Renormalisation in regularity structures

Lorenzo Zambotti Univ. Paris 6 (joint work with Yvain Bruned and Martin Hairer)

October 2015, New challenges in PDE, Berkeley

Renormalisation

From Wikipedia, the free encyclopedia

In quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, renormalisation is any of a collection of techniques used to treat infinities arising in calculated quantities.

Renormalisation

From Wikipedia, the free encyclopedia

In quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, renormalisation is any of a collection of techniques used to treat infinities arising in calculated quantities.

[L.Z.: whatever this means...]

In physics, a model for a phenomenon is a map from a set of parameters \mathcal{M} to a set of predictions \mathcal{P} .

 $\Phi:\mathcal{M}\to\mathcal{P}$

In physics, a model for a phenomenon is a map from a set of parameters \mathcal{M} to a set of predictions \mathcal{P} .

 $\Phi:\mathcal{M}\to\mathcal{P}$

In some situations, there is a regularisation parameter $\varepsilon > 0$

 $\Phi_{\varepsilon}: \mathcal{M} \to \mathcal{P}$

伺き イヨト イヨト

In physics, a model for a phenomenon is a map from a set of parameters \mathcal{M} to a set of predictions \mathcal{P} .

 $\Phi:\mathcal{M}\to\mathcal{P}$

In some situations, there is a regularisation parameter $\varepsilon > 0$

 $\Phi_{\varepsilon}: \mathcal{M} \to \mathcal{P}$

However $\Phi_{\varepsilon}(m)$ may fail to converge as $\varepsilon \to 0$ for some $m \in \mathcal{M}$.

伺下 イヨト イヨト

In physics, a model for a phenomenon is a map from a set of parameters \mathcal{M} to a set of predictions \mathcal{P} .

 $\Phi:\mathcal{M}\to\mathcal{P}$

In some situations, there is a regularisation parameter $\varepsilon > 0$

 $\Phi_{\varepsilon}: \mathcal{M} \to \mathcal{P}$

However $\Phi_{\varepsilon}(m)$ may fail to converge as $\varepsilon \to 0$ for some $m \in \mathcal{M}$. Then for some observed $p \in \mathcal{P}$, $m_{\varepsilon} = \Phi_{\varepsilon}^{-1}(p)$ might fail to converge.

< 同 > < 回 > < 回 >

In physics, a model for a phenomenon is a map from a set of parameters \mathcal{M} to a set of predictions \mathcal{P} .

 $\Phi:\mathcal{M}\to \mathcal{P}$

In some situations, there is a regularisation parameter $\varepsilon > 0$

 $\Phi_{\varepsilon}: \mathcal{M} \to \mathcal{P}$

However $\Phi_{\varepsilon}(m)$ may fail to converge as $\varepsilon \to 0$ for some $m \in \mathcal{M}$.

Then for some observed $p \in \mathcal{P}$, $m_{\varepsilon} = \Phi_{\varepsilon}^{-1}(p)$ might fail to converge.

We should change our model ! Namely find $R_{\varepsilon} : \mathcal{M} \to \mathcal{M}$ such that

$$\hat{\Phi}: \mathcal{M} \to \mathcal{P}, \qquad \hat{\Phi}(m) = \lim_{\varepsilon \to 0} \Phi_{\varepsilon} \circ R_{\varepsilon}(m).$$

▲冊 ▶ ▲ 臣 ▶ ★ 臣 ▶

Let $v : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}$ solve the heat equation with external forcing

$$\partial_t v = \Delta v + \xi, \qquad x \in \mathbb{R}^d.$$

where $\xi = \xi(t, x)$ is a space-time white noise on $\mathbb{R}_+ \times \mathbb{R}^d$, i.e. a centered Gaussian field such that

 $\mathbb{E}(\xi(x,t)\xi(y,s)) = \delta(x-y)\,\delta(t-s), \qquad t,s \ge 0, \ x,y \in \mathbb{R}^d.$

A concrete realisation: for all $\psi \in L^2(\mathbb{R}^d)$ and $t \ge 0$

$$\int_{[0,t]\times\mathbb{R}^d}\psi(x)\,\xi(s,x)\,ds\,dx:=\sum_k B_k(t)\,\langle e_k,\psi\rangle,$$

where $(B_k)_k$ is an IID sequence of Brownian motions and $(e_k)_k$ is a complete orthonormal system in $L^2(\mathbb{R}^d)$.

