COUNTING LOXODROMICS FOR HYPERBOLIC ACTIONS

SAMUEL TAYLOR

ABSTRACT. Consider a nonelementary action by isometries of a
hyperbolic group G on a hyperbolic metric space X. Besides the
action of G on its Cayley graph, some examples to bear in mind
are actions of G on trees and quasi—trees, actions on nonelementary
hyperbolic quotients of G, or examples arising from naturally asso-
ciated spaces, like subgroups of the mapping class group acting
on the curve graph.

We show that the set of elements of G which act as loxodromic
isometries of X (i.e those with sink-source dynamics) is generic.
That is, for any finite generating set of G, the proportion of X-
loxodromics in the ball of radius n about the identity in G ap-
proaches 1 as n goes to infinity. We also establish several results
about the behavior in X of the images of typical geodesic rays in
G. For example, we prove that they make linear progress in X and
converge to the boundary of X. This is joint work with I. Gekhtman
and G. Tiozzo.

Finitely generated G ~ X by isometries.

Question. What is the dynamical behavior of a typical g € G?

Date: 23 August 2016.



2 SAMUEL TAYLOR

QQ@ ~As GAT
|

A\

:

G=7t§

Example.
dynamics: § € G
elliptic: g fixes a vertex

loxodromic: g has an axis and translates by 7(g)
w(g) = i([g] )

Typical?

(1) Random walk method.

(2) Counting method: S finite, G = (S). B(n) = {g € G : |g| < n}.
Definition. P C G. Say P is generic if

#(B(1) N P)
BB(n)  noeo

II.

e X = hyperbolic (separable) metric space.
For g € Isom(X),
rx(g) = lim X8
(independent of choice of x € X). !
¢ is loxodromic (g € LOX) < tx(g) > 0.

e G = hyperbolic group.
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e G n X is non-elementary, i.e. 3¢, € G which are indepen-
dent loxodromics.

X 9
-

Example.

(1) G ~ Cay(G)

(2) G ~ trees / quasitrees
(3) G ~ Cay(H),G — HMWP

Theorem (GTT). Let G be a hyperbolic group with a nonelementary action
on a separable hyperbolic space X. Then LOX is generic, i.e.,

#{g € B(n)|gislox.}
#B(n) i 1

Given G ~ X, fix a basepoint x € X. Look at the orbit map

P:G—-X g gx

ye( X
Q a2

-
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Given a point ¢ € dG represented by 7, what does @ () look like?
Patterson-Sullivan measure on 0G:

Un = YeeB(n) Og/#B(n), measure on G UJG.

Let v = limv,;, PS measure on 0G.

Theorem (GTT). Fix x € X and G ~ X as above. 3L > 0 depending
only on G ~ X. For v-a.e. ¢ € G and geodesic (g )n>0 with gn — ¢

e 9, X converges to a point in 0X

e such that p
lim dx (%, gn¥) =L
|gn]
o 1 (quasi-)geodesic ray r in X such that
dx(gn,r) — 0.
n n—00
Show:
#{g € B(n) | dx(x,90) > Liglt |
#B(n) n—oo
nis ,f’

Ky Iiy

Combining these:

Theorem. For G ~ X as above,

#{g € B(n)|tx(g) > LIg[}
#B(i) — 1.

APPLICATIONS

(1) G ~ Cay(G)
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(2) 11(S) ~ T. 3L such that
fg € m(S) (gl «) > Ligl}
is generic in 711 (S) (« simple closed curve)

(3) Let ¢ : G - H non-elementary hyperbolic groups. Then ¢ is
generically bi-Lipschitz, i.e., 3L = L(G, H) such that

{gcG:lop(g)l = Ligl}
is generic in G.
(4) Mod(S) (not hyperbolic)

Question. Are pseudo-Anosovs typical in Mod(S)?

G = Mod(S) ~C(S) = X, and {pA} = LOX.

Answer. Pseudo-Anosovs are typical with respect to random
walks (Rivin—-Maher)

Open whether {pA} is generic.

Theorem. Let G < Mod(S) hyperbolic (and containing 2 inde-

pendent pseudo-Anosovs). Then pseudo-Anosovs are generic in
G.
G hyperbolic and cubulated = G — A(T)

Theorem. generically elements map to rank 1 isometries.
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