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Linear asymptotic completeness

Linear Schrödinger equation in Rn with suitable decaying potential

i@t �� + V = 0,  (0) 2 L2(Rd)

exhibits long-term dynamics

 (t) =
X

j

e itEj j + e�it��0 + oL2(1), t ! 1

where (��+ V ) j = Ej j , Ej  0 are bound states, �0 2 L2.

Asymptotic completeness of the wave operators

Analogue for nonlinear equation? Soliton resolution problem.
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Cubic nonlinear Klein-Gordon
Energy subcritical model equation:

⇤u + u = u3 in R1+3
t,x

8 ~u(0) 2 H := H1 ⇥ L2, there 9! strong solution (Duhamel sense)

u 2 C 0([0,T );H1), u̇ 2 C 0([0,T ); L2)

for some T � T0(k~u[0]kH) > 0.

Properties: continuous dependence on data; persistence of
regularity; energy conservation:

E (u, u̇) =

Z

R3

⇣1
2
|u̇|2 + 1

2
|ru|2 + 1

2
|u|2 � 1

4
|u|4

⌘
dx

If k~u(0)kH ⌧ 1, then global existence; let T ⇤ > 0 be maximal
forward time of existence:

T ⇤ < 1 =) kukL3([0,T⇤),L6(R3)) = 1
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Basic well-posedness, focusing cubic NLKG in R3

If T ⇤ = 1 and kukL3([0,T⇤),L6(R3)) < 1, then u scatters:
9 (ũ0, ũ1) 2 H s.t. for v(t) = S0(t)(ũ0, ũ1) one has

(u(t), u̇(t)) = (v(t), v̇(t)) + oH(1) t ! 1

where S0(t) is the free KG evolution. If u scatters, then
kukL3([0,1),L6(R3)) < 1.

Finite propagation speed: if ~u(0) = 0 on {|x � x0| < R} , then
u(t, x) = 0 on {|x � x0| < R � t, 0 < t < min(T ⇤,R)}.

Finite time blowup: T > 0, exact solution to cubic NLKG

'T (t) ⇠
p
2(T � t)�1 as t ! T ,

Use finite propagation speed to cut o↵ smoothly to neighborhood
of cone |x | < T � t. Gives smooth solution to NLKG, blows up at
t = T or before.

W. Schlag (University of Chicago) Long term dynamics for nonlinear dispersive equations



Ground state, Payne-Sattinger theorem
Small data: global existence and scattering.
Large data: can have finite time blowup.
Is there a criterion to decide finite time blowup/global existence?
YES if energy is smaller than the energy of the ground state Q
unique positive, radial solution of :

��'+ ' = '3, ' 2 H1(R3) (1)

Minimization problem

inf
�k'k2H1 | ' 2 H1, k'k4 = 1

 

has radial solution '1 > 0, decays exponentially,
Q = �'1, � > 0. Minimizes the stationary energy (or action)

J(') :=

Z

R3

⇣1
2
|r'|2 + 1

2
|'|2 � 1

4
|'|4

⌘
dx = E (', 0)

amongst all nonzero solutions of (1). Dilation functional:

K0(') = hJ 0(')|'i =
Z

R3
(|r'|2 + |'|2 � |'|4)(x) dx
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Payne-Sattinger theorem

J(Q) = inf{J(') | ' 2 H1 \ {0},K0(') = 0}

Theorem (PS 1975)

If E (u0, u1) < E (Q, 0), the dichotomy: K0(u0) � 0 global
existence, K0(u0) < 0 finite time blowup

Ibrahim-Masmoudi-Nakanishi (2010): Scattering in addition to
global existence. Why wait 35 years? See next slides...
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Concentration Compactness by Bahouri-Gérard
Let {un}1n=1 free Klein-Gordon solutions in R3 s.t.

sup
n

k~unkL1t H < 1

9 free solutions v j bounded in H, and (t jn, x
j
n) 2 R⇥ R3 s.t.

