TOPOLOGICAL DIMENSION OF THE BOUNDARIES OF SOME HYPERBOLIC $Out(F_n)$ -GRAPHS

CAMILLE HORBEZ

ABSTRACT. A theorem of Bestvina–Bromberg–Fujiwara asserts that the mapping class group of a hyperbolic surface of finite type has finite asymptotic dimension; its proof relies on an earlier result of Bell–Fujiwara stating that the curve complex has finite asymptotic dimension. The analogous statements are still open for $Out(F_n)$. In joint work with Mladen Bestvina and Ric Wade, we give a first hint towards this, by obtaining a bound (linear in the rank *n*) on the topological dimension of the Gromov boundary of the graph of free factors of F_n (as well as some other hyperbolic $Out(F_n)$ -graphs).

Theorem (BHW). *The Gromov boundary of the* free factor graph FF_N *has topological dimension* $\leq 2N - 2$.

(intersection graph / co-surface graph $\leq 2N - 3$, cyclic splitting graph $\leq 3N - 5$)

Theorem (Bestvina–Bromberg–Fujiwara). Σ *oriented surface of finite type* \rightsquigarrow Mod(Σ) *has finite* asymptotic dimension.

 \implies Mod(Σ) satisfies the integral Novikov conjecture.

Definition (Gromov). A metric space *X* has *asdim* \leq *n* if \forall *R* > 0, \exists open cover of *X* by subsets of uniformly bounded diameter with *R*-multiplicity \leq *n* + 1.

That is, every *R*-ball intersects at most n + 1 sets from the cover.

e.g. \mathbb{R}^2 has asymptotic dimension 3.

Date: 22 August 2016.

Open question. $asdim(Out(F_n)) < +\infty$?

(1) (Bell-Fujiwara)

The *curve graph* $C(\Sigma)$ has finite asdim.

(2) qi embed $Mod(\Sigma)$ into a finite product of hyperbolic spaces built out of C(S), $S \subseteq \Sigma$ subsurfaces.

Definition (Buyalo). A metric space *Z* has *capacity dimension* $\leq n$ if $\exists C > 0$ such that $\forall \epsilon > 0, \exists$ open cover of *Z* by subsets with diameter $\leq \epsilon$ with $\frac{\epsilon}{C}$ -multiplicity $\leq n + 1$.

Theorem (Bestvina–Bromberg). *capdim*($\partial_{\infty}C(\Sigma)$) $\leq 4g + p - 4$.

(remark: $\partial_{\infty}(C(\Sigma)) \simeq \{ \text{ ending laminations } \}$ by Klarreich)

 \implies (via Buyalo) *asdim*($C(\Sigma)$) $\leq 4g + p - 3$.

Gabai had already bounded the *topdim*($\partial_{\infty}C(\Sigma)$).

[Tools: train tracks + splitting sequences]

The *free factor graph* FF_N is the graph with

- vertices \leftrightarrow conjugacy classes of proper *free factors* of F_N ($A \leq F_N$ such that $F_N \simeq A * B$)
- edges $[A] [B] \leftrightarrow A \subsetneq B$ or $B \subsetneq A$.

 FF_N is hyperbolic (Bestvina–Feighn).

Definition. A minimal F_N -action on an \mathbb{R} -tree *T* is *arational* if

- *T* is not free and simplicial
- $\forall A \subsetneq F_N$ free factor, $A \frown T_A$ (minimal *A*-invariant subtree) free and simplicial.

Theorem (Bestvina–Reynolds, Hamenstädt). $\partial_{\infty} FF_N \simeq \mathcal{AT}/\sim$.

Here, \mathcal{AT} is the arational trees.

 $T \sim T'$ if $\exists F_N$ -equivariant alignment-preserving map $T \rightarrow T'$.

Remark. $\mathcal{AT} \subseteq \partial CV_N$

Gaboriau–Levitt: $dim(\partial CV_N) = 3N - 5$.

 $\mathcal{AT} \to \mathcal{AT}/{\sim} "nice"$

These two facts together imply *cohodim*($\partial_{\infty}FF_N$) $\leq 3N - 5$.

Topological criterion.

Let *X* separable metric space.

- (1) If $X = X_0 \cup \cdots \cup X_k$, X_i 0-dimensional $\implies dim X \le k$. [index map $X \rightarrow \{0, \dots, k\}$]
- (2) If $X_i = \bigcup_{j \in \mathbb{N}} X_i^j$, each closed 0-dimensional subspaces $\implies dim X_i = 0$.

Stratification of $\partial_{\infty} FF_N$

Definition. A train track is the data of

- *S* free and simplicial F_N -tree
- an F_N -invariant equivalence relation on V(S)

CAMILLE HORBEZ

• for each equivalence class *X* of vertices, a *Stab*(*X*)-invariant equivalence relation on the set of directions at the vertices in *X*

Definition. An F_N -tree T is *carried* by τ (denoted $\tau \hookrightarrow T$) if $\exists f : S \to T$ F_N -equivariant such that

- $\forall v, v' \in V(S), f(v) = f(v') \iff v \sim v'$, and
- *f* identifies the germs of 2 directions d, d' at $X \iff d \sim d'$.

Index of a tt.

$$i(\tau) := \sum_{\substack{F_N - \text{orbits of equiv. classes } X \\ \text{of vertices in } \tau}} (\alpha_X + 3r_X - 3)$$

 α_X = number of *Stab*(*X*)-orbits of directions at vertices in *X*

$$\begin{aligned} r_X &= rk(Stab(X)) \\ i_{geom}(T) &= \sum_{F_N \text{-orbits of branch points}} (\alpha_v + 3r_v - 3) \\ \tau &\hookrightarrow T \implies i(\tau) \leq i_{geom}(T) \leq 2N - 2 \text{ (since arational)} \\ i(T) &= max \{i(\tau) \mid \tau \hookrightarrow T\} \\ \partial_{\infty} FF_N &= X_0 \cup \dots X_{2N-2} \\ X_i &= \bigcup_{i(\tau)=i} P(\tau), P(\tau) = \{T \mid \tau \hookrightarrow T\}. \\ \mathbf{Proposition.} \qquad \bullet \ \partial P(\tau) \subseteq \bigcup_{j>i} X_j \implies P(\tau) \text{ is closed in } X_i \end{aligned}$$

• $P(\tau)$ is 0-dimensional

 \rightarrow folding sequences of train tracks

4