Global well-posedness for the Cubic Dirac equation in

the critical space.

joint work with S. Herr
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For M > 0, the cubic Dirac equation for the spinor field 1 : R x R? — C?

is given by
(=i + MYy = (1%, ).

y* € C?*2 are the Dirac matrices given by

_o_ (1 0 1 0 1 5

The (-,-) is the standard scalar product on C2.
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The (-,-) is the standard scalar product on C2. The cubic Dirac equation
can be written for all dimensions by adapting the set of Dirac matrices.
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For M > 0, the cubic Dirac equation for the spinor field 1 : R x R? — C?
is given by
(=" 0u + MYy = (1%, ).

y* € C?*2 are the Dirac matrices given by

1 0 0 1 0 —i
ﬁ:70:<0—1)’ 712(—1 o)’ 72:(—/'0)‘

The (-,-) is the standard scalar product on C2. The cubic Dirac equation
can be written for all dimensions by adapting the set of Dirac matrices.

The equation was proposed by Soler as a toy model for self-interacting
electron. More fundamental, it is a natural simplification of the
Dirac-Maxwell system.
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There are two ways to read the equation in a more familiar fashion.
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There are two ways to read the equation in a more familiar fashion.

Let Dy = (—in*dy, + M). Then D}, = ir°0; — iv'9; + M and
Dy = Dyyo satisfies

'DM'DM = ’YO(D + Mz)
If we write 1) = Dyyw (Klainerman-Machedon), the equation becomes
(O + M*)w = Q(Dw, Dw, Dw) + l.o.t.

which is a Klein-Gordon equation with a derivative nonlinearity.
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There are two ways to read the equation in a more familiar fashion.

Let Dy = (—in*dy, + M). Then D}, = ir°0; — iv'9; + M and
Dy = Dyyo satisfies

'DM'DM = ’YO(D + Mz)
If we write 1) = Dyyw (Klainerman-Machedon), the equation becomes
(O + M*)w = Q(Dw, Dw, Dw) + l.o.t.

which is a Klein-Gordon equation with a derivative nonlinearity.

Alternatively one applies a projector type operator to the equation to
obtain a cubic half-Klein-Gordon system (D'Ancona et all) :

(i0 + (D))ips =" 931"

where the symbol of (D) is /&2 + 1 (for M = 1).
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The problem in n dimensions is critical in H 2.
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The problem in n dimensions is critical in H .

n = 3 : Escobado-Vega proved LWP for small data in H1*e.
Machihara-Nakanishi-Ozawa proved GWP for small data in Hite,
Machihara-Nakamura-Nakanishi-Ozawa proved GWP for small radial data
H*. B.-Herr proved proved GWP for small data H*.
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n =2 : Pecher proved local well-posedness for the 2D problem with small
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M =0 : Bournaveas and Candy proved GWP for small data in the critical
space in dimension n = 2 3. They obtain LWP for M # 0 in the critical
space.
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The problem in n dimensions is critical in H

n = 3 : Escobado-Vega proved LWP for small data in H1*e.
Machihara-Nakanishi-Ozawa proved GWP for small data in Hite,
Machihara-Nakamura-Nakanishi-Ozawa proved GWP for small radial data
H*. B.-Herr proved proved GWP for small data H*.

n =2 : Pecher proved local well-posedness for the 2D problem with small
1
data in H2T¢,

M =0 : Bournaveas and Candy proved GWP for small data in the critical
space in dimension n = 2 3. They obtain LWP for M # 0 in the critical
space.

(B., Herr) The cubic Dirac equation in 2D with M # 0 is globally
well-posed and scatters for small initial data in H%(Rz).
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What is the difference between M =0 and M #07?
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What is the difference between M =0 and M #07?

In toy model the massless cubic Dirac has the form :
Ow = Dw - Dw - Dw
which is similar to the Wave Maps equation in toy model

O¢ = ¢(Ve)?.
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What is the difference between M =0 and M #07?
In toy model the massless cubic Dirac has the form :
Ow = Dw - Dw - Dw
which is similar to the Wave Maps equation in toy model
O¢ = ¢(Ve)°.

Bournaveas and Candy approach : the spaces introduced by Tataru work
and the better derivative distribution does not require renormalization. A
high modulation structure, introduced by B. - Herr in the 3D problem,
solves the summation problem.
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What is the difference between M =0 and M #07?