un(t, x) =
X

1j<J

v j(t + t jn, x + x jn) + wJ
n (t, x)

satisfies 8 j < J, ~wJ
n (�t jn,�x jn)* 0 in H as n ! 1, and

limn!1(|t jn � tkn |+ |x jn � xkn |) = 18 j 6= k

dispersive errors wJ
n vanish asymptotically:

lim
J!1

lim sup
n!1

kwJ
n k(L1t Lpx\L3t L6x )(R⇥R3) = 0 8 2 < p < 6

orthogonality of the energy:

k~unk2H =
X

1j<J

k~v jk2H + k~wJ
n k2H + o(1) n ! 1

W. Schlag (University of Chicago) Long term dynamics for nonlinear dispersive equations



Profiles and Strichartz sea

We can extract further profiles from the Strichartz sea if w4
n does

not vanish as n ! 1 in a suitable sense. In the radial case this
means limn!1 kw4

nkL1t Lpx (R3) > 0.
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Kenig-Merle

Payne-Sattinger regime for the energy critical focusing NLW in R3:

utt ��u � u5 = 0

Stationary solution W (x) = (1 + |x |2/3)� 1
2 , unique radial

solution. Aubin-Talenti solution, extremizer for the critical
embedding Ḣ1(R3) ,! L6(R3).

Theorem (KM2007)

Assume (u0, u1) 2 Ḣ1 ⇥ L2, E (u0, u1) < E (W , 0).

If kru0k2 < krW k2 then global existence and scattering
(both time directions)

If kru0k2 > krW k2 then finite time blowup (both time
directions). type I blowup, based on later work
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Kenig-Merle blueprint for scattering
Small data scattering. Perturbative, based on Strichartz
estimates.
Induction on energy (Bourgain). Suppose result fails at some
energy 0 < E⇤ < E (W , 0). Use Bahouri-Gérard decomposition
to find special solution u⇤ of energy E⇤, with infinite scattering
norm ku⇤kL80<t<T⇤,x

= 1. It follows that trajectory (up to time

of existence T ⇤) is precompact, modulo scaling symmetry.
Main point in concentration-compactness: there can be only
one profile, and dispersive error vanishes in energy norm.
Rigidity step: Show there can be no precompact solution of
energy below ground state energy other than zero. Key role
played by monotone quantities such as virial or Morawetz
which express asymptotic outgoing property of waves. virial:
hut , x ·rui. Spatial cuto↵s needed.
Alternative tool: Exterior energy estimates.

Acta 2008 Kenig-Merle paper more complicated, exclusion of
self-similar blowup, self-similar coordinates.
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Beyond Payne Sattinger in unstable case

Theorem (Nakanishi-S. 2010)

Let E (u0, u1) < E (Q, 0)+ "2, (u0, u1) 2 Hrad. In t � 0 for NLKG:

1 finite time blowup

2 global existence and scattering to 0

3 global existence and scattering to Q:
u(t) = Q + v(t) + oH1(1) as t ! 1, and
u̇(t) = v̇(t) + oL2(1) as t ! 1, ⇤v + v = 0, (v , v̇) 2 H.

All 9 combinations of this trichotomy allowed as t ! ±1.

Applies to all dimensions, subcritical equations for which small
data scattering is known.

Linearized operator ��+ 1� 3Q2 has unique negative
eigenvalue. crucial!

third alternative is center-stable manifold of codimension 1 .
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The invariant manifolds

Figure: Stable, unstable, center-stable manifolds
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Variational structure above E (Q, 0)

Solution can pass through the balls. Energy is no obstruction
anymore as in the Payne-Sattinger case.

Key to description of the dynamics: One-pass (no return)
theorem. The trajectory can make only one pass through the
balls.