イロン 不良 とくほう イロン

The stochastic heat equation

The stochastic heat equation

$$\partial_t v = \Delta v + \xi, \qquad x \in \mathbb{R}^d$$

has a unique solution given by

$$v(t,x) = \int G_t(x-y) \, v(0,y) \, dy + \int G_{t-s}(x-y) \, \xi(ds,dy)$$

where G is the heat kernel.

The path properties of this "process" depend heavily on the dimension, since for $v(0, \cdot) = 0$

$$\mathbb{E}((v(t,x))^2) = \int (G_{t-s}(y))^2 ds \, dy = \int_0^t \frac{C_d}{s^2} \, ds \, \begin{cases} < +\infty, \quad d = 1 \\ = +\infty, \quad d \ge 2 \end{cases}$$

Random distributions

Therefore *v* is a well-defined process only for d = 1. For $d \ge 2$ it makes sense as a random field: for all $\varphi \in C_c^{\infty}(\mathbb{R}^d)$

$$\mathbb{E}(\langle \varphi, v(t, \cdot) \rangle^2) = \int \varphi(x) \, G_{2(t-s)}(x-x') \, \varphi(x') \, ds \, dx \, dx'$$

which is finite for all $d \ge 1$. This random field is a.s. $C(\mathbb{R}_+, H^{1-\frac{d}{2}-\kappa})$ for all $\kappa > 0$.

In particular if we want to study equations like

$$\partial_t u = \Delta u + F(u) + \xi, \qquad x \in \mathbb{R}^d$$

we write the equation in the mild form

$$u(t,x) = \int G_t(x-y) \, u(0,y) \, dy + \int G_{t-s}(x-y) \, \xi(ds,dy) \\ + \int G_{t-s}(x-y) \, F(u)(s,y) \, ds \, dy$$

and *u* has the same regularity as *v*. This is a problem if *F* is non-linear.

Singular stochastic PDEs

$\partial_t u = \Delta u + F(u, \nabla u, \xi), \qquad x \in \mathbb{R}^d$

▲圖 → ▲ 国 → ▲ 国 → □

臣

Singular stochastic PDEs

$$\partial_t u = \Delta u + F(u, \nabla u, \xi), \qquad x \in \mathbb{R}^d$$

(KPZ)
$$\partial_t u = \Delta u + (\partial_x u)^2 + \xi, \quad x \in \mathbb{R},$$

(gKPZ)
$$\partial_t u = \Delta u + f(u) (\partial_x u)^2 + g(u) \xi, \quad x \in \mathbb{R},$$

(PAM)
$$\partial_t u = \Delta u + u \xi, \quad x \in \mathbb{R}^2,$$

$$(\Phi_3^4) \qquad \partial_t u = \Delta u - u^3 + \xi, \quad x \in \mathbb{R}^3.$$

◆□ > ◆舂 > ◆ き > ◆ き > -

æ

Singular stochastic PDEs

$$\partial_t u = \Delta u + F(u, \nabla u, \xi), \qquad x \in \mathbb{R}^d$$

(KPZ)
$$\partial_t u = \Delta u + (\partial_x u)^2 + \xi, \quad x \in \mathbb{R},$$

(gKPZ)
$$\partial_t u = \Delta u + f(u) (\partial_x u)^2 + g(u) \xi, \quad x \in \mathbb{R},$$

(PAM)
$$\partial_t u = \Delta u + u \xi, \quad x \in \mathbb{R}^2,$$

$$(\Phi_3^4) \qquad \partial_t u = \Delta u - u^3 + \xi, \quad x \in \mathbb{R}^3.$$

Even for polynomial non-linearities, we do not know how to properly define products of (random) distributions.

This is where infinities arise.

