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Modeling of micromagnetics

» Pierre Weiss, 1907 : domain theory

Magnetic materials = collection of uniform magnets
minimizing magnetostatic + jump energy
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From A. Hubert and R. Schifer, Magnetic domains




» W.F. Brown, 1940-60 : continuous model

Magnetization (magnet distribution)

M:0O — R3

with /f// s
Tf
IM(x)| = Mg(T) a.e. xe O

here T = temperature

m = M/M;s(T) minimizes the Brown energy (non dimensional

form) :
/ IV m|? dx—/ Hosr - mdx

/Hd( ) - mdx+K/ G(m) dx
2 Jo 0
with m(x) € S2, p.p.



v

1/
5 / 'Vm|? dx : exchange energy
JO

> — / Hext - mdx : external energy (due to external field Heyr)
Jo
» —Hy(m) : stray field (magnetic field induced by the particle
itself) ;

Hy(m) = —VA ™ tdiv m

v

K/ G(m) dx : anisotropic energy
o

~» minimization of m(x) subject to constraint |[m(x)| =1, a.e.
leads to a frustrated system

> Lots of theoretical /asymptotic studies (depending on
size/material)

» Strong link with harmonic maps into the sphere



Dynamical equation
Landau-Lifshitz ~ 1935 :
Her(m) = —Dm&(m) = Am + Hexr + Hg(m) — KD G(m)

then the LL equation is given by

%—T = m X Hegr(m) — am x (m X Heg(m)) inO
m(0, x) = mg(x) in O

om .

= 0 on 90

a > 0, damping :

d&(m)
dt

0
— — He(m) - a_T — —a|m x Her(m)[2



Nonzero temperature : thermal activation
~~ add to Hes a random field Hiperm (Brown, 1963)

Usually for physicists :

> Hiherm gaussian

> (Hiherm(x, £)) = 0

> (Hiherm(X, t) - Heherm(y, ) = 10x—y0t—s
~> space-time white noise
Actually : ideal case

Time correlation length ~ 10713s. (room temperature)
Response time of the medium ~ 10719,

and independence of the single domain particles



Finite dimensional case

Single particle domain :

Very small objects (~ 10nm) ~~ neglect exchange energy :
m(t,x) = m()1o(x)

~+ Stoner Wohlfarth model :

d ~ .
?T:mx Hefr — am x (m X Hef)

with m(t) € S2 C R3,

Heff = Hext — Dm — Kva(m) + cherm7

D = (Djj)1<i j<3 positive definite matrix, Heperm = ffgz W(t)

W(t) = (Wi(t), Wa(t), Ws(t)), three dimensional Brownian
motion



Remarks :

» Equivalent equation (same law) :

d .
d%’ = m X (Hegr + V2eaW(t)) — am x (m X Hef)

» Stratonovich product : |m(t)| =1, a.e.

» Existence and uniqueness of (global in time) strong solutions
is clear (compact state space)

» m x dW = dB additive Brownian motion with values on the
sphere

Well studied : Brown (1962); Garcia-Palacios-Lazaro (1998);

Kohn-Reznikov-Vanden-Eijnden (2005) ; Bafias-Neklyudov-Prohl
(2013), - --



» Existence and uniqueness of invariant measure (for usual
anisotropic energies) : Gibbs measure

u(dm) = Ze=€M/egm, 7 = / o= E(m)/2 gim
52

> Use of Large Deviation Principle to explain influence of T on
Stoner-Wohlfarth astroids, hysteresis loops, ...

» Case of N single particles, coupled thanks to exchange
energy :

M= (my,---,mp), mj € S2eR? J= (Jk1)1<k, <N,
where J is sym. def. > 0; then exchange energy given by
1N
Eexch(M) = 3 k;I Jki(m, my).

Convergence of numerical schemes



Infinite dimensional case

» Three dimensional situation : no hope for space-time white
noise
» Deterministic case (Hiperm = 0) :

» Global existence of weak solutions (no uniqueness)
» Local existence of strong solutions (blow up ?)

Formally : ¢ : O — R3 regular
(mx Am, ) = (V(mxVm),e) =(Vm,mx V)
~~ natural space for weak solutions : H! = (H(0))3

In what follows :

Her(m) = Am;  Hiperm = h(x)W(t), h: 0O = R3

and W(t) is a one dimensional Brownian motion; can actually
treat more general situations



(SLL)  9rm = m x (Am+ hW) —am x (m x (Am + hW))
Definition : Weak solutions (Brzezniak-Goldys-Jegaraj)
(Q,F, P, (Ft)t>0, W, m) such that for all T >0,

» me C([0, T]; H1(0)), P.ass.

» E <5UPt§T |Vm(t)|i2(o)> is finite
> |m(t,x)| =1, dx® P a.e.