Point: Stabilization of the sign of K (u(t)).
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Numerical 2-dim section through @S+ (with R. Donninger)

Figure: (Q + Ae�r2 ,Be�r2)

soliton at (A,B) = (0, 0), (A,B) vary in [�9, 2]⇥ [�9, 9]

RED: global existence, WHITE: finite time blowup, GREEN:
PS+, BLUE: PS�
Our results apply to a neighborhood of (Q, 0), boundary of
the red region looks smooth (caution!)
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Center stable manifold for critical u5 NLW

Theorem of Nakanishi-S is in subcritical radial regime (nonradial
analogue exists, too). Analogue in the original Kenig-Merle critical
setting?

Additional scaling invariance: any center-stable manifold contains
curve W� =

p
�W (�·), 0 < � < 1 of solitons. More importantly,

it also contains blowup solutions with energy slightly above that
of W .

Such blowup solutions were constructed by Krieger-S-Tataru in
finite time, and by Donninger-Krieger in infinite time (more
generally: non scattering solution in infinite time).

Nakanishi-Krieger-S 2011, 2013: existence of a center-stable
manifold which separates global existence from blowup.
Open problems: Show blowup o↵ the manifold is Type I. More
information about dynamics on the manifold. What if energy is
much larger than ground state energy?
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Duyckaerts-Kenig-Merle, Exterior Energy Estimates

R3 radial data, free wave ⇤u = 0. Then (R = 0 case!) for one
sign ±

lim
t!±1

Z

|x |�|t|
(|ru|2 + u2t )(t, x) dx � c

Z

R3
(|ru|2 + u2t )(0, x) dx
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Exterior Energy Estimates

Extends to all odd dimensions, nonradial data. Fails in even
dimensions, but holds for data (u0, 0), d = 4, 8, . . ., or (0, u1),
d = 6, 10, . . . (Côte, Kenig. S.)

Obstruction for the case R > 0: Newton potential u(x) = |x |�1

solves ⇤u = 0 in |x | > |t|, has finite energy on |x | � R > 0 but
infinite energy on R3.

If u0 ? |x |�1 in Ḣ1(|x | � R) radial, then

lim
t!±1

Z

|x |�|t|+R
(|ru|2 + u2t )(t, x) dx � c

Z

|x |�R
(|ru|2 + u2t )(0, x) dx

= c

Z 1

R
((ru)2r + (ru)2t )(0, r) dr

Analogue in higher odd dimensions but with more obstructions
(Lawrie, Liu, Kenig, S.).
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Exterior Energy Estimates, nonlinear context

Theorem (DKM2012)

Let (u, ut), radial finite energy solution of ⇤u � u5 = 0,
0  t < T ⇤. If u 6= 0,W�, 8 � > 0, then 9 R > 0, ⌘ > 0

Z

|x |�|t|+R
(|ru|2 + u2t )(t, x) dx � ⌘, 0  ±t < T ⇤

In particular, nonstationary global solutions radiate o↵ a
positive amount of energy.

Find sequence tn ! 1 so that ~u(tn) bounded in Ḣ1 ⇥ L2.
Apply concentration compactness to ~u(tn)� ~uL(tn) where uL
is a free wave which carries all energy of ~u in |x | � t � A.

Use theorem to identify all nonzero profiles as W�, and to
prove radiative error vanishes.
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DKM soliton resolution

Theorem (DKM2012)

Let (u, ut), radial finite energy solution of ⇤u � u5 = 0,
0  t < T ⇤.

Type I finite time blowup (Ḣ1 ⇥ L2 norm becomes infinite).

Type II finite time blowup, multi-bubble representation via W�

plus a function constant in time.

Global bounded solutions, multi-bubble representation via W�

plus free radiation.

Multi-bubble in infinite time: exists free wave ~v s.t.