Let $\xi_{\varepsilon} = \rho_{\varepsilon} * \xi$ a regularisation of ξ and let u_{ε} solve

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} + F(u_{\varepsilon}, \nabla u_{\varepsilon}, \xi_{\varepsilon}), \qquad x \in \mathbb{R}^d.$$

What happens as $\varepsilon \to 0$?

If we fix a Banach space of generalised functions $\mathcal{H}^{-\alpha}$ on \mathbb{R}^{d+1} such that $\xi \in \mathcal{H}^{-\alpha}$ a.s. for some fixed $\alpha > 0$, then the map $\xi_{\varepsilon} \mapsto u_{\varepsilon}$ is not continuous.

We need a topology such that

- the map $\xi_{\varepsilon} \mapsto u_{\varepsilon}$ is continuous
- $\xi_{\varepsilon} \to \xi$ as $\varepsilon \to 0$.

The theory of regularity structures (**RS**) considers these two problems separately.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Factorisation

More precisely, the **RS** theory gives (for a class of equations)

- a metric space (\mathcal{M}, d)
- ► a non-linear canonical embedding

$$C^{\infty}(\mathbb{R}^{d+1}) \ni \zeta \mapsto e(\zeta) \in \mathcal{M}$$

• a canonical surjective projection $\pi : \mathcal{M} \to \mathcal{H}^{-\alpha}$ such that

$$\pi \circ e(\zeta) = \zeta, \qquad \forall \, \zeta \in C^{\infty}(\mathbb{R}^{d+1}).$$

Factorisation

Moreover we have

► a continuous map $\Phi : \mathcal{M} \to \mathcal{H}^{-\alpha}$ such that if for $\zeta \in C^{\infty}$, u^{ζ} is defined by

$$\partial_t u^{\zeta} = \Delta u^{\zeta} + F(u^{\zeta}, \nabla u^{\zeta}, \zeta)$$

then

 $\Phi \circ e(\zeta) = u^{\zeta}$

In this diagram, all elements are canonical. However there is no canonical extension $e : \mathcal{H}^{-\alpha} \to \mathcal{M}$ since *e* is not continuous in the topology of $\mathcal{H}^{-\alpha}$.

⋳ ▶ ∢ ⋸ ▶

Now we can write our regularised SPDE as follows

 $u_{\varepsilon} = \Phi \circ e(\xi_{\varepsilon})$

where ξ is white noise and $\xi_{\varepsilon} = \rho_{\varepsilon} * \xi$.

The convergence problem factorises in two separate problems:

- (Analytic step) Construction of (\mathcal{M}, d) and continuity of Φ .
- (Probabilistic step) Convergence of e(ξ_ε) as ε → 0 to an *M*-valued random variable that we call e(ξ).

Polynomials

For $\zeta \in C^{\infty}$, $e(\zeta) \in \mathcal{M}$ is given by

 $e(\zeta) = (P_1(\zeta), \ldots, P_K(\zeta))$

where the P_i 's are polynomial functionals of ζ . This family (in particular *K*) depends on the equation.

Examples:

 $\zeta, \qquad \zeta(G*\zeta), \qquad (\partial_x G*\zeta)^2, \qquad \zeta G*(\zeta G*\zeta).$

Convergence in \mathcal{M} means (roughly) convergence of $P_i(\zeta)$, $i = 1, \ldots, K$, as generalised functions.

▲掃♪ ▲ 臣♪ ▲ 臣♪ 二臣

Polynomials

For $\zeta \in C^{\infty}$, $e(\zeta) \in \mathcal{M}$ is given by

$$e(\zeta) = (P_1(\zeta), \ldots, P_K(\zeta))$$

where the P_i 's are polynomial functionals of ζ . This family (in particular *K*) depends on the equation.

Examples:

$$\zeta, \qquad \zeta(G*\zeta), \qquad (\partial_x G*\zeta)^2, \qquad \zeta G*(\zeta G*\zeta).$$

Convergence in \mathcal{M} means (roughly) convergence of $P_i(\zeta)$, $i = 1, \ldots, K$, as generalised functions.

