
Global well-posedness for the Cubic Dirac equation in

the critical space.

joint work with S. Herr

Ioan Bejenaru (UCSD) MSRI October 30, 2015 1 / 23



Cubic Dirac

For M > 0, the cubic Dirac equation for the spinor field ψ : R×R
2 → C

2

is given by
(−iγµ∂µ +M)ψ = 〈γ0ψ,ψ〉ψ.

γµ ∈ C
2×2 are the Dirac matrices given by

β = γ0 =

(

1 0
0 −1

)

, γ1 =

(

0 1
−1 0

)

, γ2 =

(

0 −i
−i 0

)

.

The 〈·, ·〉 is the standard scalar product on C
2. The cubic Dirac equation

can be written for all dimensions by adapting the set of Dirac matrices.

The equation was proposed by Soler as a toy model for self-interacting
electron. More fundamental, it is a natural simplification of the
Dirac-Maxwell system.
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There are two ways to read the equation in a more familiar fashion.

Let DM = (−iγµ∂µ +M). Then D∗
M

= iγ0∂t − iγi∂i +M and
D̄M = D∗

M
γ0 satisfies

D̄MDM = γ0(✷+M2)

If we write ψ = D̄Mw (Klainerman-Machedon), the equation becomes

(✷+M2)w = Q(Dw ,Dw ,Dw) + l .o.t.

which is a Klein-Gordon equation with a derivative nonlinearity.

Alternatively one applies a projector type operator to the equation to
obtain a cubic half-Klein-Gordon system (D’Ancona et all) :

(i∂t ± 〈D〉)ψ± = ”ψ3
±”

where the symbol of 〈D〉 is
√

ξ2 + 1 (for M = 1).
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The problem in n dimensions is critical in H
n−1
2 .

n = 3 : Escobado-Vega proved LWP for small data in H1+ǫ.
Machihara-Nakanishi-Ozawa proved GWP for small data in H1+ǫ,
Machihara-Nakamura-Nakanishi-Ozawa proved GWP for small radial data
H1. B.-Herr proved proved GWP for small data H1.

n = 2 : Pecher proved local well-posedness for the 2D problem with small

data in H
1
2
+ǫ.

M = 0 : Bournaveas and Candy proved GWP for small data in the critical
space in dimension n = 2, 3. They obtain LWP for M 6= 0 in the critical
space.

Theorem

(B., Herr) The cubic Dirac equation in 2D with M 6= 0 is globally

well-posed and scatters for small initial data in H
1
2 (R2).
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What is the difference between M = 0 and M 6= 0 ?

In toy model the massless cubic Dirac has the form :

✷w = Dw · Dw · Dw

which is similar to the Wave Maps equation in toy model

✷φ = φ(∇φ)2.

Bournaveas and Candy approach : the spaces introduced by Tataru work
and the better derivative distribution does not require renormalization. A
high modulation structure, introduced by B. - Herr in the 3D problem,
solves the summation problem.

Challenges in the massive case, M 6= 0 : the resolution spaces
corresponding to the Klein-Gordon equation were not known and
incomplete null structure.
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The basic idea is using the toy model the half-Klein-Gordon with cubic
nonlinearity :

(i∂t ± 〈D〉)ψ± = ”ψ3
±”

and run an iteration scheme based on the estimate :

L2tL
∞
x · L2tL∞x · L∞t L2x → L1tL

2
x . (1)

There is not much room to modify the scheme since the use of any
Strichartz estimate, other than the energy estimate L∞L2, would lose
derivatives which is a problem in high frequency : this is a half-wave
equation, no derivative is recovered when solving the inhomogeneous
equation.

Bottom line : an estimate of type (1) should be part of the picture.

In fact, the focus should be on the bilinear L2 estimate :

L2L∞ · L∞L2 → L2t,x .
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The L
2
tL

∞
x estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon

exhibits decay of type t−
n−1
2 . Using the TT ∗ argument, deriving the L2tL

∞
x

estimate amounts to 〈t〉− n−1
2 ∈ L1t , thus we need n ≥ 4.

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t−

n

2 . Using the TT ∗ argument, deriving the L2tL
∞
x

estimate amounts to 〈t〉− n

2 ∈ L1t , thus we need n ≥ 3.

