rr}\varphi + (\frac{1}{r}\partial_r - \frac{1}{r^2})\varphi$, with Dirichlet B.C. and let $V_\beta = D(A^\beta)$; then

Theorem

- For any β with 4/3 < β and any h₀ ∈ V_β, there is a unique strong local solution h of the equation in C([0, τ^{*}_β(h₀)), V_β)
- ▶ If the noise is non degenerate, i.e. $Ker(\phi^*) = \{0\}$, then for all $h_0 \in V_\beta$ and all $t^* > 0$,

$${\sf P}(au_{eta}^*(h_0) < t^*) > 0 ext{ and } {\sf P}(\sup_{[0,t^*)} \|
abla u(t) \|_{L^{\infty}} = +\infty) > 0$$

Remarks

- Open for the LLG equation (deterministic or stochastic)
- Blow up for the Schrödinger maps : Bejenaru-Tataru 2010, Merle-Raphael-Rodianski 2011, Perelman 2012