Question: does $P_i(\rho_{\varepsilon} * \xi)$ converge as $\varepsilon \to 0$?

< □ > < □ > < □ >

Let $\varphi \in C_c^{\infty}$. Then we define z := (t, x) and for the polynomial $\zeta(G * \zeta)$ $T_{\varepsilon} := \int \varphi(z) \, \xi_{\varepsilon}(z) \, (G * \xi_{\varepsilon})(z) \, dz.$

$$T_{\varepsilon} := \int \varphi(z) \, \xi_{\varepsilon}(z) \, (G * \xi_{\varepsilon})(z) \, d$$

Now

$$\mathbb{E}[T_{\varepsilon}] = \int \varphi(z) \,\mathbb{E}[\xi_{\varepsilon}(G * \xi_{\varepsilon})](z) \,dz = \int \varphi(z) \,\rho_{\varepsilon} * G * \rho_{\varepsilon}(0) \,dz$$

and

$$\lim_{\varepsilon \to 0} \operatorname{Var}[T_{\varepsilon}] = \int \varphi^2(z) \, G^2(z-x) \, dz \, dx < +\infty.$$

However $\rho_{\varepsilon} * G * \rho_{\varepsilon}(0) \to +\infty$ as $\varepsilon \to 0$: a first example of the famous infinities.

イロン 不良 とくほどう

크

In fact as soon as P_i is non-linear, $P_i(\xi_{\varepsilon})$ tends not to converge as $\varepsilon \to 0$, even as a Schwartz distribution.

Therefore, our

(Probabilistic step) If ξ is white noise and ξ_ε = ρ_ε * ξ then e(ξ_ε) converges to an *M*-valued random variable that we call e(ξ) seems fo fail.

In particular there is no canonical $e(\xi)$.

However if $e(\xi_{\varepsilon})$ does not converge, how can $u_{\varepsilon} = \Phi \circ e(\xi_{\varepsilon})$?

▲掃♪ ▲ 注♪ ▲ 注♪

The fibre

Important remarks:

- $e(\zeta) \in \mathcal{M}$ and $\pi \circ e(\zeta) = \zeta$, but there can be other elements $Z \in \pi^{-1}(\zeta)$, namely such that $\pi(Z) = \zeta$.
- Z ∈ π⁻¹(ζ) contains other possible (non-canonical) definitions of ζ(G * ζ), (∂_xG * ζ)² etc.
- ▶ *e* is non-linear.

The fibre

Important remarks:

- $e(\zeta) \in \mathcal{M}$ and $\pi \circ e(\zeta) = \zeta$, but there can be other elements $Z \in \pi^{-1}(\zeta)$, namely such that $\pi(Z) = \zeta$.
- ► $Z \in \pi^{-1}(\zeta)$ contains other possible (non-canonical) definitions of $\zeta(G * \zeta), (\partial_x G * \zeta)^2$ etc.
- *e* is non-linear.

Apparently we have to modify our $e(\xi_{\varepsilon}) = (P_i(\xi_{\varepsilon}))_{i=1,...,K}$. That means choosing another $\hat{e}_{\varepsilon}(\xi_{\varepsilon}) \in \pi^{-1}(\xi_{\varepsilon})$ (see slide 9) If $e(\xi_{\varepsilon})$ becomes $\hat{e}_{\varepsilon}(\xi_{\varepsilon})$, then u_{ε} becomes $\hat{u}_{\varepsilon} := \Phi \circ \hat{e}_{\varepsilon}(\xi_{\varepsilon})$.

In our example it is reasonable to modify $\xi_{\varepsilon}(G * \xi_{\varepsilon})$ into

 $\xi_{\varepsilon}(G \ast \xi_{\varepsilon}) - \mathbb{E}[\xi_{\varepsilon}(G \ast \xi_{\varepsilon})].$

We have renormalised this product.

The modification should change as little as possible the solution.

The non-linear character of \mathcal{M} imposes constraints on the possible modifications (and viceversa).