~u(t) =
JX

j=1

(±W�j (t)(t), 0) + (v(t), vt(t)) + o(1)

�1(t) ⌧ �2(t) ⌧ · · · ⌧ �J(t) ⌧ t, t ! 1
In finite time, replace ~v by a constant. Absence of self-similar
solutions.
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DKM soliton resolution
Existence of such solutions known for one bubble:
Krieger-S-Tataru for finite time, Donninger-Krieger in infinite
time. One expects multi-bubble solutions to be unstable.
DKM method applied to other scenarios:

Exterior equivariant wave maps u : R3 \ B(0, 1) ! S3 with
Dirichlet condition on @B and arbitrary data of finite energy.
Scatter to the unique harmonic map in the same equivariance
and degree class as the data. Lawrie-S 11 for zero degree
and 1-equivariance, Kenig-Lawrie-S 13 for nonzero degree,
Kenig-Lawrie-Liu-S 14 for all equivariance classes and
degrees.
Observed numerically by Bizon-Cmaj-Maliborski.
Defocusing (and thus stable) radial u5 NLW in R3 with a
potential well. The latter combines exterior energy estimates
with center-stable manifolds and one-pass theorem (Jia, Liu,
S, Xu).
Method appears not to apply in the subcritical case
(propagation speed of Klein-Gordon).
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Defocusing u5 NLW with potential
Consider

⇤u + Vu + u5 = 0

radial, decaying V , deep enough to trap bound states
��'+ V'+ '5 = 0. For generic V finitely many bound states,
and linearized operator H' := ��+ V + 5'4 has no anomalies
(zero energy resonance or eigenvalues). Ḣ1 ⇥ L2(R3) data lead to
global solutions (standard). Long term dynamics?

Theorem (Jia, Liu, S, Xu ’14, ’15)

All radial finite energy solutions scatter (asymptotically free) to
one of the stationary solutions '. Data scattering to ' are (i) open
if H' has no negative eigenvalues (ii) form a C 1 path-connected
manifold M in Ḣ1 ⇥ L2(R3) of co-dimension equal to number of
negative eigenvalues of H'.

The manifold M' is a global, unbounded, center-stable manifold
associated with stationary solution '. Is it closed?
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Defocusing u5 NLW with potential

Scattering result is an adaptation of DKM technique. One
profile in Bahouri-Gérard decomposition sees potential V (no
scaling) the others do not (scaling).

Potential V perturbative error in |x | � t � A, so exterior
energy methods still apply.

Local construction of M' near any solution scattering to '.
Delicate, radial endpoint for Strichartz. Note di↵erence from
standard center-stable manifold constructions: not near
stationary solution but near a given scattering solution.

The local manifold has repulsive property: If solution remains
near it for all times t � 0, then it lies on it. Perturbative.

Solution leaves, comes back eventually? Nonperturbative.

No-return or one-pass theorem: if the solution exits small
neighborhood of M' then it must emit a fixed quantum of
energy which pushes it away from M', precluding a near
return. So near but o↵ of M' solution cannot scatter to '.
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wave maps
The concentration-compactness approach to scattering also applies
in absence of Payne-Sattinger dichotomy: defocusing, stable
situations. Wave maps � : (M,⌘) ! (N , g) are critical points of
the Lagrangian

S[�] =
Z

⌘µ⌫h(d�)µ, (d�)⌫ig dVol⌘

In local coordinates

⇤M�k = ⌘↵��kij(�)@↵�
i@��

j

Set M := R⇥M, where M Riemannian, metric h. Often h
standard Euclidean metric.
Coercive conserved energy

E [(�, �̇)](t) =
1

2

Z

{t}⇥M
h�̇, �̇ig(t) + hijh(d�)i , (d�)jig(t) dVolh .
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Wave maps from R1+2

Energy critical case M = R1+2, scaling of equation identical to
that of the energy.

Theorem

Consider the Cauchy problem (CP) for the wave map equation in
the case M = R1+2 with initial data of energy E < 1.