In toy model the massless cubic Dirac has the form :
Ow = Dw - Dw - Dw
which is similar to the Wave Maps equation in toy model
D¢ = ¢(V)*.

Bournaveas and Candy approach : the spaces introduced by Tataru work
and the better derivative distribution does not require renormalization. A
high modulation structure, introduced by B. - Herr in the 3D problem,
solves the summation problem.

Challenges in the massive case, M # 0 : the resolution spaces
corresponding to the Klein-Gordon equation were not known and
incomplete null structure.
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The basic idea is using the toy model the half-Klein-Gordon with cubic
nonlinearity :

(i0 + (D))ips =" 931"
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The basic idea is using the toy model the half-Klein-Gordon with cubic
nonlinearity :

(i0 + (D))ips =" 931"

and run an iteration scheme based on the estimate :

[20°. 1202 112 — 1112, (1)
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The basic idea is using the toy model the half-Klein-Gordon with cubic
nonlinearity :

(i0 + (D))ips =" 931"

and run an iteration scheme based on the estimate :
2 2 2 1,2
LiLSe - LS - L3P Ly — Ly L. (1)

There is not much room to modify the scheme since the use of any

Strichartz estimate, other than the energy estimate L2, would lose
derivatives which is a problem in high frequency : this is a half-wave

equation, no derivative is recovered when solving the inhomogeneous
equation.
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The basic idea is using the toy model the half-Klein-Gordon with cubic
nonlinearity :

(i0: £ (D))o = "3
and run an iteration scheme based on the estimate :

[20°. 1202 112 — 1112, (1)

There is not much room to modify the scheme since the use of any

Strichartz estimate, other than the energy estimate L2, would lose
derivatives which is a problem in high frequency : this is a half-wave

equation, no derivative is recovered when solving the inhomogeneous
equation.

Bottom line : an estimate of type (1) should be part of the picture.

In fact, the focus should be on the bilinear L2 estimate :

[P 112 — 13,
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The L2L%° estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon
n—1
exhibits decay of type t~ 2 . Using the TT* argument, deriving the L2L°

_n—1

estimate amounts to (t)” 2 € L}, thus we need n > 4.

loan Bejenaru (UCSD) October 30, 2015 7/23



The L2L%° estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t~ 2 . Using the TT* argument, deriving the L2L°
2 ' L}, thus we need n > 4.

estimate amounts to <t>

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t~ z. Using the TT* argument, deriving the L2[%°
estimate amounts to (t)~2 € LI, thus we need n > 3.
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The L2L%° estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon
n—1
exhibits decay of type t~ 2 . Using the TT* argument, deriving the L2L°

. n—1
estimate amounts to (t)” 2 € L}, thus we need n > 4.

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t~2. Using the TT* argument, deriving the L2[5°
estimate amounts to (t)~2 € LI, thus we need n > 3.

Natural question : are these real obstructions ? Answer : Yes.
Montgomery-Smith proves that the estimates

it|V itA
1P VIFl| 2y S IFl2@sy,  I1PE™ Fll2pe S I1Flli2(ee)

fail, where P projects onto frequencies < 1.
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The L2L%° estimate.

In high frequency limit, the fundamental solution of the half-Klein-Gordon
n—1
exhibits decay of type t~ 2 . Using the TT* argument, deriving the L2L°

. n—1
estimate amounts to (t)” 2 € L}, thus we need n > 4.

In low frequency, the fundamental solution of the half-Klein-Gordon
exhibits decay of type t~2. Using the TT* argument, deriving the L2[5°
estimate amounts to (t)~2 € LI, thus we need n > 3.

Natural question : are these real obstructions ? Answer : Yes.
Montgomery-Smith proves that the estimates

it|V itA
1P VIFl| 2y S IFl2@sy,  I1PE™ Fll2pe S I1Flli2(ee)

fail, where P projects onto frequencies < 1.
The argument is not deterministic, it is probabilistic!
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One can ask another question : the linear estimate fail, what about the
bilinear one :

1P *AF - P'e™ gl 1yce < IIF 2y llgll ey (2)

where P, P’ project onto transversal frequencies < 1.
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One can ask another question : the linear estimate fail, what about the
bilinear one :

1P *AF - P'e™ gl 1yce < IIF 2y llgll ey (2)

where P, P’ project onto transversal frequencies < 1.