We want at least that

 $\pi \circ \hat{e}_{\varepsilon}(\xi_{\varepsilon}) = \xi_{\varepsilon}, \qquad \lim_{\varepsilon \to 0} \hat{e}_{\varepsilon}(\xi_{\varepsilon}) = \hat{e}(\xi) \qquad \text{in } \mathcal{M}.$

Then

$$\lim_{\varepsilon \to 0} \hat{u}_{\varepsilon} = \lim_{\varepsilon \to 0} \Phi \circ \hat{e}_{\varepsilon}(\xi_{\varepsilon}) =: \hat{u} \quad \text{in } \mathcal{H}^{-\alpha}.$$

イロト イヨト イヨト イヨト

Questions:

- are $\hat{e}(\xi)$ and \hat{u} unique or canonical ?
- does \hat{u} satisfy an equation ?

< ≣

Questions:

- are $\hat{e}(\xi)$ and \hat{u} unique or canonical ?
- does \hat{u} satisfy an equation ?

Answers:

- in general $\hat{e}(\xi)$ and \hat{u} are neither unique nor canonical.
- \hat{u} does satisfy an equation.

Questions:

- are $\hat{e}(\xi)$ and \hat{u} unique or canonical ?
- does \hat{u} satisfy an equation ?

Answers:

- in general $\hat{e}(\xi)$ and \hat{u} are neither unique nor canonical.
- \hat{u} does satisfy an equation.

One can define for instance

 $\xi_\varepsilon(G\ast\xi_\varepsilon)\,\mapsto\,\xi_\varepsilon(G\ast\xi_\varepsilon)-\mathbb{E}[\xi_\varepsilon(G\ast\xi_\varepsilon)]+c$

for any constant $c \in \mathbb{R}$ and this still defines a good \hat{e} .

伺下 イヨト イヨト

Moreover it is possible to choose $\hat{e}_{\varepsilon}(\xi_{\varepsilon})$

where $C^{\infty} \ni \zeta \mapsto \hat{u}_{\varepsilon}^{\zeta} \in C^{\infty}$ is given by $\partial_t \hat{u}_{\varepsilon}^{\zeta} = \Delta \hat{u}_{\varepsilon}^{\zeta} + \hat{F}_{\varepsilon}(\hat{u}_{\varepsilon}^{\zeta}, \nabla \hat{u}_{\varepsilon}^{\zeta}, \zeta).$ In the limit $\varepsilon \to 0$ we obtain $\hat{e}(\xi)$

where $H^{-\alpha} \ni \zeta \mapsto \hat{u}^{\zeta} \in H^{-\alpha}$ is given by

 $\partial_t \hat{u}^{\zeta} = \Delta \hat{u}^{\zeta} + \hat{F}(\hat{u}^{\zeta}, \nabla \hat{u}^{\zeta}, \zeta).$

► 4 Ξ

In the limit $\varepsilon \to 0$ we obtain $\hat{e}(\xi)$

where $H^{-\alpha} \ni \zeta \mapsto \hat{u}^{\zeta} \in H^{-\alpha}$ is given by

 $\partial_t \hat{u}^{\zeta} = \Delta \hat{u}^{\zeta} + \hat{F}(\hat{u}^{\zeta}, \nabla \hat{u}^{\zeta}, \zeta).$

This is like a homogeneisation result.

In the limit $\varepsilon \to 0$ we obtain $\hat{e}(\xi)$

where $H^{-\alpha} \ni \zeta \mapsto \hat{u}^{\zeta} \in H^{-\alpha}$ is given by

 $\partial_t \hat{u}^{\zeta} = \Delta \hat{u}^{\zeta} + \hat{F}(\hat{u}^{\zeta}, \nabla \hat{u}^{\zeta}, \zeta).$

This is like a homogeneisation result. However \hat{F} is very different from *F*. For a class of equations we have

Theorem

There exists a finite-dimensional Lie group \mathfrak{R} acting on \mathcal{M} and deterministic $R_{\varepsilon} \in \mathfrak{R}$ such that $\hat{e}_{\varepsilon}(\xi_{\varepsilon}) = R_{\varepsilon} e(\xi_{\varepsilon})$, namely

Moreover if $\hat{e}_{\varepsilon}^{i}(\xi_{\varepsilon})$ converges for i = 1, 2, then $(R_{\varepsilon}^{1})^{-1}R_{\varepsilon}^{2} \to R \in \mathfrak{R}$. Therefore \mathfrak{R} parametrises the possible renormalised solutions \hat{u} . Remember that \hat{u}_{ε} solves a modified equation with non-linearity \hat{F}_{ε} . Then \mathfrak{R} has a dual action $F \mapsto \hat{F}_{\varepsilon}$.

