HYPERBOLIC-LIKE BEHAVIOUR OF GROUPS

KOJI FUJIWARA

ABSTRACT. I will discuss properties, techniques and examples related to hyperbolic-like groups. For example, contracting geodesics, weakly proper discontinuous/acylindrical group actions. Then I explain the construction of projections complexes and mention some of its applications.

1.

A geodesic space X is δ -hyperbolic if every geodesic triangle is δ -thin.

A group *G* is *word-hyperbolic* if $\exists X \ \delta$ -hyperbolic such that $G \curvearrowright X$ by isometries, properly, co-boundedly. Properly: for fixed $x \in X$, for all R > 0, $\#\{g \in G \mid d(x,gx) < R\} < \infty$. Co-boundedly: $\exists R$, $G \cdot B(x,R) = X$.

(Throughout talk, all actions are by isometries.)

Theorem (/definition). *G* is word-hyperbolic \iff *G* is f.g. and Cayley(*G*) is δ -hyperbolic.

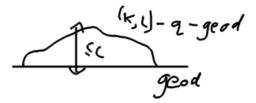
 \Leftarrow is straightforward.

⇒ by first applying Svarc–Milnor to get *G* f.g. and Cayley(*G*) $\sim_{QI} X$ δ -hyperbolic (quasi-isometric). Then we are finished, as hyperbolicity is a QI-invariant.

Key step in proof that hyperbolicity is a QI-invariant is

Lemma (Morse lemma). (K, L)-quasi-geodesic in a δ -hyperbolic space X, then it is a bounded distance ($\leq C(K, L, \delta)$) from a geodesic.

Date: 22 August 2016.



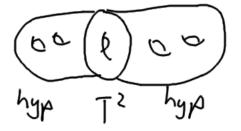
2. RANK-1 GEOD

Example/non-examples of hyperbolic spaces.

- Trees are 0-hyperbolic, free groups are word-hyperbolic.
- \mathbb{H}^2 is hyperbolic, $\pi_1(\Sigma_g), g \ge 2$ is word-hyperbolic.
- \mathbb{E}^2 is not hyperbolic, \mathbb{Z}^2 is not word-hyperbolic.
- *M* a closed Riemannian manifold of sectional curvature *K* ≤ 0.
 G = π₁*M* ∩ *M* by isometries, properly, co-compactly. *M* is an "Hadamard" manifold, CAT(0) space, but maybe not δ-hyperbolic.

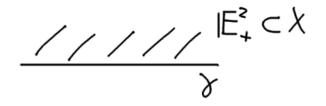
Rank-rigidity theorem (Ballmann): *M* is either

- (1) a product $M_1 \times M_2$, $G = G_1 \times G_2$, $|G_i| = \infty$, G is not word-hyperbolic.
- (2) a locally symmetric space of $rk \ge 2$, $\widetilde{M} > \mathbb{E}^2$, *G* is not word-hyperbolic.
- (3) a "rank-1 manifold": e.g.
 - (a) *M* is hyperbolic, *G* is word-hyperbolic
 - (b) 3-dimensional manifold, two hyperbolic manifolds glued along a torus cusp:



G is not word-hyperbolic, $\pi_1 T^2 = \mathbb{Z}^2 < G$.

• In Hadamard manifold / CAT(0) space *X*, an ∞ -geodesic γ is *rank-1* if it does not bound a flat half plane.

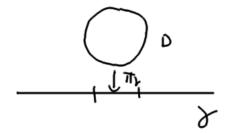


- A hyperbolic space *X* with a geodesic axis *γ* is *rank-1* if *γ* is rank-1.
- A manifold *M* of $K \leq 0$ is *rank-1* if $\exists g \in \pi_1 M$ that is rank-1 on \widetilde{M} .

For geometric group theorists, consider case (3) in Rank-rigidity Theorem to be the general case.

3. CONTRACTING GEODESICS

Let $\gamma \subset X$ a geodesic space, γ a (quasi-)geodesic. Let B > 0. We say γ is (*B*-)*contracting* if for every metric ball $D \subset X$ such that $D \cap \gamma = \emptyset$, we have diam $\pi_{\gamma} \leq B$, where $\pi_{\gamma} : X \to \gamma$ is nearest point projection.



Lemma. *M* a Riemannian manifold, $K \le 0, 1 \ne g \in \pi_1 M$ hyperbolic with axis γ . Then g, or equivalently γ , is rank-1 $\iff \exists B, \gamma$ is B-contracting.

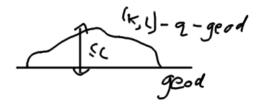
 \Leftarrow is trivial, \Rightarrow need some work.

Exercise. If *X* is δ -hyperbolic, every geodesic is 10δ -contracting.

Theorem (Minsky). *Every pseudo-Anosov* ("pA") in MCG(Σ) has a *B*-contracting geodesic axis in Teich(Σ).

Reminder. Teich(Σ) is not δ -hyperbolic.

Morse lemma. a *B*-contracting geodesic γ satisfies Morse lemma:



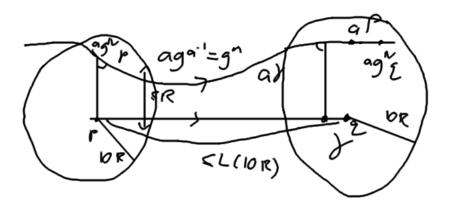
where now C = C(K, L, B).

Sample proposition. $G \curvearrowright X$ properly, $\exists g \in G$ hyperbolic with a quasi-geodesic axis γ , *B*-contracting. Then normalizer $N_G(\langle g \rangle)$ is virtually \mathbb{Z} .

Remark. Applies to all pA in MCG.