» m satisfies for all ¢ € C>(O, R3),

(m(t).0) = (mo. ) = = [ (V. (Vig) x m) s

—« /t<Vm,V(m X ) X m) + / (G(m)h, ) o dW(s)
0 Jo

with G(m)h=m x h—am x (m x h).



Theorem (Brzezniak-Goldys-Jegaraj, 2013) :

Let mo € H! with |mg(x)| = 1, a.e. and h € (L= N W13(0))3;
then there is a weak solution (2, 7, P, (F;)>0, W, m) of (SLL);

Moreover, for all T > 0,
T
E/ Im x Am|?, dt < 400,
0

and m € C([0, T]; L?(0)) a.s. for any a < 1/2.

Then m also satisfies

't
m(t)mo—i—/ m x Amds
0
ot t
a/ mx(mxAm)ds+/ G(m)ho dW(s)
0 0



Strategy of proof uses Galerkin approximation, tightness of
the sequence and convergence of the associated martingale
problem, together with representation theorems

Nothing is known about the long time behaviour (invariant
measures) : if
5mﬂ:1 |V m|? dx
2 Jo
then
T

ﬂammn+E/ |m x Am|? dxdt < CT;
JOo JO

however lack of uniform compactness in time

More precise results in the 1-D case O = (0, 1)

Goldys-Le Ngan-Tran : uniqueness of the H! solution,
application of the LDP to the study of possible switching
Bruned-Hairer-Zambotti : space-time white noise (regularity
structures) in the over damped case



Numerical schemes

dm=[mx Am—am x (mx Am)]dt + m x odW
(SLL) m(0) = mg in O

Inm(t,x) =0 on 0O
Here W is a Q-Wiener process on L2, such that W(t) € H? (Q
finite trace sym. positive op. with values in H?)
Finite elements approximation :

Let (Th)n>o0 a triangular mesh of O; replace HY(O) by V, with
V), = {p € H}, IS P! for each T € T}

Then, replace the test function ¢ € H! by € V}, in the definition
of the weak solutions



Time discretization :

Midd-point discretization (Stratonovich product) Banas,
Brzezniak, Neklyudov, Prohl :

Given m" € V, (approximation of m(nét,-), look for m"*1 € v,
satisfying : Vi € Vy,

(m™ —m" o) 4 a(5t)(m" T2 x (m™H2 5 Apm™Y), ),
_(5t)<mn+1/2 « Ahmn+1/2-/99>h — <mn+1/2 % AnW7S~9>h
with

o 1/2 %(mn + m™1) and AW = W((n+ 1)5t) — W(ndt).

Theorem (BBNP, 2014) : Let T > 0 fixed and mg € H!; then for
dt = T /N, the sequence ((m")o<p<n)nen converges in law, up to
a subsequence, to a weak solution of (SLL) as N goes to infinity
(i.e. ot goes to zero).



Remarks :
» The constraint |m"(x)| = 1 is satisfied a.e. (not the case if
discretization of the It6 equ.)

» The scheme is nonlinearly implicit ~~ requires the resolution of
a nonlinear pb at each time step (fixed point, or Newton)

» No uniqueness for m™*! (random selection theorem)

Our aim :

Build a linearly implicit scheme that respects the constraint
m"(x)| = 1, a.e. ~» implies that dm L m a.e.; hence natural to
search the increment in a space of functions L m”

From now on take a = 1 for simplicity



Ideas : (originates from deterministic scheme F. Alouges, 2008)

» Consider the nonlinear term coming from
mx (mx Am) = —Am — m|Vm|?
then for any ¢ € C*(O) with p(x) L m(t,x) a.s.,
(mx (m x Am), ) = —(Am, ) = (Vm, V)

~~ term along m(t, x) recovered as a Lagrange multiplier,
thanks to the constraint

» For the nonlinear term m x Am : use of the Gilbert form of
the LL equation :
dm— m x dm

(SLLG)
=2(Am+ m|Vm|?)dt + 3(Id — mx)(m x odW)



Definition of the semi-discrete scheme
Let G = Q/? (assumed HS from L? into H?) and (ex)ken c.0.s.

of L2; define the (random) space :
Wisen = {0 € H1(0)7 Y(x) L mg,(x)}

where the r.v. mJ,(x) is a approximation of m(ndt, x). then
> Define v" = v, € W, 5+ as the solutions of the pb :
\V/(ID € Wn,dt:
(v —m" x v, ) +2(5t)(Vv", Vo)
= =2(0t)(Vm", Vo) + ((Id — m" x (m" x AW™), ¢)

(")
+3(651) Sil(ld = mx)(m" x Ge) X G )

> Set
n+l(X) _ mgt(X) + V(gt(x)
|mf,(x) + v, ()




Note that (P") is the variational formulation of a fully implicit
discretization of the It6 form of (SLLG).