Examples of renormalised equations

(KPZ)
$$\partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + (\partial_x \hat{u}_{\varepsilon})^2 - C_{\varepsilon} + \xi_{\varepsilon}, \quad x \in \mathbb{R},$$

$$(\mathsf{gKPZ}) \qquad \partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + f(\hat{u}_{\varepsilon}) \left((\partial_x \hat{u}_{\varepsilon})^2 - C_{\varepsilon} \right) + h(\hat{u}_{\varepsilon}) \\ + g(\hat{u}_{\varepsilon}) \left(\xi_{\varepsilon} - C_{\varepsilon} g'(\hat{u}_{\varepsilon}) \right), \quad x \in \mathbb{R},$$

(PAM)
$$\partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + \hat{u}_{\varepsilon} \xi_{\varepsilon} - C_{\varepsilon}, \quad x \in \mathbb{R}^2,$$

$$(\Phi_3^4) \qquad \partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} - \hat{u}_{\varepsilon}^3 + (C_{\varepsilon}^1 + C_{\varepsilon}^2) \hat{u}_{\varepsilon} + \xi_{\varepsilon}, \quad x \in \mathbb{R}^3.$$

In order for \hat{u}_{ε} to converge, C_{ε} and C_{ε}^{i} must go to $+\infty$ at precise rates.

同ト・モト・モー

Examples of renormalised equations

(KPZ)
$$\partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + (\partial_x \hat{u}_{\varepsilon})^2 - C_{\varepsilon} + \xi_{\varepsilon}, \quad x \in \mathbb{R},$$

$$\begin{aligned} (\mathsf{g}\mathsf{K}\mathsf{P}\mathsf{Z}) \qquad & \partial_t \hat{u}_\varepsilon = \Delta \hat{u}_\varepsilon + f(\hat{u}_\varepsilon) \left((\partial_x \hat{u}_\varepsilon)^2 - C_\varepsilon \right) + h(\hat{u}_\varepsilon) \\ & + g(\hat{u}_\varepsilon) \left(\xi_\varepsilon - C_\varepsilon g'(\hat{u}_\varepsilon) \right), \quad x \in \mathbb{R}, \end{aligned}$$

(PAM)
$$\partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + \hat{u}_{\varepsilon} \xi_{\varepsilon} - C_{\varepsilon}, \quad x \in \mathbb{R}^2,$$

$$(\Phi_3^4) \qquad \partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} - \hat{u}_{\varepsilon}^3 + (C_{\varepsilon}^1 + C_{\varepsilon}^2) \, \hat{u}_{\varepsilon} + \xi_{\varepsilon}, \quad x \in \mathbb{R}^3.$$

In order for \hat{u}_{ε} to converge, C_{ε} and C_{ε}^{i} must go to $+\infty$ at precise rates. Now, most of this can be found in Martin's paper

► M. Hairer (2014), *A theory of regularity structures*. Invent. Math. However in this paper the renormalisation group has to be guessed.

▶ ★ E ▶ ★ E ▶ E

The beginning of my talk

Remember that $e(\zeta) = (P_1(\zeta), \dots, P_K(\zeta)).$

We have now *K* random variables $P_1(\xi_{\varepsilon}), \ldots, P_K(\xi_{\varepsilon})$, polynomial functions of ξ_{ε} .

More precisely, for a fixed $\varphi \in C_c^{\infty}$ we consider the random variables

$$X_i := \int_{\mathbb{R}^{d+1}} \varphi(z) P_i(\xi_{\varepsilon}(z)) dz, \qquad i = 1, \dots, K.$$

To each such random variable we associate a rooted tree T_i .