Natural question : are these real obstructions ? Answer : Yes.
Montgomery-Smith proves that the estimates

‖Pe it|∇|f ‖
L2t L

∞
x

. ‖f ‖L2(R3), ‖Pe it∆f ‖
L2t L

∞
x

. ‖f ‖L2(R2)

fail, where P projects onto frequencies . 1.
The argument is not deterministic, it is probabilistic !

Ioan Bejenaru (UCSD) MSRI October 30, 2015 7 / 23



The L
2
tL

∞
x estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon

exhibits decay of type t−
n−1
2 . Using the TT ∗ argument, deriving the L2tL

∞
x

estimate amounts to 〈t〉− n−1
2 ∈ L1t , thus we need n ≥ 4.

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t−

n

2 . Using the TT ∗ argument, deriving the L2tL
∞
x

estimate amounts to 〈t〉− n

2 ∈ L1t , thus we need n ≥ 3.

Natural question : are these real obstructions ? Answer : Yes.
Montgomery-Smith proves that the estimates

‖Pe it|∇|f ‖
L2t L

∞
x

. ‖f ‖L2(R3), ‖Pe it∆f ‖
L2t L

∞
x

. ‖f ‖L2(R2)

fail, where P projects onto frequencies . 1.
The argument is not deterministic, it is probabilistic !

Ioan Bejenaru (UCSD) MSRI October 30, 2015 7 / 23



The L
2
tL

∞
x estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon

exhibits decay of type t−
n−1
2 . Using the TT ∗ argument, deriving the L2tL

∞
x

estimate amounts to 〈t〉− n−1
2 ∈ L1t , thus we need n ≥ 4.

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t−

n

2 . Using the TT ∗ argument, deriving the L2tL
∞
x

estimate amounts to 〈t〉− n

2 ∈ L1t , thus we need n ≥ 3.

Natural question : are these real obstructions ? Answer : Yes.
Montgomery-Smith proves that the estimates

‖Pe it|∇|f ‖
L2t L

∞
x

. ‖f ‖L2(R3), ‖Pe it∆f ‖
L2t L

∞
x

. ‖f ‖L2(R2)

fail, where P projects onto frequencies . 1.
The argument is not deterministic, it is probabilistic !

Ioan Bejenaru (UCSD) MSRI October 30, 2015 7 / 23



The L
2
tL

∞
x estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon

exhibits decay of type t−
n−1
2 . Using the TT ∗ argument, deriving the L2tL

∞
x

estimate amounts to 〈t〉− n−1
2 ∈ L1t , thus we need n ≥ 4.

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t−

n

2 . Using the TT ∗ argument, deriving the L2tL
∞
x

estimate amounts to 〈t〉− n

2 ∈ L1t , thus we need n ≥ 3.

Natural question : are these real obstructions ? Answer : Yes.
Montgomery-Smith proves that the estimates

‖Pe it|∇|f ‖
L2t L

∞
x

. ‖f ‖L2(R3), ‖Pe it∆f ‖
L2t L

∞
x

. ‖f ‖L2(R2)

fail, where P projects onto frequencies . 1.
The argument is not deterministic, it is probabilistic !

Ioan Bejenaru (UCSD) MSRI October 30, 2015 7 / 23



The L
2
tL

∞
x estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon

exhibits decay of type t−
n−1
2 . Using the TT ∗ argument, deriving the L2tL

∞
x

estimate amounts to 〈t〉− n−1
2 ∈ L1t , thus we need n ≥ 4.

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t−

n

2 . Using the TT ∗ argument, deriving the L2tL
∞
x

estimate amounts to 〈t〉− n

2 ∈ L1t , thus we need n ≥ 3.

Natural question : are these real obstructions ? Answer : Yes.
Montgomery-Smith proves that the estimates

‖Pe it|∇|f ‖
L2t L

∞
x

. ‖f ‖L2(R3), ‖Pe it∆f ‖
L2t L

∞
x

. ‖f ‖L2(R2)

fail, where P projects onto frequencies . 1.
The argument is not deterministic, it is probabilistic !

Ioan Bejenaru (UCSD) MSRI October 30, 2015 7 / 23



One can ask another question : the linear estimate fail, what about the
bilinear one :

‖Pe it∆f · P ′e it∆g‖
L1t L

∞
x

. ‖f ‖L2(R2)‖g‖L2(R2) (2)

where P ,P ′ project onto transversal frequencies . 1.