Such a setup is known to yield better estimates

| PeltAf . P’eitAg||L S Il 2 (re)llgll 2 r2)

5
3
t,x

versus the L%X estimate that would follow from linear estimates.
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One can ask another question : the linear estimate fail, what about the
bilinear one :

|Pe™2f - P'e™gll 10 < IIFlli2e2)llg iz (e2) (2)
where P, P’ project onto transversal frequencies < 1.

Such a setup is known to yield better estimates

| PeltAf . P’eitAg||L S Il 2 (re)llgll 2 r2)

5
3
t,x
versus the L%X estimate that would follow from linear estimates.

Tao proves that (2) fails as well using a bilinear version of the
Montgomery-Smith argument.
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Bilinear estimates for free solutions in 2D.

We need a theory that matches the bilinear estimate for free solutions :

e - e*Plg 2 S IIF]].2lg]l 2
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Bilinear estimates for free solutions in 2D.

We need a theory that matches the bilinear estimate for free solutions :

e - e*Plg 2 S IIF]].2lg]l 2

Assume that f, g are supported at frequency 2X1, 2% respectively, k; < ko,
and make an angle a > 27X between their supports, then

o1
1e™P2F - P g|| 2 S 27 a3 f | 2lg ] o
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Bilinear estimates for free solutions in 2D.

We need a theory that matches the bilinear estimate for free solutions :

1P - Pl g2 S Ifll2 gl 2
Assume that f, g are supported at frequency 2X1, 2% respectively, k; < ko,
and make an angle a > 27X between their supports, then
o1
[P - P g2 S 27 a2 |F | 2|g 2
When the angle is < 27X then
€™ P - P g |2 < 24| 2]l 2

Basic idea : the characteristic surfaces always make an angle. Either
a < 27K or they make an angle of 272 in the time frequency direction.
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Bilinear estimates for free solutions in 2D.

We need a theory that matches the bilinear estimate for free solutions :

e - e*Plg 2 S IIF]].2lg]l 2

Assume that f, g are supported at frequency 2X1, 2% respectively, k; < ko,
and make an angle a > 27X between their supports, then

o1
[P - P g2 S 27 a2 |F | 2|g 2
When the angle is < 27X then

1e™P2f - e P gl 2 < 24 f]|,2 gl -

Basic idea : the characteristic surfaces always make an angle. Either
a < 27K or they make an angle of 272 in the time frequency direction.

Taking into account the null condition which penalizes the interaction by a
factor of a 4+ 2% we would get

K K ko1 _k
(™), Be™P)g)[|,2 < 272 (az +272)||F||2]lgl| 2.
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From the nonlinear equation point of view, the above scheme applies only
to the first iteration! A more robust approach is needed to make all the
iterations work.
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From the nonlinear equation point of view, the above scheme applies only
to the first iteration! A more robust approach is needed to make all the
iterations work.

The goal is to develop a space structure X which contains enough
information to capture the above bilinear L? estimate :

Mol ok
I, Bg)lle S 272 (2 +2772) || x gl x-

where f, g have the appropriate frequency localization.
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From the nonlinear equation point of view, the above scheme applies only
to the first iteration! A more robust approach is needed to make all the
iterations work.

The goal is to develop a space structure X which contains enough
information to capture the above bilinear L? estimate :

k1 _k
(£, 88) 12 < 22 (a2 +272)||f|[x]lglIx-
where f, g have the appropriate frequency localization.

Natural candidates for X are Strichartz estimates. The problem comes
from that using Strichartz estimates other than energy type estimates
L>12 for g (high frequency) would produce powers of 2%2 and this is not
acceptable ! Using LL? estimates for g requires the use of L2[>
estimates for f.
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Let n = 2,3. One seeks a decomposition :
Pkeit<D>f — Z eit(D
e
and a system of frames (t,, x4 ) such that

ZHG 'fy ||L2 L2 <
[e%
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Let n = 2,3. One seeks a decomposition :

Pkeit<D> f= Z eit<D> fa
e

and a system of frames (t,, x4 ) such that

. (n—1)k
Sl 1 S22 Il
[e%

Need a lot of flexibility in energy estimates :
[C Pg||L;>;>L§a S ClIPglle

Here C reflects the angular separation of the support of %, and Pg.
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Need a lot of flexibility in energy estimates :
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Here C reflects the angular separation of the support of %, and Pg.
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Let n = 2,3. One seeks a decomposition :

Pkeit<D> f= Z eit<D> fa

and a system of frames (t,, x4 ) such that

(n—1)k

S Pl e £ 272
«

Need a lot of flexibility in energy estimates :

[C Pg||L;>;>L§a S ClIPglle

Here C reflects the angular separation of the support of %, and Pg.
The scheme is closed as follows

[e*O0F - &0 Pglliz £ (1€ halluz 1z €™ Pell ez,
[e%

This approach is inspired by the work of Tataru on Wave Maps and B.,

lonescu, Kenig and Tataru on Schrodinger Maps.
loan Bejenaru (UCSD) MSRI October 30, 2015
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Classical approach for Strichartz estimates.