Every integration variable in X_i is a vertex in T_i .

Every integral kernel in X_i is an edge in T_i .

通 ト イ ヨ ト イ ヨ ト

$$\int \varphi(z)\,\xi_{\varepsilon}(z)\,dz = \int \varphi(z)\,\rho_{\varepsilon}(z-x)\,\xi(dx)\,dz \quad \longrightarrow \qquad z \stackrel{X \ \bigcirc}{}$$

$$\int \varphi(z) G * \xi_{\varepsilon}(z) dz \longrightarrow \qquad x \stackrel{x}{\underset{z}{\overset{(\ldots, \ldots, \odot)}{\xrightarrow{}}}} y$$

$$\int \varphi(z) \xi_{\varepsilon}(z) G * \xi_{\varepsilon}(z) dz \longrightarrow \qquad x \stackrel{(\ldots, \ldots, \odot)}{\underset{z}{\overset{(\ldots, \ldots, \odot)}{\xrightarrow{}}}} y_{1}$$

Examples

<ロ> <同> <同> <同> < 同> < 同>

æ

Do you remember? We noticed that $\xi_{\varepsilon} G * \xi_{\varepsilon}$ can be renormalised by subtracting its expectation:

$$\xi_{\varepsilon} G * \xi_{\varepsilon} - \mathbb{E}[\xi_{\varepsilon} G * \xi_{\varepsilon}] = \xi_{\varepsilon} G * \xi_{\varepsilon} - \rho_{\varepsilon} * G * \rho_{\varepsilon}(0).$$

In terms of graphs (Feynman diagrams), this can be written as

Note that graphically the second graph is obtained from the first after a contraction of two leaves.

イロト イヨト イヨト イヨト

Other contractions:

・ロト ・ 日 ・ ・ 目 ・

< Ξ

æ

Some of these contractions create diverging quantities, some do not.

When a diverging pattern appears, we call the subtree containing the contracted leaves negative.

Given a rooted tree T, we call

 $\mathfrak{A}(T) := \{(S_1, \ldots, S_n) : S_i \subset T \text{ negative subtree}, S_i \cap S_j = \emptyset, i \neq j\}$

and for $\mathcal{A} \in \mathfrak{A}(T)$ we define a forest $\mathcal{R}_{\mathcal{A}}^{\uparrow}T$ and a tree $\mathcal{R}_{\mathcal{A}}^{\downarrow}T$

Renormalisation group

Then we have a general systematic description of \mathfrak{R} .

Theorem

The renormalisation group \mathfrak{R} is given by

$$M_{\ell}T := \sum_{\mathcal{A} \in \mathfrak{A}(T)} \ell(\mathcal{R}_{\mathcal{A}}^{\uparrow}T) \, \mathcal{R}_{\mathcal{A}}^{\downarrow}T$$

where ℓ is a multiplicative functional on forests

$$\ell(S_1,\ldots,S_n)=\prod_{i=1}^n\ell(S_i).$$

We have an explicit description of the product and the inverse in \Re :

$$M_{\ell}M_{\ell'} = M_{\ell \circ \ell'}, \qquad (M_{\ell})^{-1} = M_{\ell''}$$

based on Hopf Algebras of Trees. Note that \mathfrak{R} depends on the equation.

We also need a general systematic result on convergence of renormalised models.

The following result is still in progress

Theorem

• There exists a family $(\ell(\varepsilon))$ such that

 $\hat{e}_{\varepsilon}(\xi_{\varepsilon}) := M_{\ell(\varepsilon)}e(\xi_{\varepsilon})$

converges in \mathcal{M} as $\varepsilon \to 0$.

All possible limits of ê_ε(ξ_ε) (and therefore of û_ε) are parametrised by ℜ.

伺き イヨト イヨト

Thanks !

Sorry !

Lorenzo Zambotti October 2015, Berkeley

▲ロト ▲聞 ト ▲ 国 ト ▲ 国 ト

æ