The existence an uniqueness of the solution of (P") follows from
classical theorem.

Theorem (F.A, AdB, A.H, 2014) :

Let T > 0 fixed, and §t = T/N; set my(t) = mj, for

t € [ndt,(n+ 1)dt); then, up to a subsequence, the sequence
(mn)nen converges in law in L2((0, T) x O) to a martingale
solution of (SLL).

Moreover, this solution satisfies (SLLG) and there is actually
convergence in L?(Q x (0, T) x O), where Q is the Skohorod space.



Some remarks :
» Fully discrete version easily deduced : replace W, 5; by a finite
element space of functions L mj,
» Could use more general §-scheme ~~ convergence for § > 1/2

» The scheme is linearly implicit (but nonlinearity hidden in the
space W), 5¢)

» Some 1-D version (i.e. for one dimensional noise) of the
projected scheme was studied previously (Goldys-Le-Tran,
2013), but uses Doss-Sussman formulation ~~ restricted to
1-D noise

> As a by-product we obtain the equivalence of the two
formulations of the equation (SLL) and (SLLG) in some sense

» Nothing known about convergence of the term m"|Vm"|?



More on weak solutions

du = (Au+ u|Vu* + u x Au+ Fy(u))dt + u x dW,

on a domain D C R? (typically torus in 2D); u(t,x) € R3.
Global existence of finite energy solutions :

For up € HY, with |ug(t, x)| = 1, a.s., there exists a global solution
and a sequence of (random) stopping times T! < T2 < ... < Tk
such that limy_,o TX = +00, a.s. and

u € UgenC([TH, TR, HY) N L2([TK, TF) H?).

Moreover,

u(t) = u(TXast A TF ie ue C,(RT; HY).



Note that T* characterized by “bubbles” :

inf sup / \Vu(t,y)|?dy > e
=0 xep  /BR)
te[TH1,TK

Here £; is a fixed constant that measures the energy loss at the
blow up points.

Remarks

» Blow up at finite number of (space-time) points : the energy
loss is quantified

» Deterministic case : Struwe, 1985

» Stochastic case : no energy conservation, but refined analysis
of energy density evolution allows to assert that bubbling does
not occur “too often” + compactness

Moreover
» Any weak solution is of this form (hence unique) provided
%]Vu]é — Cyt is a supermartingale (deterministic case :
Freire, 1995)



Example : D = D(0,1) C R?

Figure 6.3 — View from above of 3 trajectories (the three columns) solution at times = 0,
t=0.015,1 = 0.05, ¢ = 0.06 (raws). The color red means that u*(w. f, ) > 0, whereas blue
means u*(w, £, x) < 0. The parameters are 7 = 0, k = 0.001, hy = 0.050518. Al solutions
start with the same initial data, see figure 6.2




Stochastic heat flow of harmonic maps :

du = (Au+ u|Vu* + Fy(u))dt + u x dW,

The equivariant case :

Here D is the unit disc of R?: x = re’?, and
u(t,x) = (cos@sin h(t,r),sin@sin h(t,r),cos h(t,r))

with noise v W = u x egW and W real valued, then

dh = (Orh + 10,h — 53 dt 4 dW
h(t,0) = h(t,1) =0
h(0, r) = ho(r)

Blowup in the deterministic case may occur :
Chang, Ding, Yue, Ye, 1992



Blow up in the deterministic case :

IRt =0) |z >




Blow up in the deterministic case :

£0.0051
T

h(t,r)




Blow up in the deterministic case :

20,0201
T

B paj
h(t,r)
( just after

3r blow-up)

o

ns




No blow up in the deterministic case :
' [hol[ze <
0 Il Il L 1 L 1 L Il Il




No blow up in the deterministic case :

h(t,7)




No blow up in the deterministic case :

h(t,7)




The stochastic case :

1ol zee <7




The

stochastic case :

— R(t,r) > pi




The stochastic case :

Blow-up




Let Ap = O + (20, — %), with Dirichlet B.C. and let
Vs = D(AP); then

Theorem

» For any 8 with 4/3 < /8 and any hg € V3, there is a unique
strong local solution h of the equation in C([0, 75(ho)), Vp)

> If the noise is non degenerate, i.e. Ker(¢*) = {0}, then for all
ho € Vg and all t* > 0,

P(75(ho) < t*) > 0and P(sup [[Vu(t)|r= = +00) > 0
[0.t*)

Remarks

» Open for the LLG equation (deterministic or stochastic)

» Blow up for the Schrédinger maps : Bejenaru-Tataru 2010,
Merle-Raphael-Rodianski 2011, Perelman 2012



