Mapping class groups and $Out(F_n)$

MSRI Introductory Workshop Aug 22, 2016

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The three great families of groups

The simplest interesting topological space is S^1 . What is the second?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The three great families of groups

The simplest interesting topological space is S^1 . What is the second? Three answers:

- $T^n = (S^1)^n \rightarrow SL_n(\mathbb{Z})$ and arithmetic groups.
- surfaces $\Sigma \rightarrow \text{mapping class group } Mod(\Sigma)$.
- graphs $\rightarrow Out(F_n)$.

Up to index 2, $Out(F_2) = Mod(T^2) = SL_2(\mathbb{Z})$.

Definitions, for the record

$$Mod(\Sigma) = Homeo_{+}(\Sigma)/isotopy = \pi_{0}(Homeo_{+}(\Sigma))$$

 $Out(F_n) = Aut(F_n)/InnerAutos$

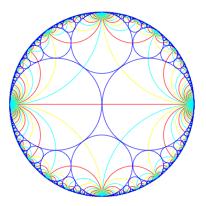
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

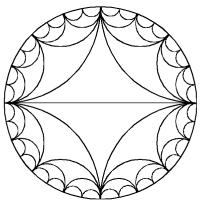
Mantra: $Out(F_n)$ is just like $Mod(\Sigma)$

$SL_2(\mathbb{Z})$ acts by isometries on hyperbolic plane

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

 $SL_2(\mathbb{Z})$





action cocompact on $\mathbb{H}^2\setminus \text{horoballs}$

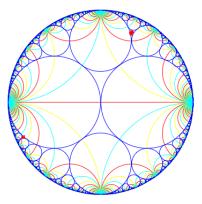
Farey graph F is the incidence graph; it is a quasi-tree.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 3

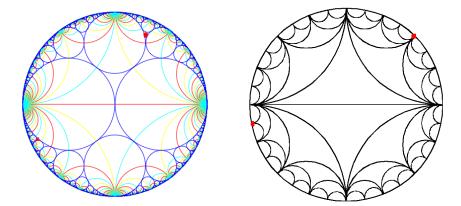
There is a natural coarse Lipschitz map $\mathbb{H}^2 \to F$. Geodesics project to quasi-geodesics

Say we want to estimate the distance between two points x, y in $SL_2(\mathbb{Z})$, coarsely identified with $\mathbb{H}^2 \setminus$ horoballs.

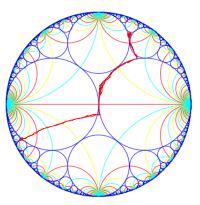


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A lower bound is the distance $d_F(x, y)$ between projections to F.



As an upper bound, this fails badly, e.g. when the two points are along the same horoball. To fix it, consider projections to boundaries of horoballs.



 $d_H(x, y)$ is the distance along $\partial H = \mathbb{R}$ (path metric) between the projections of x, y.

$$d(x,y) \asymp d_F(x,y) + \sum_{H,d_H(x,y)>6} d_H(x,y)$$

Special case of the Masur-Minsky distance formula for $Mod(\Sigma)$.

$SL_2(\mathbb{Z})$	$Mod(\Sigma)$	$Out(F_n)$
\mathbb{H}^2	Teichmüller space	Culler-Vogtmann's
		Outer space CV_n
point in \mathbb{H}^2	marked hyperbolic surface	marked metric graph
	marked Riemann surface	free simplicial <i>F_n</i> -tree
		weighted sphere system
point in $\partial \mathbb{H}^2$	measured geodesic lamination	$F_n - \mathbb{R}$ -tree
geodesic in \mathbb{H}^2	Teichmüller geodesic	folding path
		surgery path
hyperbolic metric	Teichmüller metric	Lipschitz metric
horoball	where a curve is short	where a free factor is small
Farey graph	curve complex $\mathcal{C}(\Sigma)$	free factor complex \mathcal{FF}_n
		free splitting complex \mathcal{FS}_n
loxodr. isometry	pseudo-Anosov	fully irreducible auto
horoball projections	subsurface projections	subfactor projections

Similarities

Teich(Σ), *CV_n* contractible. Both groups have virtually finite K(π, 1), vcd computed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- homological stability, stable homology, duality
- Tits alternative, solvable groups are virtually abelian
- classification of automorphisms
- finitely many growth rates, all algebraic integers
- $C(\Sigma), \mathcal{FF}_n, \mathcal{FS}_n$ hyperbolic

Differences

- $Out(F_n)$ has elements that grow polynomially but not linearly
- For f ∈ Out(F_n) the growth rates of f and f⁻¹ are typically different
- Out(F_n) contains Kolchin subgroups that are not virtually abelian but contain only polynomially growing elements. These are also distorted and are not detected by subfactor projections.
- $Out(F_n)$ has an exponential Dehn function; $Mod(\Sigma)$ quadratic

▶ Out(F_n) has no (known?) distance formula

Questions

- Is there a finite index subgroup of Mod(Σ) or Out(F_n) that maps onto Z? Onto F₂?
- Does $Mod(\Sigma)$ or $Out(F_n)$ have property (T)?
- ► Does Mod(Σ) or Out(F_n) admit an action on a CAT(0) cube complex with unbounded orbits?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A finitely generated subgroup $Q \subset Mod(\Sigma)$ is convex cocompact if the associated extension

$$1 \rightarrow \pi_1(\Sigma) \rightarrow G \rightarrow Q \rightarrow 1$$

is δ -hyperbolic; equivalently, the orbit map $Q \to \mathcal{C}(\Sigma)$ is a QI embedding.

Are f.g. subgroups Q consisting of 1 and pseudo-Anosov mapping classes convex cocompact?

Is every convex cocompact subgroup virtually free?

Large scale geometry of $Out(F_n)$

- ▶ Is there a version of the distance formula for $Out(F_n)$?
- For which elements f ∈ Out(F_n) is there an action of Out(F_n) [or a finite index subgroup] on a hyperbolic space with f loxodromic?
- Prove QI rigidity for $Out(F_n)$.
- Does Out(F_n) have finite asymptotic dimension? Does FF_n or FS_n have finite asymptotic dimension?

▶ Is *Out*(*F_n*) boundary amenable?