For solutions localized at frequency 2%, seek an estimate of type

e ol 2,0 S C(K)uoll 2
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Classical approach for Strichartz estimates.

For solutions localized at frequency 2%, seek an estimate of type
1€ uo|l 2100 S C(K)l|uoll 2

(n—1)k
2

The scaling (in high frequency) indicates that C(k) =2 .
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Classical approach for Strichartz estimates.

For solutions localized at frequency 2%, seek an estimate of type
1€ uo|l 2100 S C(K)l|uoll 2

(n—1)k
2,

The scaling (in high frequency) indicates that C(k) =2
By TT* argument, this is follows from an estimate of type

1Kk (£ )| 2150 S C2(K)

where

Ki(t x) = /R €O 2 (|¢]) de.

Here x localizes at frequency 2.
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Classical approach for Strichartz estimates.

For solutions localized at frequency 2%, seek an estimate of type
1€ uo|l 2100 S C(K)l|uoll 2
(n—1)k
z .

The scaling (in high frequency) indicates that C(k) =2
By TT* argument, this is follows from an estimate of type

1Kk (£ )| 2150 S C2(K)

where
Kultox) = [ e<eO3i (e ds.
Here x localizes at frequency 2.

One needs decay type estimates on Ky which are obtained by using
standard oscillatory type arguments.
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Classical approach for Strichartz estimates.

For solutions localized at frequency 2%, seek an estimate of type
1€ uo|l 2100 S C(K)l|uoll 2

(n—1)k
2,

The scaling (in high frequency) indicates that C(k) =2
By TT* argument, this is follows from an estimate of type

1Kk (£ )| 2150 S C2(K)

where

Ki(t,x) = /R €O 2 (|¢]) de.

Here x localizes at frequency 2.

One needs decay type estimates on Ky which are obtained by using
standard oscillatory type arguments. The principal curvatures of the
characteristic surface 7 = \/£2 + 1 play a crucial role.
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Kernel estimates and consequences

The characteristic surface is 7 = /&2 + 1 is parabola like for [£| < 1 :

|K<o(t,x)| S (1 +[t])72.
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Kernel estimates and consequences

The characteristic surface is 7 = /&2 + 1 is parabola like for [£| < 1 :
|[K<o(t,x)| < (14 J¢))72.

Low frequencies exhibit Schrodinger type decay. The L%2L™ type estimate
is dictated by the Schrodinger equation and this is well-understood.
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In high frequency the characteristic surface is cone-like, yet it has
nonvanishing principal curvatures : two are & 1, the third one is ~ 272k
(after rescaling).
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Low frequencies exhibit Schrodinger type decay. The L%2L™ type estimate
is dictated by the Schrodinger equation and this is well-understood.

In high frequency the characteristic surface is cone-like, yet it has
nonvanishing principal curvatures : two are & 1, the third one is ~ 272k
(after rescaling). The following bound holds true
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Kernel estimates and consequences

The characteristic surface is 7 = /&2 + 1 is parabola like for [£| < 1 :
|[K<o(t,x)| < (14 J¢))72.

Low frequencies exhibit Schrodinger type decay. The L%2L™ type estimate
is dictated by the Schrodinger equation and this is well-understood.

In high frequency the characteristic surface is cone-like, yet it has
nonvanishing principal curvatures : two are & 1, the third one is ~ 272k
(after rescaling). The following bound holds true

K, x)| < 27(1 + 25¢))~"F min(L, (1 + 25|¢])"22%))

There are two decay regimes
1) |t| < 2k the decay is t~ 2 (Wave),
2) |t| > 2 the decay is t~2 (Schrédinger).
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If n = 3, the above estimate gives

||KkH1_%Lgo S k2k, k> 1.
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If n = 3, the above estimate gives
Kl S k2%, k> 1L
This gives the end-point Strichartz estimate with logarithmic loss :
le* P uoll iz S k22HJuolli2, k> 1.

which is suboptimal, but good enough to close subcritical ranges.
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If n = 3, the above estimate gives
Kl S k2%, k> 1L
This gives the end-point Strichartz estimate with logarithmic loss :
le* P uoll iz S k22HJuolli2, k> 1.

which is suboptimal, but good enough to close subcritical ranges.

