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Renormalisation

Renormalisation
From Wikipedia, the free encyclopedia

In quantum field theory, the statistical mechanics of fields, and the
theory of self-similar geometric structures, renormalisation is any of a
collection of techniques used to treat infinities arising in calculated
quantities.

[L.Z. : whatever this means...]
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Models, parameters, predictions

In physics, a model for a phenomenon is a map from a set of
parametersM to a set of predictions P .

Φ :M→ P

In some situations, there is a regularisation parameter ε > 0

Φε :M→ P

However Φε(m) may fail to converge as ε→ 0 for some m ∈M.

Then for some observed p ∈ P , mε = Φ−1
ε (p) might fail to converge.

We should change our model ! Namely find Rε :M→M such that

Φ̂ :M→ P, Φ̂(m) = lim
ε→0

Φε ◦ Rε(m).
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The stochastic heat equation

Let v : R+ × Rd → R solve the heat equation with external forcing

∂tv = ∆v + ξ, x ∈ Rd.

where ξ = ξ(t, x) is a space-time white noise on R+ × Rd, i.e. a
centered Gaussian field such that

E(ξ(x, t)ξ(y, s)) = δ(x− y) δ(t − s), t, s ≥ 0, x, y ∈ Rd.

A concrete realisation: for all ψ ∈ L2(Rd) and t ≥ 0∫
[0,t]×Rd

ψ(x) ξ(s, x) ds dx :=
∑

k

Bk(t) 〈ek, ψ〉,

where (Bk)k is an IID sequence of Brownian motions and (ek)k is a
complete orthonormal system in L2(Rd).
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The stochastic heat equation

The stochastic heat equation

∂tv = ∆v + ξ, x ∈ Rd

has a unique solution given by

v(t, x) =

∫
Gt(x− y) v(0, y) dy +

∫
Gt−s(x− y) ξ(ds, dy)

where G is the heat kernel.

The path properties of this ”process” depend heavily on the dimension,
since for v(0, ·) = 0

E((v(t, x))2) =

∫
(Gt−s(y))2ds dy =

∫ t

0

Cd

s
d
2

ds


< +∞, d = 1

= +∞, d ≥ 2
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Random distributions

Therefore v is a well-defined process only for d = 1. For d ≥ 2 it
makes sense as a random field: for all ϕ ∈ C∞c (Rd)

E(〈ϕ, v(t, ·)〉2) =

∫
ϕ(x) G2(t−s)(x− x′)ϕ(x′) ds dx dx′

which is finite for all d ≥ 1. This random field is a.s. C(R+,H1− d
2−κ)

for all κ > 0.

In particular if we want to study equations like

∂tu = ∆u + F(u) + ξ, x ∈ Rd

we write the equation in the mild form

u(t, x) =

∫
Gt(x− y) u(0, y) dy +

∫
Gt−s(x− y) ξ(ds, dy)

+

∫
Gt−s(x− y) F(u)(s, y) ds dy

and u has the same regularity as v. This is a problem if F is non-linear.
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Singular stochastic PDEs

∂tu = ∆u + F(u,∇u, ξ), x ∈ Rd

(KPZ) ∂tu = ∆u + (∂xu)2 + ξ, x ∈ R,

(gKPZ) ∂tu = ∆u + f (u) (∂xu)2 + g(u) ξ, x ∈ R,

(PAM) ∂tu = ∆u + u ξ, x ∈ R2,

(Φ4
3) ∂tu = ∆u− u3 + ξ, x ∈ R3.

Even for polynomial non-linearities, we do not know how to properly
define products of (random) distributions.

This is where infinities arise.
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Regularisation

Let ξε = ρε ∗ ξ a regularisation of ξ and let uε solve

∂tuε = ∆uε + F(uε,∇uε, ξε), x ∈ Rd.

What happens as ε→ 0 ?

If we fix a Banach space of generalised functionsH−α on Rd+1 such
that ξ ∈ H−α a.s. for some fixed α > 0, then the map ξε 7→ uε is not
continuous.

We need a topology such that
I the map ξε 7→ uε is continuous
I ξε → ξ as ε→ 0.

The theory of regularity structures (RS) considers these two problems
separately.
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Factorisation

More precisely, the RS theory gives (for a class of equations)
I a metric space (M, d)

I a non-linear canonical embedding

C∞(Rd+1) 3 ζ 7→ e(ζ) ∈M

I a canonical surjective projection π :M→H−α such that

π ◦ e(ζ) = ζ, ∀ ζ ∈ C∞(Rd+1).