Such a setup is known to yield better estimates

‖Pe it∆f · P ′e it∆g‖
L

5
3
t,x

. ‖f ‖L2(R2)‖g‖L2(R2)

versus the L2t,x estimate that would follow from linear estimates.

Tao proves that (2) fails as well using a bilinear version of the
Montgomery-Smith argument.
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Bilinear estimates for free solutions in 2D.

We need a theory that matches the bilinear estimate for free solutions :

‖e it〈D〉f · e it〈D〉g‖L2 . ‖f ‖L2‖g‖L2 .
Assume that f , g are supported at frequency 2k1 , 2k2 respectively, k1 ≤ k2,
and make an angle α≫ 2−k1 between their supports, then

‖e it〈D〉f · e it〈D〉g‖L2 . 2
k1
2 α− 1

2 ‖f ‖L2‖g‖L2 .
When the angle is . 2−k1 then

‖e it〈D〉f · e it〈D〉g‖L2 . 2k1‖f ‖L2‖g‖L2 .
Basic idea : the characteristic surfaces always make an angle. Either
α . 2−k1 or they make an angle of 2−2k1 in the time frequency direction.

Taking into account the null condition which penalizes the interaction by a
factor of α+ 2−k1 we would get

‖〈e it〈D〉f , βe it〈D〉g〉‖L2 . 2
k1
2 (α

1
2 + 2−

k1
2 )‖f ‖L2‖g‖L2 .
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From the nonlinear equation point of view, the above scheme applies only
to the first iteration ! A more robust approach is needed to make all the
iterations work.

The goal is to develop a space structure X which contains enough
information to capture the above bilinear L2 estimate :

‖〈f , βg〉‖L2 . 2
k1
2 (α

1
2 + 2−

k1
2 )‖f ‖X ‖g‖X .

where f , g have the appropriate frequency localization.

Natural candidates for X are Strichartz estimates. The problem comes
from that using Strichartz estimates other than energy type estimates
L∞L2 for g (high frequency) would produce powers of 2k2 and this is not
acceptable ! Using L∞L2 estimates for g requires the use of L2L∞

estimates for f .
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Let n = 2, 3. One seeks a decomposition :

Pke
it〈D〉f =

∑

α

e it〈D〉fα

and a system of frames (tα, xα) such that

∑

α

‖e it〈D〉fα‖L2
tα

L∞xα
. 2

(n−1)k
2 ‖f ‖L2 .

Need a lot of flexibility in energy estimates :

‖e it〈D〉Pg‖L∞
tα

L2xα
. C‖Pg‖L2

Here C reflects the angular separation of the support of f̂α and P̂g .
The scheme is closed as follows

‖e it〈D〉f · e it〈D〉Pg‖L2 .
∑

α

‖e it〈D〉fα‖L2tαL∞xα
‖e it〈D〉Pg‖L∞tαL2xα

This approach is inspired by the work of Tataru on Wave Maps and B.,
Ionescu, Kenig and Tataru on Schrödinger Maps.
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Classical approach for Strichartz estimates.

For solutions localized at frequency 2k , seek an estimate of type

‖e it〈D〉u0‖L2t L∞x . C (k)‖u0‖L2

The scaling (in high frequency) indicates that C (k) = 2
(n−1)k

2 .
By TT ∗ argument, this is follows from an estimate of type

‖Kk(t, x)‖L1t L∞x . C 2(k)

where

Kk(t, x) =

∫

Rn

e ix ·ξe it〈ξ〉χ2
k(|ξ|) dξ.

Here χk localizes at frequency 2k .

One needs decay type estimates on Kk which are obtained by using
standard oscillatory type arguments. The principal curvatures of the
characteristic surface τ =

√

ξ2 + 1 play a crucial role.
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Kernel estimates and consequences

The characteristic surface is τ =
√

ξ2 + 1 is parabola like for |ξ| ≤ 1 :

|K≤0(t, x)| . (1 + |t|)− n

2 .

Low frequencies exhibit Schrödinger type decay. The L2L∞ type estimate
is dictated by the Schrödinger equation and this is well-understood.