Suppose $a \in N_G(\langle g \rangle)$.

G is word-hyperbolic if $G \curvearrowright X$, δ -hyperbolic properly co-boundedly.



4. WPD

 $MCG(\Sigma) \curvearrowright C(\Sigma)$, the curve complex, which is δ -hyperbolic. Every $pA \in MCG$ is hyperbolic with a quasi-geodesic axis γ .

But $C(\Sigma)$ is not proper, the action is not proper.

Definition. $G \curvearrowright X$ geodesic space, $g \in G$ hyperbolic with axis γ . We say g is *weakly properly discontinuous* (WPD) if $\forall R > 0, \exists L$ such that $\forall x, y \in \gamma$ satisfying |x - y| > L

 $#\{a \in G : |x - ax| \le R \text{ and } |y - ay| \le R\} < \infty.$

Remark. $G \curvearrowright X$ is proper \implies every $g \in G$ is WPD.

Proposition. *Every* $pA \in MCG(\Sigma)$ *is WPD on* $C(\Sigma)$ *.*

Sample proposition. $G \curvearrowright X$, $\exists g \in G$, hyperbolic, WPD with a *B*-contracting axis γ . Then $N_G(\langle g \rangle)$ is virtually \mathbb{Z} .

This demonstrates the advantage of WPD that we can consider properness of a single element (while the whole action is not proper).

Remark. Applies to a pA \in MCG \curvearrowright $C(\Sigma)$.

Summary theorem. (Bestvina–Bromberg–F.) If *G* acts on *X* such that $\exists g \in G$, hyperbolic and WPD with a *B*-contracting axis γ , then *G* acts on some quasi-tree *Q* by isometries, such that $g \in G$ is hyperbolic and WPD. (Quasi-tree *Q*: a geodesic space *Q* quasi-isometric to some simplicial tree, δ -hyperbolic, e.g. Farey graph.)

Example.

- Discrete subgroups in Isom \mathbb{H}^n , $\forall g \in G$ hyperbolic element.
- *G* hyperbolic space, $\forall g$ of ∞ -order.
- MCG, \forall pA \frown $C(\Sigma)$.
- $\operatorname{Out}(F_n)$, \forall fully irreducible \frown Outer space.
- π_1 of rank-1 manifold, for every rank-1 element.

Non-example. SL₃ \mathbb{Z} , $\forall g$

Sample application.

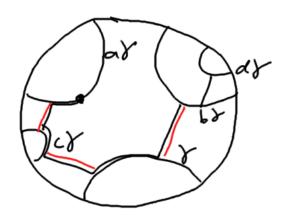
KOJI FUJIWARA

Theorem (Dahmani–Guirardel–Osin). *If* $G \curvearrowright X \delta$ *-hyperbolic,* $\exists g \in G$ *hyperbolic and WPD,* $\exists N$ *large such that gN normally generates a free subgroup of rank* ≥ 2 *in* G*, unless* G *is virtually* \mathbb{Z} *.*

5. PROJECTION COMPLEX

Setting. $G \curvearrowright X$, $\exists g$ hyperbolic, WPD, *B*-contracting γ .

 $g \in \pi_1 \Sigma \curvearrowright \mathbb{H}^2$



 $Y = \{a\gamma \mid a \in G\} / \sim$

Lemma. $\exists L \text{ such that } \forall a \in G \text{ either } \gamma \sim a\gamma \text{ (Hausdorff distance } Hd(\gamma, a\gamma) \leq L) \text{ or diam } \pi_{\gamma}(a\gamma) \leq L.$

V(Q) = Y. There is a rule to join two points in *Y*.

Called projection complex.

axiom

Sample theorem. $\exists \Gamma < MCG$ finite index, $\forall g \in \Gamma \infty$ -order $\Longrightarrow \exists \Gamma \frown P \delta$ -hyperbolic such that *g* is hyperbolic (not WPD, WWPD).

In particular, *g* is not distorted in *G*, $||g^n||$ grows linearly.

Theorem (Farb–Lubotzky–Minsky). *Every* $g \in MCG$ *of* ∞ -*order is not distorted.*

6

HYPERBOLIC-LIKE BEHAVIOUR OF GROUPS

6. PROBLEMS

Prove:	Hyp. group	MCG	$\operatorname{Out}(F_n)$
Assume f.g. G is "hyperbolic-like":	yes	yes (BBF)	?
$\forall g \in G$, ∞ -order, maybe passing to			
a finite index subgroup of G , $G \curvearrowright X$,			
hyperbolic space such that g is hyper-			
bolic, WPD / WWPD (weakly WPD).			
Then <i>G</i> has no distortion.	yes	yes (FLM)	yes
<i>G</i> satisfies a quadratic isoperimetric	yes	yes	no (exponential)
inequality.			
<i>G</i> acts on some l^p -space, isom, proper.	yes (Yu)	? $(p = 2 \implies$?
		not (T))	
$G \hookrightarrow \text{some } l^p \text{-space, coarsely.}$	yes	?	?
<i>G</i> has finite asymptotic dimension.	yes	yes	?
Something on $asym - cone(G)$.	ℝ-tree	Behrstock-	?
		Druţu–Sapir	
Out(G) finite or G splits along virtu-	yes, finite vir-	$\operatorname{Out}(G) = 1$	$\operatorname{Out}(G) = 1$
ally abelian subgroups.	tually cyclic	(Ivanov)	(Bridson-
	(Bestvina–		Vogtmann)
	Paulin–Rips).		
(compactness theorem)			
\exists finitely many $G \curvearrowright X_i$ hyperbolic,	yes	yes	?
$1 \leq i \leq N$ such that $G \curvearrowright X_1 \times \cdots \times$			
X_N is proper / QI-embed.			