If n =2, even in the better Schrodinger regime, the decay is t~* hence no
estimate of type [[Kkl| 1o is available.
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If n = 3, the above estimate gives
Kl S k2%, k> 1L
This gives the end-point Strichartz estimate with logarithmic loss :
le* P uoll iz S k22HJuolli2, k> 1.

which is suboptimal, but good enough to close subcritical ranges.

If n =2, even in the better Schrodinger regime, the decay is t~* hence no
estimate of type [[Kkl| 1o is available.

The aim of our works was to come up with an effective replacement for
the missing L2L2° estimate.
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Refined analysis of the kernel.

We recover an L2L> estimates in adapted systems of coordinates. This is

done by localizing the kernel Kj more and understanding its decay
properties relative to this localization.
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Refined analysis of the kernel.

We recover an 2L estimates in adapted systems of coordinates. This is
done by localizing the kernel Kj more and understanding its decay
properties relative to this localization.

We denote by K; a collection of spherical caps of diameter 2~/ which
"nicely” cover of the unit sphere S"~!. For x € K let w(x) be the center
of k and 7, be a smooth approximation of the characteristic function of .
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Refined analysis of the kernel.

We recover an 2L estimates in adapted systems of coordinates. This is
done by localizing the kernel Kj more and understanding its decay
properties relative to this localization.

We denote by K; a collection of spherical caps of diameter 2~/ which
"nicely” cover of the unit sphere S"~!. For x € K let w(x) be the center
of k and 7, be a smooth approximation of the characteristic function of .

Fix k > 0. For k € K, let

Kinlt.) = [ eSO ei(o) de
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Refined analysis of the kernel.

We recover an 2L estimates in adapted systems of coordinates. This is
done by localizing the kernel Kj more and understanding its decay
properties relative to this localization.

We denote by K, a collection of spherical caps of diameter 2~/ which
"nicely” cover of the unit sphere S"~!. For x € K let w(x) be the center
of k and 7, be a smooth approximation of the characteristic function of .

Fix k > 0. For k € K, let

Kinlt.) = [ e SeHOg(iel)iic) de.

The threshold | = k appears to be the optimal one for the purpose of our
analysis.

loan Bejenaru (UCSD) October 30, 2015 15 /23



Adapted coordinates. Given an angle w and a parameter A, define the
directions ©) ., = \/H—A(/\ w), Oy, —1, \w) and the associated

orthogonal coordinates (t@,x@,x@)

1
= 7ol

to = (t,x) - O, = (t,x) - @)\w, X =X -wh.
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Adapted coordinates. Given an angle w and a parameter A, define the

directions ©) ., = \/H—A(/\ w), Oy, W(—l,/\w) and the associated
orthogonal coordinates (t@,x@,x@)
i
to = (t,x) - O, = (t,x) Ox,, X6 =x w.

With A(k) = (1 + 2_2")_% and w(k) construct the new coordinates

(t@,X@).
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Adapted coordinates. Given an angle w and a parameter A, define the

directions ©) ., = \/H—A(/\ w), Oy, W(—l,/\w) and the associated
orthogonal coordinates (t@,x@,x@)
i
to = (t,x) - O, = (t,x) Ox,, X6 =x w.

With A(k) = (1 + 2_2")_% and w(k) construct the new coordinates
(to, xo). The following estimates hold true for n = 3 :

| K (8, )] S 241+ 27K (2, X)) 3.

|Ki(t: )] Sn 251+ 24t0]) N, Jto] > 272|(t, x)|.
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Adapted coordinates. Given an angle w and a parameter A, define the

directions ©) ., = \/H—A(/\ w), Oy, W(—l,/\w) and the associated
orthogonal coordinates (t@,x@,x@)
i
to = (t,x) - O, = (t,x) Ox,, X6 =x w.

With A(k) = (1 + 2_2")_% and w(k) construct the new coordinates
(to, xo). The following estimates hold true for n = 3 :

| K (8, )] S 241+ 27K (2, X)) 3.

|Ki(t: )] Sn 251+ 24t0]) N, Jto] > 272|(t, x)|.