C∞

M
e π

H−α
id
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Factorisation

Moreover we have
I a continuous map Φ :M→H−α such that if for ζ ∈ C∞, uζ is

defined by
∂tuζ = ∆uζ + F(uζ ,∇uζ , ζ)

then
Φ ◦ e(ζ) = uζ

C∞

M
e Φ

H−α
ζ 7→ uζ

In this diagram, all elements are canonical. However there is no
canonical extension e : H−α →M since e is not continuous in the
topology ofH−α.
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Factorisation

Now we can write our regularised SPDE as follows

uε = Φ ◦ e(ξε)

where ξ is white noise and ξε = ρε ∗ ξ.

ξε

e(ξε)

e Φ

uε
ζ 7→ uζ

The convergence problem factorises in two separate problems:
I (Analytic step) Construction of (M, d) and continuity of Φ.
I (Probabilistic step) Convergence of e(ξε) as ε→ 0 to an
M-valued random variable that we call e(ξ).
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Polynomials

For ζ ∈ C∞, e(ζ) ∈M is given by

e(ζ) = (P1(ζ), . . . ,PK(ζ))

where the Pi’s are polynomial functionals of ζ. This family (in
particular K) depends on the equation.

Examples:

ζ, ζ(G ∗ ζ), (∂xG ∗ ζ)2, ζ G ∗ (ζ G ∗ ζ).

Convergence inM means (roughly) convergence of Pi(ζ),
i = 1, . . . ,K, as generalised functions.

Question: does Pi(ρε ∗ ξ) converge as ε→ 0 ?
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One polynomial

Let ϕ ∈ C∞c . Then we define z := (t, x) and for the polynomial
ζ(G ∗ ζ)

Tε :=

∫
ϕ(z) ξε(z) (G ∗ ξε)(z) dz.

Now

E[Tε] =

∫
ϕ(z)E[ξε(G ∗ ξε)](z) dz =

∫
ϕ(z) ρε ∗ G ∗ ρε(0) dz

and
lim
ε→0

Var[Tε] =

∫
ϕ2(z) G2(z− x) dz dx < +∞.

However ρε ∗ G ∗ ρε(0)→ +∞ as ε→ 0: a first example of the
famous infinities.
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Lack of convergence

In fact as soon as Pi is non-linear, Pi(ξε) tends not to converge as
ε→ 0, even as a Schwartz distribution.

Therefore, our
I (Probabilistic step) If ξ is white noise and ξε = ρε ∗ ξ then e(ξε)

converges to anM-valued random variable that we call e(ξ)

seems fo fail.

In particular there is no canonical e(ξ).

However if e(ξε) does not converge, how can uε = Φ ◦ e(ξε) ?
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The fibre

Important remarks:
I e(ζ) ∈M and π ◦ e(ζ) = ζ, but there can be other elements

Z ∈ π−1(ζ), namely such that π(Z) = ζ.
I Z ∈ π−1(ζ) contains other possible (non-canonical) definitions of
ζ(G ∗ ζ), (∂xG ∗ ζ)2 etc.

I e is non-linear.

Apparently we have to modify our e(ξε) = (Pi(ξε))i=1,...,K .

That means choosing another êε(ξε) ∈ π−1(ξε) (see slide 9)

If e(ξε) becomes êε(ξε), then uε becomes ûε := Φ ◦ êε(ξε).

ξε

êε(ξε)

êε Φ

ûε
?
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Renormalisation

In our example it is reasonable to modify ξε(G ∗ ξε) into

ξε(G ∗ ξε)− E[ξε(G ∗ ξε)].

We have renormalised this product.

The modification should change as little as possible the solution.

The non-linear character ofM imposes constraints on the possible
modifications (and viceversa).

We want at least that

π ◦ êε(ξε) = ξε, lim
ε→0

êε(ξε) = ê(ξ) in M.

Then
lim
ε→0

ûε = lim
ε→0

Φ ◦ êε(ξε) =: û in H−α.
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Convergence

Questions:
I are ê(ξ) and û unique or canonical ?
I does û satisfy an equation ?

Answers:
I in general ê(ξ) and û are neither unique nor canonical.
I û does satisfy an equation.

One can define for instance

ξε(G ∗ ξε) 7→ ξε(G ∗ ξε)− E[ξε(G ∗ ξε)] + c

for any constant c ∈ R and this still defines a good ê.
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Lorenzo Zambotti October 2015, Berkeley



Convergence

Questions:
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Diagrams

Moreover it is possible to choose êε(ξε)

ξε

êε(ξε)

êε Φ

ûε
ζ 7→ ûζε

where C∞ 3 ζ 7→ ûζε ∈ C∞ is given by

∂tûζε = ∆ûζε + F̂ε(ûζε,∇ûζε, ζ).
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Diagrams

In the limit ε→ 0 we obtain ê(ξ)

ξ

ê(ξ)

ê Φ

û
ζ 7→ ûζ

where H−α 3 ζ 7→ ûζ ∈ H−α is given by

∂tûζ = ∆ûζ + F̂(ûζ ,∇ûζ , ζ).