1 If (N , g) is negatively curved (i.e., all sectional curvatures
< 0), then the (CP) is globally well-posed and the solution
scatters to a constant map.

2 In general, global well-posedness of the (CP) and scattering to
a constant map holds if E < E [(Q, 0)], where Q is the lowest
energy non-trivial harmonic map R2 ! N .

3 There exists a solution which blows up in finite time in the
case (N , g) = (S2, gS2) and E > E [(Q, 0)].

Klainerman, Machedon, Selberg, Tataru, Tao, Rodnianski,
Nahmod, Stefanov, Uhlenbeck, Shatah, Struwe, Krieger,
Sterbenz, Tataru
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Role of harmonic maps
Consider the case M = R1+2 and as an example N = S2. Then
part 2 is referred to as the Threshold theorem. It’s a consequence
of the following result.

Theorem (Struwe/ Sterbenz-Tataru bubbling)

If �(t) blows up at t = 1, then 9 seq. tn ! 1, �n = o(1� tn) and
xn 2 R2 so that the rescaled and translated seq.

�n(t, x) := �(tn + �nt, xn + �nx) ! Q`(t, x) H1
loc

((�1, 1)⇥R2)

where Q` is a Lorentz transformed harmonic map from R2 ! N 2.

Similar result if T+ = +1. Scattering to constant map or
local convergence (up to symmetries) to harmonic map.

However, the E < E [Q, 0] threshold result can be refined if
one takes into account an additional invariant of the equation,
namely the topological degree of the wave map.
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Role of harmonic maps, topological invariants
Finite energy wave maps I ⇥ R2 ! S2 have an integer valued
topological degree, which is fixed by the evolution.

deg(�) =
1

4⇡

Z

R2
�⇤!S2 2 Z

E [(�, �̇)] � 4⇡ deg[�] with equality , � is a harmonic map.

Fin. en. HM to S2 are classified: Conformal maps C1 ! C1,
rational functions.

All degree k maps with k � 1 have energy � lowest energy
nontrivial harmonic map Q1 given by stereographic projection.
Hence E < E [Q1, 0] gwp. and scattering result is meaningless
for maps with degree � 1.

Theorem (Refined Threshold result (Lawrie-Oh ’15))

Any finite energy wave map �(t) : R2 ! S2 with deg(�) = 0 and
E < 2E [(Q1, 0)] is defined globally in time and scatters.
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Equivariant wave maps
Equivariant wave maps: characterization of blow-up/scattering
dynamics for degree k � 1. �(t, r , ✓) = ( (t, r), ✓), WM eq. is

 tt �  rr � 1

r
 r +

sin 2 

2r2
= 0

Theorem (Côte, Kenig, Lawrie, S. ’12)

� = ( , ✓) smooth equiv. WM, deg(�) = 1 with E(~ ) < 3E(Q, 0)

If T+ < 1 (say T+ = 1) then, 9� : [0, 1) ! (0,1),
�(t) = o(1� t), a map ~' = ('0,'1) 2 H0 with
E(~') = E(~ )� E(Q), and a decomposition

~ (t) = ~'+ (Q (·/�(t)) , 0) + oH0(1) as t ! 1

If T+ = 1 then 9 � : [0,1) ! (0,1) with �(t) = o(t), a
solution to linearized equation ~'L(t) 2 H0, s.t.

~ (t) = ~'L(t) + (Q (·/�(t)) , 0) + oH0(1) as t ! 1

Further results: Côte ’14, Jia-Kenig ’15
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Equivariant wave maps from R⇥H2

Wave maps � from M = R⇥H2 to (N , g)
N = H2 or S2, with geod. polar coord. ( ,!),
ds2 = d 2 + g2( )d!2

where g( ) = sinh when N = H2 and g( ) = sin when
N = S2.
� is k-equivariant: �(t, r , ✓) = ( (t, r), k✓)

Equation and Energy:

@2t  � 1

sinh r
@r (sinh r@r ) + k2

g( )g 0( )
sinh2 r

= 0

E [ , @t ](t) =
1

2

Z 1

0

�
(@t )

2 + (@r )
2 +

k2g( )2

sinh2 r

�
sinh r dr
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Theorems by Lawrie-Oh-Shahshahani

There exists family P� : H2 ! H2 finite energy harmonic maps,
0  � < 1.