As a consequence we obtain

k
Kkl e < 2% IKkelly s < 1
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We obtain the following Strichartz estimate :

— k|| Ait(D it (D
27| et >UOHL§L;<> +|e™ >UO||L§9L38 S lluoll2-

for ug localized at frequency 2% and cap .
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We obtain the following Strichartz estimate :
—k{| 4it(D it(D
27K)|e™P) ug |l 200 + [l >UO||LgeL;5 S llwoll2-

for ug localized at frequency 2% and cap .
The Strichartz estimate in adapted frames adds in a favorable way with
respect to caps

Z ||eit<D>PnU0||L$ e S 2wl
e Ox O

and gives the optimal factor.
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We obtain the following Strichartz estimate :
—k{| 4it(D it(D
27K)|e™P) ug |l 200 + [l >UO||LgeL;5 S lluoll 2

for ug localized at frequency 2% and cap .
The Strichartz estimate in adapted frames adds in a favorable way with
respect to caps

Z ||eit<D>PnU0||L$ e S 2wl
e Ox O

and gives the optimal factor. This suffices for the problem in 3D.
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We obtain the following Strichartz estimate :
—k{| 4it(D it(D
27K)|e™P) ug |l 200 + [l >UO||LgeL;5 S lluoll 2

for ug localized at frequency 2% and cap .
The Strichartz estimate in adapted frames adds in a favorable way with
respect to caps

Z ||eit<D>PnU0||L$ e S 2wl
e Ox O

and gives the optimal factor. This suffices for the problem in 3D.

Note : In high frequency limit this construction leads to the one used in
the Wave Maps equation.
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If n = 2 the kernel estimate becomes :
| Kiee (£, )] S 241+ 2752, ) )7

|Ki(t, )] S 24(L+24t0) Y, Jte] > 272|(¢, x)|.
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If n = 2 the kernel estimate becomes :
| Kiee (£, )] S 241+ 2752, ) )7

|Ki(t, )] S 24(L+24t0) Y, Jte] > 272|(¢, x)|.

The problem now is that in the regime |t| > 2 the decay is too weak.
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If n = 2 the kernel estimate becomes :

|Kk,,€(t, X)| S

~

2K(1 4+ 27K|(t, X)) L.

|Ki(t, )] S 24(L+24t0) Y, Jte] > 272|(¢, x)|.

The problem now is that in the regime |t| > 2 the decay is too weak.

The fix comes by exploiting the decay of |t|~! in a different fashion
inspired by the work on the 2D Schrédinger equation.
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If n = 2 the kernel estimate becomes :

|Kk,/i(tv X)| S

~

2K(1 4+ 27K|(t, X)) L.

|Ki(t, )] S 24(L+24t0) Y, Jte] > 272|(¢, x)|.

The problem now is that in the regime |t| > 2 the decay is too weak.

The fix comes by exploiting the decay of |t|~! in a different fashion
inspired by the work on the 2D Schrédinger equation.

For T <2, reN, for k > 100, and k € ICx we define

1
N =4 ———=me 270702573 2K L x {w(r
N [ 1} x {wls)}
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With this we can prove that
|Kk7,{(t,X)| 5 Z K@(f,X)-
@E/\k’,.i

with

> Kol s S 1.
@E/\k’,.i
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With this we can prove that

Kiw(t,X) S ) Kel(t,x).

@E/\k’,.i

with

> Kol s S 1.

@E/\k’,.i

Defining the norm

915y, iz =, inf " el

X pa—
© ¢_Ze€/\kﬁ (o) @E/\k},@

we obtain that for f € L?(R?) supported at frequency 2 in the the cap &,

||1[—T,T](t)eit<D>f||§j,\m 12 L5 S ez,
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With this we can prove that

Kiw(t,X) S ) Kel(t,x).

@E/\k’,.i

with

> Kol s S 1.