This is like a homogeneisation result.

However F̂ is very different from F.
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Renormalisation group

For a class of equations we have

Theorem
There exists a finite-dimensional Lie group R acting onM and
deterministic Rε ∈ R such that êε(ξε) = Rε e(ξε), namely

ξε

M
Rε

M

e êε

ξε
id

Moreover if êi
ε(ξε) converges for i = 1, 2, then (R1

ε)
−1R2

ε → R ∈ R.
Therefore R parametrises the possible renormalised solutions û.

Remember that ûε solves a modified equation with non-linearity F̂ε.
Then R has a dual action F 7→ F̂ε.
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Examples of renormalised equations

(KPZ) ∂tûε = ∆ûε + (∂xûε)2 − Cε + ξε, x ∈ R,

(gKPZ) ∂tûε = ∆ûε + f (ûε)
(
(∂xûε)2 − Cε

)
+ h(ûε)

+ g(ûε)
(
ξε − Cεg′(ûε)

)
, x ∈ R,

(PAM) ∂tûε = ∆ûε + ûε ξε − Cε, x ∈ R2,

(Φ4
3) ∂tûε = ∆ûε − û3

ε + (C1
ε + C2

ε) ûε + ξε, x ∈ R3.

In order for ûε to converge, Cε and Ci
ε must go to +∞ at precise rates.

Now, most of this can be found in Martin’s paper
I M. Hairer (2014), A theory of regularity structures. Invent. Math.

However in this paper the renormalisation group has to be guessed.
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The beginning of my talk

Remember that e(ζ) = (P1(ζ), . . . ,PK(ζ)).

We have now K random variables P1(ξε), . . . ,PK(ξε), polynomial
functions of ξε.

More precisely, for a fixed ϕ ∈ C∞c we consider the random variables

Xi :=

∫
Rd+1

ϕ(z) Pi(ξε(z)) dz, i = 1, . . . ,K.

To each such random variable we associate a rooted tree Ti.

Every integration variable in Xi is a vertex in Ti.

Every integral kernel in Xi is an edge in Ti.
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Examples

∫
ϕ(z) ξε(z) dz =

∫
ϕ(z) ρε(z− x) ξ(dx) dz −→

z

x

∫
ϕ(z) G ∗ ξε(z) dz −→

z

x y

∫
ϕ(z) ξε(z) G ∗ ξε(z) dz −→

z

x y2

y1
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Examples

Lorenzo Zambotti October 2015, Berkeley



Feynman diagrams

Do you remember? We noticed that ξε G ∗ ξε can be renormalised by
subtracting its expectation:

ξε G ∗ ξε − E[ξε G ∗ ξε] = ξε G ∗ ξε − ρε ∗ G ∗ ρε(0).

In terms of graphs (Feynman diagrams), this can be written as

−

Note that graphically the second graph is obtained from the first after a
contraction of two leaves.
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Feynman diagrams

Other contractions:
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Negative trees

Some of these contractions create diverging quantities, some do not.

When a diverging pattern appears, we call the subtree containing the
contracted leaves negative.

Given a rooted tree T , we call

A(T) := {(S1, . . . , Sn) : Si ⊂ T negative subtree, Si ∩ Sj = ∅, i 6= j}

and for A ∈ A(T) we define a forestR↑AT and a treeR↓AT

T =
ρ

`1 `3`2

ρS1

`4

`5 `6 `7

ρS2

`8

R↑AT :=
ρS1

`4

`3

ρS2

`6 `7

R↓AT :=
ρ

ρS2
ρS1

`1 `2 `5 `8
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Renormalisation group

Then we have a general systematic description of R.

Theorem
The renormalisation group R is given by

M`T :=
∑
A∈A(T)

`(R↑AT)R↓AT

where ` is a multiplicative functional on forests

`(S1, . . . , Sn) =

n∏
i=1

`(Si).

We have an explicit description of the product and the inverse in R:

M`M`′ = M`◦`′ , (M`)
−1 = M`′′

based on Hopf Algebras of Trees. Note that R depends on the equation.
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Convergence

We also need a general systematic result on convergence of
renormalised models.

The following result is still in progress

Theorem

I There exists a family (`(ε)) such that

êε(ξε) := M`(ε)e(ξε)

converges inM as ε→ 0.
I All possible limits of êε(ξε) (and therefore of ûε) are

parametrised by R.
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The end

Thanks !

Sorry !
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