Theorem (LOS, ’15)

Let 0  � < ⇤, where ⇤ = 0.56 . . .. (CP) for 1-equivariant WM
R⇥H2 ! H2, with finite energy initial data ( 0, 1), is globally
well-posed and solution scatters to P� as t ! ±1. Here
P�(1) =  0(1).

No energy restriction, but spatial endpoint restriction. Excess
energy moves o↵ the spatial infinity. A key technical ingredient is a
Bahouri-Gérard type profile decomposition established in a recent
preprint, (LOS ’14), following recent work of Ionescu, Pausader,
Sta�lani on the NLS.
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The harmonic maps in LOS theorem

P�

That these are all of the finite energy harmonic maps in the first
equivariance class follows from an ODE argument.
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Dispersive equations with dissipation
Consider in Rd , d  6

@ttu ��u + 2↵@tu + u � f (u) = 0

data (u(0), @tu(0)) 2 H1 ⇥ L2(Rd), ↵ > 0, f 2 C 1,�(R), odd,
f 0(0) = 0, subcritical. Ambrosetti-Rabinowitz condition: there
exists � > 0 so that
Z

Rd

2(1 + �)F (')� 'f (')  0 8' 2 H1(Rd), F 0 = f (?)

For example

f (u) =
m1X

i=1

ai |u|pi�1u �
m2X

j=1

bj |u|qj�1u , 1 < qj < pi  d + 2

d � 2
, 8i , j

ai , bj � 0, am1 > 0 .

(†)

For this class existence, uniqueness of ground state known,
hyperbolicity of linearized operator. We only assume (?) not (†).
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Convergence to equilibria or blowup

Theorem (Burq-Raugel-S ’15)

Let ↵ > 0. Assume that 1  d  6 and that nonlinearity satisfies
above conditions. Then any finite energy solution

1 either blows up in finite time,

2 or exists globally and converges to an equilibrium point
(stationary solution) as t ! +1.

Does not use concentration-compactness, but relies heavily of
results from dynamical systems in infinite dimensions (invariant
manifold theory, Chen-Hale-Tan, Brunovsky-Polacik 90s).

Energy is monotone decreasing:

d

dt
E (~u(t)) = �2↵

Z

Rd

u2t dx

Implies: !-limit set of any solution consists of equilibria
(stationary solutions).
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Convergence to equilibria or blowup: scheme of proof

Not clear a priori that a global solution is bounded in H1 ⇥ L2.
Let K0(') =

R
Rd |r'|2 + '2 � 'f (') dx . Show 9 tn ! 1 s.t.

K0(tn) ! 0.
Then show that ~u(tn) ! (Q, 0), a stationary solution.
Linearize about (Q, 0). We may or may not have hyperbolicity
of the linearize wave equation, depends on whether
HQ := ��+ 1� f 0(Q) has trivial kernel or not; in latter case
kernel is 1-dimensional (due to radial assumption).
Construct stable, unstable, center manifolds near (Q, 0).
Latter only present if HQ has a nontrivial kernel. If present,
then center manifold is a curve.
Now apply Brunovsky-Polacik: if center dynamics is stable,
~u(t) 6! (Q, 0) as t ! 1 implies ~u(t̃n) ! (Q̃, 0) 6= (Q, 0)
which belongs to unstable manifold. But such an equilibrium
cannot lie on unstable manifold, so done. Stability of center
manifold: it is a curve, and infinitely many equilibria on it. So
evolution is trapped between them.
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The spectrum of the linearized flow with dissipation
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