10/30 Pierre Germain.
Long wave limits for schröclinger maps.
Water waves
kill
$$\lambda_{c} u + \lambda_{s}^{2} u + u \exists x u = 0$$

 $u \cdot R + R \rightarrow R$
Bou 1870
Karteweg - de Vries 1895
Graig 1985. Alva zerg-Samarego Lannes
Another context Miss with potentral
 $i \Rightarrow \psi - 3_{x}^{2} \psi = (1 + 2 + 1 - 1) \psi$
Gross - Pytoevski ψ . $R + R \rightarrow C$
Physics Krewich - Anderson - Lise Interstryn
Mass. Rethreed - Grovagat - Sam - Samels
Chinen - Rawet Chiven
Bunier Lin - Zhong
Many option context where Kidu is derived in a long-wave limit.
Value of Gross - Pitoevski
 $i \Rightarrow \psi - 3_{x}^{2} \psi = -(1 + 1 - 1) \psi$
Gross - Rawet Chiven
Bunier Lin - Zhong
Many option context where Kidu is derived in a long-wave limit.
Value of Gross - Pitoevski
 $i \Rightarrow \psi - 3_{x}^{2} \psi = -(1 + 1 - 1) \psi$
Every $\int (1 \Rightarrow x + 1^{2} + (1 + 1^{2} - 1)^{2}) dx$
Ware scaling
twice scale is $z = \frac{1}{2}$

Modeling transform

$$\begin{split} \Psi = \sqrt{p} e^{i\varphi} \\ \Psi \text{ solves } 6p \iff (p, \nabla \varphi) \text{ compressible fluid.} \\ \Psi = \sqrt{1+sa(st, sx)} e^{i\varphi(st, sd)} \quad u = 3x \varphi \\ (GP) & T & x \\ (GP) & T & x \\ (GP) & T & x \\ (GP) & T & a + 3xu = -s 3x(au) \\ \Rightarrow T & a + 3xu = -s (u x u) + s 3x \left(\frac{3x}{P}\right) \\ As & s \to 0 & 3T & a + 3xu = 0 & (3T + 3x) & a = 0 \\ 3T & u + 3x & a = -s (u x u) + s 3x \left(\frac{3T}{P} + 3x - 3x\right) & a = 0 \\ & 3T & u + 3x & a = -s (u x u) + s 3x & a = 0 \\ & T & u + 3x & a = -s (u x u) + s 3x & a = 0 \\ & T & u + 3x & a = 0 & (3T + 3x) & a = 0 \\ & T & u + 3x & a = -s (u x u) + s x & a = 0 \\ & KdV \text{ scaling } . \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

wave maps eq. on
$$t$$

 $WM \times on t = \nabla_{t}^{2} \partial_{t} \partial_{t} - \nabla_{x}^{2} \partial_{x} p = 0$
Thus $1 \quad Ki \vee salings = 1 \quad a_{t} - Prilivic Ronset = (Ossay)]$
 $O = T \quad t \quad tore (cole - \frac{1}{c^{2}})$
 $M \quad t \quad T \quad x \quad T \quad x \quad T$
 $M \quad t \quad T \quad x \quad T \quad x$
 $A_{t} \quad s \rightarrow 0 \quad dyremics \quad Qre given \quad b_{t} \quad g + R^{d}$
 $2 \quad 2 \quad y = \frac{1}{4} \quad 3^{2} \quad y \quad + \quad B \quad (p, \partial_{t} \cdot y) \quad B \quad R^{d} \quad R^{d}$
 $U = transform of t \quad uhat if this is not the case
 $\neq \quad V \sim c \mid R \mid t \quad b_{t} \quad u_{t} \quad x \quad y \quad B \quad R^{d} \quad R^{d}$
 $\Rightarrow \quad U \ll c \mid R \mid t \quad B \quad u_{t} \quad x \quad y \quad x \quad x \quad x$
 $\rightarrow \quad U = H^{\frac{1}{2}} \quad Kauy = Pone - Vega.$
 $\rightarrow \quad traveling waves :$
 $\rightarrow \quad complete \quad integrability ?$
 $\rightarrow \quad asymptotic \quad behavior ?$$