THE POSET OF ACYLINDRICALLY HYPERBOLIC STRUCTURES ON A GROUP

DENIS OSIN

ABSTRACT. For every group *G*, we introduce the set of acylindrically hyperbolic structures on *G*, denoted $\mathcal{AH}(G)$. One can think of elements of $\mathcal{AH}(G)$ as cobounded acylindrical *G*-actions on hyperbolic spaces considered up to a natural equivalence. Elements of $\mathcal{AH}(G)$ can be ordered in a natural way according to the amount of information they provide about the group *G*. We will discuss some basic questions about the poset structure of $\mathcal{AH}(G)$ as well as more advanced results about the existence of maximal acylindrically hyperbolic structures and rigidity phenomena.

 $G \frown S$ is *acylindrical* if $\forall \epsilon, \exists R, N$ such that $\forall x, y \in S$

 $d(x,y) \geq R \implies \#\{g \in G \mid d(x,gx) \leq \epsilon, d(y,gy) \leq \epsilon\} \leq N.$

Example.

- (0) $G \rightarrow \text{point}$ (or bounded space)
- (1) geometric \implies acylindrical
- (2) non-exceptional MCG \neg curve complex.

Theorem-Definition. \forall group *G*, the following conditions are equivalent:

(1) *G* admits an acylindrical non-elementary action on a hyperbolic space.

Date: 23 August 2016.

DENIS OSIN

- (2) *G* admits a non-elementary action on a hyperbolic space with at least one loxodromic WPD element (definition of WPD given in Fujiwara's talk)
- (3) \exists a generating set *X* of *G* such that the corresponding Cayley graph $\Gamma(G, X)$ is hyperbolic, non-elementary ($|\partial \Gamma| > 2$) and *G* \neg $\Gamma(G, X)$ is acylindrical.

If *G* satisfies any of (1)-(3), it is called acylindrically hyperbolic.

Example.

- (1) Non-elementary hyperbolic and relatively hyperbolic groups.
- (2) Infinite MCG($\Sigma_{g,p}$)
- (3) $\operatorname{Out}(F_n) \ge 2$
- (4) Most 3-manifold groups.
- (5) Finitely presented groups of deficiency ≥ 2 .
- (6) Directly indecomposable non-cyclic RAAGs

We want to measure / quantify the number of good generating sets in (3) or the number of actions as in (1) from the above Theorem-Definition.

 $\mathcal{G}(G) := \{X \subseteq G \mid G = \langle X \rangle\} / \sim$, where $X \leq Y$ if id : $(G, d_Y) \rightarrow (G, d_X)$ is Lipschitz, and $X \sim Y$ if $X \leq Y$ and $Y \leq X$.

Example.

- (1) All finite generating sets are equivalent.
- (2) $X \subseteq Y \implies Y \leq X$

 $\mathcal{AH}(G) := \{ [X] \in \mathcal{G}(G) \mid \Gamma(G, X) \text{ is hyperbolic },$

 $G \rightharpoonup \Gamma(G, X)$ is acylindrical }

 $(\mathcal{AH}(G), \leq)$ is called the poset of acylindrically hyperbolic structures on *G* (order induced by pre-order on generating sets).

2

THE POSET OF ACYLINDRICALLY HYPERBOLIC STRUCTURES ON A GROUP 3

Example. $\mathcal{AH}(G) \neq \emptyset, \forall G ([G] \in \mathcal{AH}(G))$

How large can the set of acylindrical hyperbolic structures be?

Theorem (Abbott–Balasubramanya–O.). \forall group *G* exactly one of the following holds:

- (1) $|\mathcal{AH}(G)| = 1$
- (2) $|\mathcal{AH}(G)| = 2$. In this case G is virtually cyclic.
- (3) *G* is acylindrically hyperbolic and $|\mathcal{AH}(G)| = \infty$. Moreover, in this case $\mathcal{AH}(G)$ contains chains and anti-chains of cardinality 2^{\aleph_0} .

Idea.

- (1) If *G* is acylindrically hyperbolic, then \exists a hyperbolically embedded subgroup of *G* isomorphic to $F_2 \times$ finite.
- (2) (A.–B.–O.) If *H* is hyperbolically embedded in *G*, then $\mathcal{AH}(H)$ is a retract of $\mathcal{AH}(G)$ as a poset.

Definition. *G* is \mathcal{AH} -accessible (AHA) if $\mathcal{AH}(G)$ contains the largest element.

Example.

- (1) $G = *_{n=2}^{\infty}(\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z})$ is not AHA.
- (2) (Abbott) The Dunwoody inaccessible group is not AHA.
- (3) If *G* is *not* acylindrically hyperbolic, then *G* is AHA.

Theorem (A.–B.–O.). The following groups are AHA

- (1) Hyperbolic groups (trivial)
- (2) Finitely generated relatively hyperbolic groups with AH-accessible peripheral subgroups.
- (3) MCG($\Sigma_{g,p}$)
- (4) 3-manifold groups
- (5) RAAGs

DENIS OSIN

Lemma (A.–B.–O.). Suppose *G* acts acylindrically cocompactly on a hyperbolic graph Γ and assume that |AH(S)| = 1 for all vertex stabilizers *S*. Then *G* is AHA.

($G = \langle \text{finite set} \cup \text{representatives of vertex stabilizers} \rangle$ gives X largest generating set)

"Corollary". There are at least 4 possible isomorphism classes of posets of $\mathcal{AH}(G)$ for countable *G*.

Question 1. How many isomorphism classes of posets $\mathcal{AH}(G)$ are there?

Question 2. Is $\mathcal{AH}(F_2) \cong \mathcal{AH}(F_3)$?

Question 3. Is every finitely presented group AHA?

4