In high frequency the characteristic surface is cone-like, yet it has
nonvanishing principal curvatures : two are ≈ 1, the third one is ≈ 2−2k

(after rescaling). The following bound holds true

|Kk(t, x)| . 2nk(1 + 2k |t|)− n−1
2 min(1, (1 + 2k |t|)− 1

22k))

There are two decay regimes :

1) |t| ≤ 2k the decay is t−
n−1
2 (Wave),

2) |t| ≥ 2k the decay is t−
n

2 (Schrödinger).
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If n = 3, the above estimate gives

‖Kk‖L1t L∞x . k2k , k ≫ 1.

This gives the end-point Strichartz estimate with logarithmic loss :

‖e it〈D〉u0‖L2t L∞x . k
1
2 2k‖u0‖L2 , k ≫ 1.

which is suboptimal, but good enough to close subcritical ranges.

If n = 2, even in the better Schrödinger regime, the decay is t−1 hence no
estimate of type ‖Kk‖L1t L∞x is available.

The aim of our works was to come up with an effective replacement for
the missing L2tL

∞
x estimate.
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Refined analysis of the kernel.

We recover an L2L∞ estimates in adapted systems of coordinates. This is
done by localizing the kernel Kk more and understanding its decay
properties relative to this localization.

We denote by Kl a collection of spherical caps of diameter 2−l which
”nicely” cover of the unit sphere S

n−1. For κ ∈ Kl let ω(κ) be the center
of κ and ηκ be a smooth approximation of the characteristic function of κ.

Fix k > 0. For κ ∈ Kl let

Kk,κ(t, x) =

∫

Rn

e ix ·ξe it〈ξ〉χ2
k(|ξ|)η2κ(ξ) dξ.

The threshold l = k appears to be the optimal one for the purpose of our
analysis.
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Adapted coordinates. Given an angle ω and a parameter λ, define the
directions Θλ,ω = 1√

1+λ2
(λ, ω), Θ⊥

λ,ω = 1√
1+λ2

(−1, λω) and the associated

orthogonal coordinates (tΘ, x
1
Θ, x

′
Θ)

tΘ = (t, x) ·Θλ,ω, x1Θ = (t, x) ·Θ⊥
λ,ω, x ′Θ = x · ω⊥.

With λ(k) = (1 + 2−2k)−
1
2 and ω(κ) construct the new coordinates

(tΘ, xΘ). The following estimates hold true for n = 3 :

|Kk,κ(t, x)| . 2k(1 + 2−k |(t, x)|)− 3
2 .

|Kk,κ(t, x)| .N 2k(1 + 2k |tΘ|)−N , |tΘ| ≫ 2−2k |(t, x)|.
As a consequence we obtain

‖Kk,κ‖L1
t
L∞x

. 22k , ‖Kk,κ‖L1
tΘ

L∞xΘ
. 1.
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1
Θ, x

′
Θ)

tΘ = (t, x) ·Θλ,ω, x1Θ = (t, x) ·Θ⊥
λ,ω, x ′Θ = x · ω⊥.

With λ(k) = (1 + 2−2k)−
1
2 and ω(κ) construct the new coordinates

(tΘ, xΘ). The following estimates hold true for n = 3 :

|Kk,κ(t, x)| . 2k(1 + 2−k |(t, x)|)− 3
2 .

|Kk,κ(t, x)| .N 2k(1 + 2k |tΘ|)−N , |tΘ| ≫ 2−2k |(t, x)|.
As a consequence we obtain

‖Kk,κ‖L1
t
L∞x

. 22k , ‖Kk,κ‖L1
tΘ

L∞xΘ
. 1.
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We obtain the following Strichartz estimate :

2−k‖e it〈D〉u0‖L2t L∞x + ‖e it〈D〉u0‖L2tΘL∞xΘ
. ‖u0‖L2 .

for u0 localized at frequency 2k and cap κ.
The Strichartz estimate in adapted frames adds in a favorable way with
respect to caps

∑

κ∈Kk

‖e it〈D〉Pκu0‖L2
tΘκ

L∞xΘ
k

. 2k‖u0‖L2 .

and gives the optimal factor. This suffices for the problem in 3D.

Note : In high frequency limit this construction leads to the one used in
the Wave Maps equation.
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If n = 2 the kernel estimate becomes :

|Kk,κ(t, x)| . 2k(1 + 2−k |(t, x)|)−1.

|Kk,κ(t, x)| .N 2k(1 + 2k |tΘ|)−N , |tΘ| ≫ 2−2k |(t, x)|.
The problem now is that in the regime |t| ≥ 2k the decay is too weak.