@E/\k’,.i

Defining the norm

915y, iz =, inf " el

X pa—
© ¢_Ze€/\kﬁ (o) 96/\k,n

we obtain that for f € L?(R?) supported at frequency 2 in the the cap &,
it(D) <
17 7(t)e f||§;,\m iz g S Il
and this adds correctly to give the factor predicted by scaling

> e @ P Peflls, iz i < 220F]
REKK
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A similar construction is done starting from

Ko (8, )] S 25(1 + Ix )TN, 0 I | > 275 (2, %)
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A similar construction is done starting from

Ko (8, )] S 25(1 + Ix )TN, 0 I | > 275 (2, %)

We define the set
Qo = (MK} x {Riw(n); i € 2, i < 278+ )
and the norm

o = inf o0
N > el

Oy o 0eQy «
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A similar construction is done starting from

Ko (8, )] S 25(1 + Ix )TN, 0 I | > 275 (2, %)

We define the set
Qo = (MK} x {Riw(n); i € 2, i < 278+ )
and the norm

0o = inf oo
95, 20000 = o > el

Oy o 0eQy «

The following holds true

it<D> < k
11j-7,71(t)e f||29m L%LE’ZXI)G S 22|f |2,
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Energy estimates

The Strichartz estimates need to be paired with corresponding energy

. . 2
estimates, that is L?;LXG.
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Energy estimates

The Strichartz estimates need to be paired with corresponding energy
estimates, that is L?;Lf(e. Given two sets of parameters (ki, 1) and

(ka, K2) with ki < ky and (ki, k1) generating the direction ©, one needs
an energy estimate of type

\leit<D>UoHng)L§@ S Clk, ko, k1, k2) || ol 2
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Energy estimates

The Strichartz estimates need to be paired with corresponding energy
estimates, that is L?;Lf(e. Given two sets of parameters (ki, 1) and

(ka, K2) with ki < ky and (ki, k1) generating the direction ©, one needs
an energy estimate of type

\leit<D>UoHng)L§@ S Clk, ko, k1, k2) || ol 2
This is doable provided that : o = d(k1, x2) > 275 in which case

C=al
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Energy estimates

The Strichartz estimates need to be paired with corresponding energy
estimates, that is L?;Lf(e. Given two sets of parameters (ki, 1) and

(ka, K2) with ki < ky and (ki, k1) generating the direction ©, one needs
an energy estimate of type

\leit<D>UoHng)L§@ S Clk, ko, k1, k2) || ol 2
This is doable provided that : o = d(k1, x2) > 275 in which case
C=al
as well as when d(k1,K2) < 27K in which case

C =2k,
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Energy estimates

The Strichartz estimates need to be paired with corresponding energy
estimates, that is L?;Lf(e. Given two sets of parameters (ki, 1) and

(ka, K2) with ki < ky and (ki, k1) generating the direction ©, one needs
an energy estimate of type

\leit<D>UoHng)L§@ S Clk, ko, k1, k2) || ol 2
This is doable provided that : o = d(k1, x2) > 275 in which case
C=al
as well as when d(k1,K2) < 27K in which case
C=2M.

In the regime o = d(k1, K2) ~ 27X the above energy estimates blow up
and the (incomplete) null structure does not help the problem.
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One uses instead the other set of coordinates

Kk
< 22 uoll2-

it(D)
[ uo| L3 Lo
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One uses instead the other set of coordinates

Kk
< 22 uoll2-

eit(D)
|| ug || Lj(;; L?t,xl)@

Toy model for closing the argument. Via a duality argument, one needs to
estimate

/ (16, B0) - (1, Bib)dcl.
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One uses instead the other set of coordinates

; [
el e, %27 ool
L

Toy model for closing the argument. Via a duality argument, one needs to
estimate

/ (16, B0) - (1, Bib)dcl.

It is enough to estimate

{0, B 2.
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One uses instead the other set of coordinates

Kk
S 272 [uoll 2

eit(D)
|| ug || Lj(;; L?t,xl)@

Toy model for closing the argument. Via a duality argument, one needs to
estimate

/ (16, B0) - (1, Bib)dcl.

It is enough to estimate

{0, B 2.

Though not apparent, there is a null structure in this bilinear form which is
of the order of the angular separation of the interacting frequencies.
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One uses instead the other set of coordinates

Kk
S 272 [uoll 2

eit(D)
|| ug || Lj(;; L?t,xl)@

Toy model for closing the argument. Via a duality argument, one needs to
estimate

/ (16, B0) - (1, Bib)dcl.

It is enough to estimate

{0, B 2.

Though not apparent, there is a null structure in this bilinear form which is
of the order of the angular separation of the interacting frequencies.

The estimate is morally of the form :

[2 1. [°12 —[2

to ~Xxo to ~xo
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Thank you for your attention!
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Thank you for your attention!

Special Thanks to the organizers :
Andrea, Daniel, Gigliola, Jonathan, Kay, Luc, Pierre, Yvan!
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