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ABSTRACT. This will be an expository talk on the theory of spe-
cial cube complexes and their application in resolving the virtual
Haken conjecture.

1. SUBGROUP SEPARABILITY

Topological problem. Given Σn−1
ψ
# Mn an immersion of compact

manifolds, when does ψ lift to an embedding in some finite-sheeted
cover M̂→ M?

Necessary condition: if MΣ is the cover corresponding to ψ∗(π1Σ), Σ
should embed in MΣ (probably ∞-sheeted).

What’s the obstruction?

Group theoretically, we have G = π1M, H = π1Σ, some g ∈ G \ H.
Want Ĝ <f.i. G so H < Ĝ but g /∈ Ĝ.
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Definition. H < G is separable if for all g ∈ G \ H, there is some
Ĝ <f.i. G so H < Ĝ but g /∈ Ĝ.

Equivalently

(1) H = ∩
{

Ĝ <f.i. G
∣∣ H < Ĝ

}
(2) H closed in profinite topology on G

(3) Scott Criterion: if π1(K) = G, and KH → K is the cover corre-
sponding to H, and C ⊂ KH any compact set, then C embeds in
some intermediate finite-sheeted cover.

Definition. G is LERF if every f.g. subgroup is separable.

Theorem. Free groups are LERF.

Proof by example (c.f. Stallings)

G = 〈a, b〉 free.

H = 〈ab2, a2b−1〉
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C = smallest connected subgraph containing C.

“Canonical” completion of C, the connected thing containing C.

Also a retraction K̂ → C

We showed

(1) Scott’s criterion holds, but also

(2) H is a virtual retract of G

2. SPECIAL CUBE COMPLEXES

Would like to generalize to non-positively curved cube complexes
(NPCCC’s). NPC means locally CAT(0).

Wise, Burger–Mozes: ∃ NPC square complexes with no finite-sheeted
covers. (Indeed, Bridson–Wilton show that you cannot decide whether
a NPC square complex has a finite-sheeted cover or not.)

Non-definition of special cube complexes: those NPC cube com-
plexes which admit (canonical) completions and retractions to locally
isometrically immersed subcomplexes.

Definition. (1) A special cube complex is a NPCCC without certain
hyperplane pathologies: self-intersection, one-sided,
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self-osculate, and inter-osculate.

(2) Special cube complexes are those which admit a locally isometric
immersion to S(Γ) (Salvetti complex for a RAAG).

So π1( special CC ) is Z-linear, residually finite, RFRS, geometrically
nice subgroups are separable (which are all virtual properties, i.e.
commensurability invariants).

Definition. G is (compactly) cubulated if G = π1(X) for X compact
NPCCC. It is special if moreover X is special. G is virtually special if
∃ Ĝ <f.i. G so Ĝ is special.

Theorem (Haglund). G hyperbolic and virtually special, then QC sub-
groups of G are separable (G is QCERF).

Theorem (Agol’s theorem). G hyperbolic and cubulated =⇒ G is
virtually special. (Conjectured by Wise.)

3. 3-MANIFOLDS

(Assume compact and orientable.)

M3 is irreducible if every 2-sphere bounds a ball.

An irreducible 3-manifold is Haken if ∃Σ2 ↪→ M 2-sided, π1-injective,
and χ ≤ 0.
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Example. f : Σ→ Σ a homeomorphism, χ(Σ) ≤ 0 . Then

M f = Σ× [0, 1]/ glue ends by f

is Haken (in fact fibered).

Haken manifolds have hierarchies (cut along essential surfaces repeat-
edly, ending with tB3).

Get pre-geometrization proofs (mostly by Waldhausen) of

(1) M̂ ∼= R3

(2) solve word problem in π1

(3) homeomorphism problem

(4) geometrization (Thurston)

Question (Waldhausen 1968). Does irreducible =⇒ virtually Haken?

After Perelman, question reduces to hyperbolic M.

Kahn–Markovic (2009): M closed hyperbolic =⇒ π1(M) has lots of
quasi-convex surface subgroups.

So if any are separable, get virtual Haken.

4. CODIMENSION ONE SUBGROUPS (SAGEEV CONSTRUCTION)

Definition. H < G both f.g., Γ a Cayley graph for G.

e(G, H) = # ends of H\Γ

H is codimension one if e(G, H) > 1.



6 JASON MANNING

Example. Σn−1
ψ
# Mn 2-sided, π1-injective. Then ψ∗(π1Σ) is codi-

mension one subgroup.

Example. G = A ∗C B or A∗C, then C is codimension one.

Sageev construction: Given H = {H1, . . . , Hn} of codimension one
subgroups, get a CAT(0) cube complex X on which G acts.

Example.

If Σ ↪→ M get Bass–Serre tree.
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Here G y X is cocompact but not proper, so we haven’t cubulated
G = π1M.

Cocompactness criterion: If G hyperbolic and each H ∈ H is QC,
then G y X cocompactly.

Properness: G hyperbolic,H codimension one, QC. If every p, q ∈ ∂G
are separated by some Λ(gH), then the action is proper.

What does “lots of” from Kahn–Markovic mean? Enough to get a
proper action.

Corollary. If M3 is closed hyperbolic, π1M is cubulated.

Other examples of “cubulated” groups.

Mixed 3-manifold groups and many graph manifold groups.

Many free-by-cyclic groups (including hyperbolic ones)

5. SOME IDEAS IN AGOL’S THEOREM

Wise’s quasiconvex hierarchy theorem (QCH =⇒ virtually special)

Definition. (1) Finite groups have a QCH of length 0.

(2) If G is hyperbolic and ∼= a graph of groups with QC edge
groups and vertex groups with QC hierarchies of length ≤
n− 1, then G has QCH of length ≤ n.

QHT ⇐ malnormal combination theorems (Hsu–Wise, Haglund–
Wise)

+ MSQT
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6. PROBLEMS

See Wise and Agol’s ICM papers from 2014 for lots of interesting
problems (mostly unsolved).

Important problem. How far can these ingredients be pushed into
the relatively hyperbolic / CAT(0) cube complex world?

Effectiveness / decidability:

Q1 Is virtual specialness decidable for compact cube complexes? c.f.
Bridson–Wilton.

Q2 Can you predict the degree of a Haken cover of a 3-manifold, or
a special cover of a cube complex with hyperbolic fundamental
group? c.f. Patel, . . .

Meta-question: take your favorite question where you don’t know the
answer, and try to do it for cube complexes (possibly virtually special).
For example: finite K(G, 1) and no Baumslag–Solitar subgroups =⇒
hyperbolic (audience comment: see work of Haglund for virtually
special case).

Question of Wise: can you find a quasi-isometric pair of groups, one
of which is virtually special and one of which has property (T).
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