The fix comes by exploiting the decay of |t|−1 in a different fashion
inspired by the work on the 2D Schrödinger equation.

For T ≤ 2r , r ∈ N, for k ≥ 100, and κ ∈ Kk we define

Λk,κ =
{ 1√

1 +m−2
;m ∈ 2−r−10

Z ∩ [2k−3, 2k+3]
}

× {ω(κ)}
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With this we can prove that

|Kk,κ(t, x)| .
∑

Θ∈Λk,κ

KΘ(t, x).

with
∑

Θ∈Λk,κ

‖KΘ‖L1tΘL∞xΘ
. 1.

Defining the norm

‖φ‖∑
Λ
k,κ

L2
tΘ

L∞xΘ
:= inf

φ=
∑

Θ∈Λk,κ
φΘ

∑

Θ∈Λk,κ

‖φΘ‖L2
tΘ

L∞xΘ

we obtain that for f ∈ L2(R2) supported at frequency 2k in the the cap κ,

‖1[−T ,T ](t)e
it〈D〉f ‖∑

Λ
k,κ

L2
tΘ

L∞xΘ
. ‖f ‖L2 ,

and this adds correctly to give the factor predicted by scaling
∑

κ∈Kk

‖1[−T ,T ](t)e
it〈D〉P̃κf ‖∑

Λk,κ
L2
tΘ

L∞xΘ
. 2

k

2 ‖f ‖L2 .
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A similar construction is done starting from

|Kk,κ(t, x)| . 2k(1 + |x2k,κ|)−N , if |x2k,κ| ≫ 2−k |(t, x)|

We define the set

Ωk,κ = {λ(k)} ×
{

R iω(κ); i ∈ Z, |i | ≤ 2−k−8+r

}

and the norm

‖φ‖∑
Ωk,κ

L2
x2
Θ

L∞

(t,x1)Θ

:= inf
φ=

∑
Θ∈Ω

k,κ
φΘ

∑

Θ∈Ωk,κ

‖φΘ‖L2
x2
Θ

L∞

(t,x1)Θ

The following holds true

‖1[−T ,T ](t)e
it〈D〉f ‖∑

Ωk,κ
L2
x2
Θ

L∞

(t,x1)Θ

. 2
k

2 ‖f ‖L2 ,
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Energy estimates

The Strichartz estimates need to be paired with corresponding energy
estimates, that is L∞tΘL

2
xΘ
. Given two sets of parameters (k1, κ1) and

(k2, κ2) with k1 ≤ k2 and (k1, κ1) generating the direction Θ, one needs
an energy estimate of type

‖e it〈D〉u0‖L∞tΘL2xΘ
. C (k1, k2, κ1, κ2)‖u0‖L2 .

This is doable provided that : α = d(κ1, κ2) ≫ 2−k1 in which case

C = α−1,

as well as when d(κ1, κ2) ≪ 2−k1 in which case

C = 2k1 .

In the regime α = d(κ1, κ2) ≈ 2−k1 the above energy estimates blow up
and the (incomplete) null structure does not help the problem.
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One uses instead the other set of coordinates

‖e it〈D〉u0‖L∞
x
2
Θ

L2
(t,x1)Θ

. 2
k1
2 ‖u0‖L2 .

Toy model for closing the argument. Via a duality argument, one needs to
estimate

∫

〈ψ, βψ〉 · 〈ψ, βψ〉dxdt.

It is enough to estimate
‖〈ψ, βψ〉‖L2 .

Though not apparent, there is a null structure in this bilinear form which is
of the order of the angular separation of the interacting frequencies.

The estimate is morally of the form :

L2tΘL
∞
xΘ

· L∞tΘL
2
xΘ

→ L2.
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Thank you for your attention !

Special Thanks to the organizers :
Andrea, Daniel, Gigliola, Jonathan, Kay, Luc, Pierre, Yvan !

Ioan Bejenaru (UCSD) MSRI October 30, 2015 23 / 23



Thank you for your attention !

Special Thanks to the organizers :
Andrea, Daniel, Gigliola, Jonathan, Kay, Luc, Pierre, Yvan !

Ioan Bejenaru (UCSD) MSRI October 30, 2015 23 / 23


